JPH09150408A - Manufacture of fireproof block - Google Patents

Manufacture of fireproof block

Info

Publication number
JPH09150408A
JPH09150408A JP7312151A JP31215195A JPH09150408A JP H09150408 A JPH09150408 A JP H09150408A JP 7312151 A JP7312151 A JP 7312151A JP 31215195 A JP31215195 A JP 31215195A JP H09150408 A JPH09150408 A JP H09150408A
Authority
JP
Japan
Prior art keywords
refractory
slurry
particle size
mold
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7312151A
Other languages
Japanese (ja)
Inventor
Isao Imai
功 今井
Hisahiro Teranishi
久広 寺西
Kazuhiro Iwakawa
和弘 岩川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP7312151A priority Critical patent/JPH09150408A/en
Publication of JPH09150408A publication Critical patent/JPH09150408A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of fireproof block excellent in durability and reliability. SOLUTION: This manufacturing method of a fireproof block comprises the steps of charging fireproof aggregate 1 having the particle diameter of 3mm or more in a form 2; forming a formed body by charging slurry 5, which is made of hardener-containing fireproof raw material having the particle diameter of 0.3mm or less and deaerated, among the fireproof aggregate particles 1 charged in the form 2; and drying and solidifying the resultant formed body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は組織的に緻密で、か
つ高い曲げ強度などを有する耐火性ブロックの製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a refractory block that is structurally dense and has high bending strength.

【0002】[0002]

【従来の技術】周知のように、たとえば製鋼工程や鋳型
化加工における溶融金属のスライドゲート、あるいは不
活性ガスなどの吹き込みによって溶融金属組成を調製す
るときのポーラスプラグガイドスリーブなどとしては、
粗大な気孔を含有しない緻密な耐火性ブロックが使用さ
れている。そして、この種の耐火性ブロックや耐火材層
は、一般的に、いわゆる不定形耐火物として市販されて
おり、使用時に成型(定形化)されているが、取扱の簡
便化や即応性などを考慮して成形した耐火性ブロック状
態での市販も行われている。
2. Description of the Related Art As is well known, for example, a slide gate of molten metal in a steelmaking process or a casting process, or a porous plug guide sleeve for preparing a molten metal composition by blowing an inert gas, etc.
A dense refractory block that does not contain coarse porosity is used. And, this kind of refractory block and refractory material layer are generally marketed as so-called irregular shaped refractory and molded (standardized) at the time of use, but for easy handling and quick response. It is also commercially available in the fireproof block state, which is molded with consideration.

【0003】ところで、従来の耐火性不定形ブロック
は、たとえば粒径 5mm以下の連続した粒度分布(粒度配
合)から成る不定形耐火物を水と混練して調製したスラ
リー状物であり、このスラリー状物を所定形状の型枠に
流し込み(充填し)、たとえば24時間,室温で養生した
後、脱型してから、たとえば 110℃で24時間,乾燥する
ことによって耐火性ブロック(耐火性定形ブロック)と
し、成形体の形態で実用に供している。なお、上記型枠
内への流し込み(充填)に当たっては、スラリー状物に
十分な流動性を付与する一方、脱泡を行うため、一般的
に、枠型を振動台に載置するか、もしくは枠型内に棒状
のバイブレーターを挿入して、充填されたスラリー状物
を加振している。
By the way, a conventional refractory amorphous block is a slurry-like substance prepared by kneading an amorphous refractory having a particle size of 5 mm or less and having a continuous particle size distribution (grain size mixture) with water. The block is poured (filled) into a mold of a specified shape, cured for 24 hours at room temperature, demolded, and then dried at 110 ° C for 24 hours, for example. ), And is put to practical use in the form of a molded body. In addition, in pouring (filling) into the above mold, while imparting sufficient fluidity to the slurry-like material, defoaming is performed. Therefore, generally, the frame mold is placed on a vibrating table, or A rod-shaped vibrator is inserted into the frame mold to vibrate the filled slurry material.

