JPH05200480A - Production of ceramic core - Google Patents

Production of ceramic core

Info

Publication number
JPH05200480A
JPH05200480A JP1112392A JP1112392A JPH05200480A JP H05200480 A JPH05200480 A JP H05200480A JP 1112392 A JP1112392 A JP 1112392A JP 1112392 A JP1112392 A JP 1112392A JP H05200480 A JPH05200480 A JP H05200480A
Authority
JP
Japan
Prior art keywords
core
zircon
silica sol
molding
compounding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1112392A
Other languages
Japanese (ja)
Inventor
Hirofumi Furukawa
洋文 古河
Shigeaki Yamamuro
繁昭 山室
Kiyoshi Watanabe
潔 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1112392A priority Critical patent/JPH05200480A/en
Publication of JPH05200480A publication Critical patent/JPH05200480A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To enable molding and calcining of the core having an excellent collapsing property by kneading a silica sol with a compounded material formed by compounding zircon powder with zircon sand, etc., and ramming the mixture. CONSTITUTION:The silica sol is kneaded with the compounded material formed by compounding the zircon powder with the zircon sand, etc., or the particles of the molten silica and the mixture is rammed and molded to the core. The core is then calcined. The molding having suitable strength is obtd. by bonding coarse grained ceramic refractories with fine grained ceramic refractories and silica sol. The molding does not crack at the time of drying and calcining to the core and the core is stably produced. In addition, the core having the excellent collapsing property is obtd. The operation to remove the core of the casting is facilitated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鋳造用セラミック中子の
製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a method of manufacturing a ceramic core for casting.

【0002】[0002]

【従来の技術】従来のセラミック中子の製造方法とし
て、ショウプロセス、ユニキャストなどが代表されるよ
うに、大半がセラミック耐火物と、バインダを混練し、
スリラー状態での流し込む方法が知られている。例えば
ショウプロセスでは、セラミック耐火物に粘結剤、硬化
剤を添加しスラリーを作り、これを模型の中に注入し、
硬化後、加熱して表面にヘアークラークを作り、更に8
00°Cで7時間焼成している。
2. Description of the Related Art As a conventional method for producing a ceramic core, most of them are kneaded with a ceramic refractory and a binder, as represented by show process, unicast, etc.
A method of pouring in a thriller state is known. For example, in the show process, a binder and a hardening agent are added to a ceramic refractory to make a slurry, which is poured into a model,
After curing, heat to make hair clarks on the surface, then 8
Baking for 7 hours at 00 ° C.

【0003】[0003]

【発明が解決しようとする課題】しかしながら前記のス
ラリー注入方法では以下のような問題点がある。 (1)多量のバインダを使用するので凝固時に割れを生
じやすい。 (2)スラリー中に気泡を巻き込み易く表面に析出しや
すい。 (3)焼成時にち密な成型体であるため割れやすく、大
きな中子が出来ない。 (4)セラミック耐火物間のすき間が少ないため、注湯
後の崩壊性が極めて悪い。 (5)バインダを多量に使用するため高価である。
However, the above-mentioned slurry injection method has the following problems. (1) Since a large amount of binder is used, cracking easily occurs during solidification. (2) Bubbles are easily entrained in the slurry and are easily deposited on the surface. (3) Since it is a dense molded body during firing, it is easily cracked and a large core cannot be formed. (4) Since there are few gaps between the ceramic refractories, disintegration after pouring is extremely poor. (5) It is expensive because a large amount of binder is used.

【0004】本発明はかかる問題点に対処するため開発
されたものであって崩壊性のすぐれたセラミック中子を
製作することを目的とする。
The present invention has been developed to solve the above problems, and an object thereof is to produce a ceramic core having excellent disintegration property.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の構成はジルコン砂或は溶融シリカの粒子に
ジルコン粉末を配合して形成した配合材に対してシリカ
ゾルを混練して突き固め、中子に造型して焼成すること
を特徴とする。
The constitution of the present invention for attaining the above object is to knead silica sol with a compounding material formed by compounding zircon powder with particles of zircon sand or fused silica. It is characterized by hardening, molding into a core, and baking.

【0006】[0006]

【作用】そして本発明は上記の手段により粗粒のセラミ
ック耐火物を細粒のセラミック耐火物とシリカゾルで結
合させることで適当な強度をもった成型体を得ることが
出来る。このときシリカゾルの添加量及び細粒のセラミ
ックス耐火物の添加量により成型体の強度が変わる。
According to the present invention, a molded product having an appropriate strength can be obtained by combining the coarse-grained ceramic refractory with the fine-grained ceramic refractory by the above-mentioned means with silica sol. At this time, the strength of the molded body changes depending on the amount of silica sol added and the amount of fine-grained ceramic refractory added.

【0007】[0007]

【実施例】次下本発明の実施例を示す。 (実施例1)平均粒径150μmのジルコン砂に平均粒
径10μmのジルコン粉末を配合し、シリカゾルを添加
し混練する。混練された耐火材料でΦ50mm×H 50
mmの砂型標準試験片を製作し、24時間放置後、30
0°C乾燥後、800°C・900°C・1000°C
焼成後の試験片を常温圧縮強度にて測定した。
EXAMPLES Examples of the present invention will be shown below. Example 1 Zircon powder having an average particle diameter of 150 μm is mixed with zircon powder having an average particle diameter of 10 μm, and silica sol is added and kneaded. 50 mm × H 50 with a refractory material that is kneaded
30mm sand type standard test piece is manufactured, left for 24 hours, then 30
After drying at 0 ° C, 800 ° C ・ 900 ° C ・ 1000 ° C
The test piece after firing was measured at room temperature compressive strength.