【0004】[0004]

【発明が解決しようとする課題】前記耐火性ブロックに
ついては、耐食性や機械的強度の向上が望まれており、
これらの要望に対応して表面部および内部の粗大な気孔
の大幅な低減(もしくは粗大な気孔無)化が図られてい
る。すなわち、強力な加振および混練水の増量によっ
て、流動性の付与改善および脱泡の容易化を図る試みも
なされている。しかし、前記強力な振動を加えること、
および混練水を増量することによって、スラリー状物の
流動性および脱泡性を高めると、一方では、粒径の大小
などに起因する不定形耐火物内で容易に分離やブリージ
ングが発生し、また、スラリー状物内でも不定形耐火物
と水とが容易に分離やブリージングを発生し、結果的に
均一な組成系の耐火性ブロックや耐火材層を得ることが
できないという問題がある。つまり、製造もしくは形成
された耐火性ブロックや耐火材層に品質上の偏りが生じ
易く、実用上満足できる手段とはいえない。
With respect to the refractory block, it is desired to improve corrosion resistance and mechanical strength.
In response to these demands, a large reduction in coarse pores on the surface and inside (or no coarse pores) has been achieved. That is, attempts have been made to improve fluidity and facilitate defoaming by vigorous shaking and increasing the amount of kneading water. However, applying the strong vibration,
By increasing the amount of kneading water and the fluidity and defoaming property of the slurry-like material, on the other hand, separation or breathing easily occurs in the amorphous refractory due to the size of the particle size, etc. However, there is a problem that the amorphous refractory and water are easily separated or breathed even in the slurry-like material, and as a result, a refractory block or a refractory layer having a uniform composition cannot be obtained. In other words, the manufactured or formed refractory block or refractory material layer is likely to have a deviation in quality, which is not a practically satisfactory means.

【0005】本発明は、上記事情に対処してなされたも
ので、耐久性,信頼性などすぐれた耐火性ブロックを容
易に製造できる方法の提供を目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for easily manufacturing a refractory block having excellent durability and reliability.

【0006】[0006]

【課題を解決するための手段】本発明は、粒径 3mm以上
の耐火性骨材を型枠内に充填する工程と、前記型枠内に
充填した耐火性骨材粒子間に、硬化剤を含む粒径 0.3mm
以下の耐火性原料から成り、かつ脱泡処理されたスラリ
ーを充填して成形体を成形する工程と、前記成形した成
形体を乾燥固体化する工程とを有することを特徴とする
耐火性ブロックの製造方法である。
According to the present invention, a step of filling a refractory aggregate having a particle diameter of 3 mm or more in a mold, and a curing agent between the refractory aggregate particles filled in the mold. Including particle size 0.3mm
A refractory block consisting of the following refractory raw material, and having a step of filling a defoamed slurry to form a molded body, and a step of drying and solidifying the molded body It is a manufacturing method.

【0007】すなわち、上記本発明は、耐火性ブロック
を構成する耐火物を粒度配合が不連続な、粒径 3mm以上
のものと粒径 0.3mm以下のものとの混合系(もしくは混
成系)とした点、さらには流し込み成形に当たってスラ
リー状物に脱泡処理を施すことを骨子としている。
That is, according to the present invention, the refractory material constituting the refractory block is a mixed system (or a hybrid system) of discontinuous grain size blends having a grain size of 3 mm or more and a grain size of 0.3 mm or less. In addition, the main point is to perform defoaming treatment on the slurry-like material during casting.

【0008】本発明において、耐火性骨材としては、た
とえばボーキサイト,カオリン,マグネサイト,クロム
鉄鉱などの天然原料、焼結アルミナ,電融アルミナ,合
成ムライト,スピネル,焼結マグネシア,電融マグネシ
ア,電融マグクロなどの人工原料が挙げられる。ただ
し、これらの耐火性骨材は、粒径 3mm以上、より好まし
くは 5mm以上のものを選択する必要がある。すなわち、
粒径 3mm未満では、骨材同士の隙間が狭過ぎて、スラリ
ー状物を流し込んだときに緻密な充填が困難となって、
結果的に緻密な耐火性ブロックなどが得られない恐れが
ある。粒径を 5mm以上に選択した場合は、前記スラリー
状物の流し込による緻密な充填が、より容易に行われ
る。なお、この耐火性骨材に、たとえば金属繊維類など
添加含有させて、耐剥離性もしくは結合性の補強を行う
こともできる。
In the present invention, examples of the refractory aggregate include natural materials such as bauxite, kaolin, magnesite, chromite, sintered alumina, fused alumina, synthetic mullite, spinel, sintered magnesia, fused magnesia, Artificial raw materials such as electro-fused magkuro are mentioned. However, it is necessary to select those refractory aggregates having a particle size of 3 mm or more, more preferably 5 mm or more. That is,
If the particle size is less than 3 mm, the gap between the aggregates is too narrow, making it difficult to densely fill the slurry-like material,
As a result, a dense refractory block may not be obtained. When the particle size is selected to be 5 mm or more, dense filling by pouring the slurry-like material is more easily performed. The fire-resistant aggregate may be added with, for example, metal fibers to reinforce the peel resistance or the bondability.

【0009】本発明において、スラリー状物をなす耐火
性原料としては、たとえばボーキサイト,カオリン,マ
グネサイト,クロム鉄鉱などの天然原料、焼結アルミ
ナ,電融アルミナ,合成ムライト,スピネル,焼結マグ
ネシア,電融マグネシア,電融マグクロなどの人工原
料、ジルコンフラワー,炭化ケイ素,土状黒鉛,カーボ
ンブラックなどが挙げられる。ただし、これらの耐火性
原料は、粒径 0.3mm以下、より好ましくは 0.074mm( 2
00メッシュ)以下のものを選択する必要がある。すなわ
ち、 0.3mmを超えると、スラリー状物として流し込むと
きにブリッジを形成し易く、骨材同士の隙間に十分充填
することが実際的にほとんど不可能で、結果的に緻密な
耐火性ブロックなどが得られない。粒径を 0.074mm( 2
00メッシュ)以下に選択した場合は、さらに良好な流動
性などを呈する。なお、耐火性原料としてスピネル,マ
グネシア,マグネサイトなどの塩基性原料を使用する場
合は、キレート効果を有する水和抑制剤を併用すること
が好ましい。
In the present invention, examples of the refractory raw material in the form of a slurry include natural raw materials such as bauxite, kaolin, magnesite, chromite, sintered alumina, fused alumina, synthetic mullite, spinel, sintered magnesia, Examples include artificial raw materials such as electrofused magnesia and electrofused magcro, zircon flour, silicon carbide, earth-like graphite, and carbon black. However, these refractory raw materials have a particle size of 0.3 mm or less, more preferably 0.074 mm (2
(00 mesh) The following must be selected. That is, if it exceeds 0.3 mm, it is easy to form a bridge when poured as a slurry, it is practically impossible to sufficiently fill the gap between the aggregates, and as a result, a dense refractory block etc. I can't get it. The particle size is 0.074 mm (2
(00 mesh) If selected below, it exhibits even better fluidity. When a basic material such as spinel, magnesia, or magnesite is used as the refractory material, it is preferable to use a hydration inhibitor having a chelating effect together.

【0010】本発明において、前記耐火性原料に含ませ
る硬化剤としては、たとえばアルミナセメント,珪酸ソ
ーダなどが挙げられ、また、スラリー状物の流動性を改
善するために、シリカ質超微粉末やアルミナ質超微粉末
を、さらに、分散剤としてリン酸ソーダやポリカルボン
酸などを添加配合してもよい。
In the present invention, examples of the curing agent contained in the refractory raw material include alumina cement, sodium silicate, and the like. Further, in order to improve the fluidity of the slurry-like material, ultrafine silica powder or The ultrafine alumina powder may be further added and mixed with sodium phosphate, polycarboxylic acid or the like as a dispersant.

【0011】本発明においては、前記耐火性骨材を充填
した領域にスラリー状物を流し込み・充填するに当たっ
て、そのスラリー状物に予め脱泡処理を施しておく必要
がある。すなわち、流し込み・充填に先立って、たとえ
ば、真空もしくは減圧処理してスラリー状物中の気泡を
可及的に除去,低減しておかないと、結果的に緻密な耐
火性定形ブロックなどの形成に支障がある。
In the present invention, in pouring and filling the slurry-like material in the region filled with the refractory aggregate, the slurry-like material needs to be defoamed in advance. That is, prior to pouring and filling, for example, vacuum or reduced pressure treatment must be performed to remove or reduce air bubbles in the slurry as much as possible, resulting in the formation of a dense refractory fixed block. There is a problem.

【0012】本発明では、粒径 3mm以上の耐火性骨材お
よび硬化剤を含む粒径 0.3mm以下の耐火性原料の組み合
わせによって、耐火性骨材粒子間が耐火性原料で容易
に、かつ緻密に充填した構成を採り易くなるので、強力
な加振や混練水の増量など不要となり、工程の簡略化を
図りながら信頼性や耐久性の高い耐火性ブロックを歩留
まりよく形成できる。
In the present invention, the combination of the refractory raw material having a particle diameter of 3 mm or more and the refractory raw material containing a hardening agent and having a particle diameter of 0.3 mm or less enables the refractory raw material to be easily and densely packed between the refractory aggregate particles. Since it becomes easy to adopt the constitution filled in, it becomes unnecessary to perform strong vibration and increase of kneading water, and it is possible to form a highly reliable and durable refractory block with a high yield while simplifying the process.

【0013】[0013]

【発明の実施の形態】以下図1を参照して実施例を説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment will be described below with reference to FIG.

【0014】粒径20〜 5mmの焼結アルミナ(耐火性骨材
A)、粒径 5〜 3mmの焼結アルミナ(耐火性骨材B)、
粒径 5〜 3mmの電融アルミナ(耐火性骨材C)、粒径
0.3mm以下の焼結アルミナ(耐火性原料a)、粒径 0.07
4mm以下の電融アルミナ(耐火性原料b)、粒径 0.074m
m以下のマグネシア(耐火性原料c)、水和抑制剤、硬
化剤(アルミナセメント)、および混練用水(添加水:
外率%)を表1に示すごとく、耐火性骨材およびスラリ
ー状物を選択・組み合わせた。先ず、40×40× 160mmの
型枠を用意し、この型枠内に耐火性骨材A,Bもしくは
Cをそれぞれ充填した。
Sintered alumina having a particle size of 20 to 5 mm (refractory aggregate A), sintered alumina having a particle size of 5 to 3 mm (refractory aggregate B),
Fused alumina (refractory aggregate C) with a particle size of 5 to 3 mm, particle size
Sintered alumina of 0.3 mm or less (refractory raw material a), particle size 0.07
4mm or less of fused alumina (refractory raw material b), particle size 0.074m
Magnesia (refractory raw material c) of m or less, hydration inhibitor, curing agent (alumina cement), and kneading water (added water:
As shown in Table 1, the external ratio (%) was selected and combined with the refractory aggregate and the slurry. First, a mold of 40 × 40 × 160 mm was prepared, and the refractory aggregates A, B or C were filled in the mold.

【0015】次に、図1に模式的に示すごとく、前記耐
火性骨材1を充填した型枠2を左右もしくは前後の方向
に進退する振動台3に載置して緩い振動を与えた。この
緩い振動を与えられた型枠2内に、別途真空脱泡方式の
脱泡装置4に投入して脱泡処理した対応したスラリー状
物5を撹拌しながら、加圧供給により流し込んで、この
脱泡されたスラリー状物5を耐火性骨材1同士の隙間に
充填した。
Next, as schematically shown in FIG. 1, the mold 2 filled with the refractory aggregate 1 was placed on a vibrating table 3 which moves forward and backward or left and right to give a gentle vibration. Into the mold 2 to which this gentle vibration was given, the corresponding slurry-like material 5 which had been separately put into the defoaming device 4 of the vacuum defoaming system and defoamed was poured by pressure supply while stirring. The degassed slurry-like material 5 was filled in the gap between the refractory aggregates 1.

【0016】前記スラリー状物の充填終了後、24時間室
温下で養生・成形してから、成形体を型枠2から取り外
し(脱型し)、 110℃で24時間乾燥処理を施して、耐火
性ブロック片(テストピース)をそれぞれ得た。
After the filling of the slurry-like material, after curing and molding at room temperature for 24 hours, the molded body is removed from the mold 2 (demolded), dried at 110 ° C. for 24 hours, and fireproofed. Sex block pieces (test pieces) were obtained.

【0017】上記各テストピースについて、表面状態お
よび切断面の状態の観察、かさ比重,見掛け気孔率%,
曲げ強度 MPaの測定をそれぞれ行う一方、1500℃で 3時
間加熱処理した後におけるかさ比重,見掛け気孔率%,
曲げ強度 MPaの測定をそれぞれ行った結果を表1に併せ
て示した。
For each of the above test pieces, the surface condition and the cut surface condition were observed, bulk specific gravity, apparent porosity%,
Bending strength MPa was measured, while bulk specific gravity, apparent porosity%, and heat treatment were performed at 1500 ℃ for 3 hours.
The results of the measurements of the bending strength MPa are also shown in Table 1.

【0018】[0018]

【表1】 比較のため、粒径20〜 5mmの焼結アルミナ(耐火性骨材
A)、粒径 5〜 3mmの焼結アルミナ(耐火性骨材B)、
粒径 3〜 1mmの焼結アルミナ(耐火性骨材D)、粒径 5
〜 3mmの電融アルミナ(耐火性骨材C)、粒径 1mm以上
の焼結アルミナ(耐火性原料d)、粒径 0.3mm以下の焼
結アルミナ(耐火性原料a)、粒径 0.074mm以下の電融
アルミナ(耐火性原料b)、硬化剤(アルミナセメン
ト)、および混練用水(添加水:外率%)を表2に示す
ごとく、耐火性骨材およびスラリー状物を選択・組み合
わせた。先ず、40×40× 160mmの型枠を用意し、この型
枠内に耐火性骨材A,B,CもしくはDをそれぞれ充填
した。
[Table 1] For comparison, sintered alumina with a particle size of 20 to 5 mm (refractory aggregate A), sintered alumina with a particle size of 5 to 3 mm (refractory aggregate B),
Sintered alumina with a grain size of 3 to 1 mm (refractory aggregate D), grain size 5
~ 3 mm fused alumina (refractory aggregate C), particle size 1 mm or more sintered alumina (refractory material d), particle size 0.3 mm or less sintered alumina (refractory material a), particle size 0.074 mm or less As shown in Table 2, the fused alumina (refractory raw material b), the curing agent (alumina cement), and the kneading water (added water: external ratio%) were selected and combined with the refractory aggregate and slurry. First, a mold of 40 × 40 × 160 mm was prepared, and the refractory aggregates A, B, C or D were filled in the mold.

【0019】次に、前記耐火性骨材を充填した型枠を左
右もしくは前後の方向に進退する振動台に載置し、前記
実施例に比べて強い振動を与えた。この振動を与えられ
た型枠内に、前記対応したスラリー状物を脱泡処理して
加圧供給により流し込んで、スラリー状物を耐火性骨材
同士の隙間に充填した。なお、比較例3の場合は、スラ
リー状物を脱泡処理を省略し、また、比較例4の場合は
耐火性骨材およびスラリー状物を予め混合・混練し、こ
の混合・混練物を型枠に流し込み・充填した。前記スラ
リー状物の充填終了後、24時間室温下で養生・成形して
から、成形体を型枠から取り外し(脱型し)、 110℃で
24時間乾燥処理を施して、耐火性ブロック片(テストピ
ース)をそれぞれ得た。
Next, the mold filled with the refractory aggregate was placed on a vibrating table which moves forward and backward or left and right, and strong vibration was applied as compared with the above embodiment. The corresponding slurry-like material was defoamed and poured under pressure into the mold to which vibration was applied, and the slurry-like material was filled in the gaps between the refractory aggregates. In the case of Comparative Example 3, the defoaming treatment of the slurry-like material was omitted, and in the case of Comparative Example 4, the refractory aggregate and the slurry-like material were previously mixed and kneaded, and this mixed and kneaded material was molded. It was poured and filled into the frame. After the slurry is filled, it is cured and molded at room temperature for 24 hours, and then the molded body is removed from the mold (demolded) at 110 ° C.
The pieces were dried for 24 hours to obtain fireproof block pieces (test pieces).

【0020】上記各テストピースについて、表面状態お
よび切断面の状態の観察、かさ比重,見掛け気孔率%,
曲げ強度 MPaの測定をそれぞれ行う一方、1500℃で 3時
間加熱処理した後におけるかさ比重,見掛け気孔率%,
曲げ強度 MPaの測定をそれぞれ行った結果を表2に併せ
て示した。
For each of the above test pieces, the surface condition and the state of the cut surface were observed, the bulk specific gravity, the apparent porosity%,
Bending strength MPa was measured, while bulk specific gravity, apparent porosity%, and heat treatment were performed at 1500 ℃ for 3 hours.
Table 2 also shows the results obtained by measuring the bending strength MPa.

【0021】[0021]

【表2】 上記表1および表2から分かるように、実施例の各耐火
性ブロックは、比較例の各耐火性ブロックに比べて、か
さ比重見がほぼ同等でありながら、掛け気孔率および曲
げ強度など大幅に改善された特性を有している。すなわ
ち、乾燥処理後の見掛け気孔率18〜20%程度および加熱
処理後の見掛け気孔率21〜24%程度から、乾燥処理後の
見掛け気孔率は13〜14%程度に、加熱処理後の見掛け気
孔率15〜17%程度にと大幅に低減している。また、乾燥
処理後の曲げ強度 3.5〜10 MPa程度および加熱処理後の
曲げ強度12〜16.5 MPa程度から、乾燥処理後の曲げ強度
は10.4〜12 MPa程度に、加熱処理後の曲げ強度も24〜32
MPa程度にと大幅に向上している。
[Table 2] As can be seen from Table 1 and Table 2 above, each of the refractory blocks of the examples has substantially the same bulk specific gravity as compared with each of the refractory blocks of the comparative examples, but has significantly higher porosity and bending strength. It has improved properties. That is, the apparent porosity after drying treatment is about 18 to 20% and the apparent porosity after heating treatment is about 21 to 24%, and the apparent porosity after drying treatment is about 13 to 14%. The rate is significantly reduced to around 15 to 17%. Also, from the bending strength of 3.5 to 10 MPa after drying and the bending strength of 12 to 16.5 MPa after heating, the bending strength after drying is 10.4 to 12 MPa and the bending strength after heating is 24 to 24 MPa. 32
It has greatly improved to about MPa.

【0022】このように、かさ比重自体はそれ程変わら
ずに、見掛け気孔率の低減(組織の緻密化)および曲げ
強度の向上は、耐火性ブロックもしくは耐火材層として
の耐久性などに寄与し、信頼性の高い耐火性ブロックも
しくは耐火材層の提供となる。 本発明は、上記実施例
に限定されるものでなく、発明の趣旨を逸脱しない範囲
でいろいろの変形を採ることができる。たとえば、上記
では、耐火性骨材を充填した型枠内にスラリー状物を上
方から流し込んだが、耐火性骨材を充填した型枠内を要
すれば減圧化し、型枠の底壁面側からスラリー状物を圧
入する方式などを採っても同様の特性を有する耐火性ブ
ロックを成形することができる。
As described above, the bulk specific gravity itself does not change so much, the reduction of the apparent porosity (densification of the structure) and the improvement of the bending strength contribute to the durability of the refractory block or the refractory material layer, It provides a highly reliable refractory block or refractory layer. The present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the invention. For example, in the above, the slurry-like material was poured into the mold filled with the refractory aggregate from above, but the pressure inside the mold filled with the refractory aggregate was reduced if necessary, and the slurry was poured from the bottom wall surface side of the form. A refractory block having the same characteristics can be formed by adopting a method of press-fitting a material.

【0023】[0023]

【発明の効果】本発明によれば、製造プロセスの煩雑化
を回避しながら、前記スライドゲート用やポーラスプラ
グ用などに適する高品質の耐火性ブロックを歩留まりよ
く提供することができる。
According to the present invention, it is possible to provide a high-quality refractory block suitable for the slide gate, the porous plug, etc. with a high yield while avoiding the complication of the manufacturing process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】耐火性ブロックの製造方法におけるスラリー状
物の流し込み・充填工程の実施態様の概略を模式的に示
す断面図。
FIG. 1 is a cross-sectional view schematically showing an embodiment of a step of pouring and filling a slurry-like material in a method for manufacturing a refractory block.

【符号の説明】[Explanation of symbols]

1……耐火性骨材 2……型枠 3……振動台 4……脱泡装置 5……スラリー状物 1 ... Fire-resistant aggregate 2 ... Formwork 3 ... Shaking table 4 ... Defoaming device 5 ... Slurry material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粒径 3mm以上の耐火性骨材を型枠内に充
填する工程と、 前記型枠内に充填した耐火性骨材粒子間に、硬化剤を含
む粒径 0.3mm以下の耐火性原料から成り、かつ脱泡処理
されたスラリーを充填して成形体を形成する工程と、 前記形成した成形体を乾燥固体化する工程とを有するこ
とを特徴とする耐火性ブロックの製造方法。
1. A step of filling a mold with a refractory aggregate having a particle size of 3 mm or more, and a fireproof particle having a particle size of 0.3 mm or less containing a curing agent between the refractory aggregate particles filled in the mold. A method for manufacturing a refractory block, comprising: a step of filling a defoaming-treated slurry made of a conductive raw material to form a molded body; and a step of drying and solidifying the formed molded body.
JP7312151A 1995-11-30 1995-11-30 Manufacture of fireproof block Withdrawn JPH09150408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7312151A JPH09150408A (en) 1995-11-30 1995-11-30 Manufacture of fireproof block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7312151A JPH09150408A (en) 1995-11-30 1995-11-30 Manufacture of fireproof block

Publications (1)

Publication Number Publication Date
JPH09150408A true JPH09150408A (en) 1997-06-10

Family

ID=18025864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7312151A Withdrawn JPH09150408A (en) 1995-11-30 1995-11-30 Manufacture of fireproof block

Country Status (1)

Country Link
JP (1) JPH09150408A (en)

Similar Documents

Publication Publication Date Title
US5621035A (en) Ceramic fused fiber enhanced dental materials
US4935178A (en) Method of making refractory fiber products
CN110678431B (en) Molding material, functional agent, molded product, and product
CA2621005A1 (en) Borosilicate glass-containing molding material mixtures
EP3821997B1 (en) Inorganic coated sand and a method of manufacturing thereof, a casting mold and a method of manufacturing thereof
US6165926A (en) Castable refractory composition and methods of making refractory bodies
KR101458252B1 (en) Cast bodies, castable compositions, and methods for their production
JP2020502024A5 (en)
JPH09150408A (en) Manufacture of fireproof block
JPH10265259A (en) Fused silica-based refractory and its production
JPH0663684A (en) Production of ceramic core for casting
US5885510A (en) Methods of making refractory bodies
EA028258B1 (en) Method for manufacturing a supply channel for a glassmaking furnace and a block of an infrastructure of such a channel
JP2003292383A (en) Manufacturing method for monolithic refractory
JPH0636954B2 (en) Composition for easily disintegrating mold
JPH11291213A (en) Method for forming castable refractory block
JPH0952169A (en) Refractory for tuyere of molten steel container
JP2524678B2 (en) Fireproof molding
JP3175455B2 (en) Ceramics molding method
CN116199517A (en) Low-carbon corundum spinel impact brick for tundish and preparation method thereof
RU1770021C (en) Composition for ceramic form moulding
SU1359054A1 (en) Method of making casting moulds
JPH0483764A (en) Casting material for thermosetting conduit
JPS5828979A (en) Gas blown refractory to molten metal and its manufacture
JPH05200480A (en) Production of ceramic core

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204