【0008】まず突き固め方法可能な範囲での原材料に
対するバインダの添加量を調べた。バインダの添加量を
増加させることにより錆型強度は向上するが、ハンドリ
ング可能な常温強度を得るには7〜13重量部バインダ
を添加すれば満足出来ることがわかった。次に原材料間
での強度について調査した。
First, the amount of the binder added to the raw materials was investigated within a range where the tamping method was possible. It was found that the rust-type strength is improved by increasing the addition amount of the binder, but the addition of 7 to 13 parts by weight of the binder is sufficient to obtain the room temperature strength that can be handled. Next, the strength between the raw materials was investigated.

【0009】平均粒径150μmのジルコン砂100重
量部に対して平均粒径10μmのジルコン粉末を0〜5
0重量部添加したところジルコン粉末の添加量が増加す
るに従って図1に示すように焼成後の常温圧縮強度が向
上する。目標の常温圧縮強度を得るにはジルコン粉末の
添加量を5〜30重量部にすることが望ましい。上記に
基づきジルコン砂100重量部、ジルコン粉末25重量
部、シリカゾル12重量部を混練しΦ50mm×H 50
mmのテストピースを造型し、300°C乾燥→100
0°C焼成を行い図2に示すように80kg/cm2
残留圧縮強度を得ることが出来た。崩壊性は残留圧縮強
度である程度代表され、80kg/cm2 の強度はかな
り崩壊性がよいと言える。
0 to 5 zircon powder having an average particle size of 10 μm is added to 100 parts by weight of zircon sand having an average particle size of 150 μm.
When 0 part by weight is added, the room temperature compressive strength after firing is improved as shown in FIG. 1 as the amount of zircon powder added increases. In order to obtain the target cold compressive strength, it is desirable to add the zircon powder in an amount of 5 to 30 parts by weight. Based on the above, 100 parts by weight of zircon sand, 25 parts by weight of zircon powder, and 12 parts by weight of silica sol were kneaded to obtain Φ50 mm × H 50
mm test piece is molded and dried at 300 ° C → 100
By firing at 0 ° C., a residual compressive strength of 80 kg / cm 2 could be obtained as shown in FIG. The disintegration property is represented to some extent by the residual compressive strength, and it can be said that the strength of 80 kg / cm 2 is quite good.

【0010】(実施例2)平均粒径22μmの溶融シリ
カに平均粒径10μmのジルコン粉末を混練し、シリカ
ゾルを添加し混練する。その他試験条件は実施例1と同
様に行った。その結果バインダの添加量は原材料100
重量部に対して12〜18重量部が適合している。
Example 2 Zircon powder having an average particle size of 10 μm is kneaded with fused silica having an average particle size of 22 μm, and silica sol is added and kneaded. Other test conditions were the same as in Example 1. As a result, the amount of binder added is 100
12-18 parts by weight are compatible with parts by weight.

【0011】またジルコン粉末は溶融シリカ100重量
部に対して25〜70重量部が適していることがわかっ
た。上記に基づき溶融シリカ100重量部、ジルコン粉
末65重量部、シリカゾル26重量部を混練し、実施例
1と同様に試験したところ、67kg/cm2 の残留圧
縮強度を得た。実施例1よりもさらに崩壊性がよいと言
える。
Further, it was found that 25 to 70 parts by weight of zircon powder is suitable for 100 parts by weight of fused silica. Based on the above, 100 parts by weight of fused silica, 65 parts by weight of zircon powder and 26 parts by weight of silica sol were kneaded and tested in the same manner as in Example 1 to obtain a residual compressive strength of 67 kg / cm 2 . It can be said that the disintegration is better than that of Example 1.

【0012】[0012]

【発明の効果】このように本発明によるときはジルコン
砂或は溶融シリカの粒子にジルコン粉末を配合して形成
した配合材に対してシリカゾルを混練して突き固め中子
に造型して焼成したものであるから従来のスラリー流し
込み方法に比較して大きな中子まで乾燥時、焼成時のク
ラックが入ることなく安定して製造出来ると共に崩壊性
にすぐれた中子とすることが出来、鋳造品の中子除去作
業が容易となる効果を有する。
As described above, according to the present invention, a silica sol is kneaded with a compounding material formed by mixing zircon sand or particles of fused silica with zircon powder, solidified, molded into a core, and fired. As compared with the conventional slurry pouring method, even a large core can be stably manufactured without cracking during firing and a core excellent in disintegration can be obtained as compared with the conventional slurry pouring method. This has the effect of facilitating core removal work.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る鋳型強度とジルコン
粉末配合割合の関係図である。
FIG. 1 is a relationship diagram of mold strength and zircon powder blending ratio according to a first embodiment of the present invention.

【図2】本発明の第1及び第2実施例に係る鋳型強度の
変化図である。
FIG. 2 is a change diagram of the mold strength according to the first and second embodiments of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ジルコン砂或は溶融シリカの粒子にジル
コン粉末を配合して形成した配合材に対してシルカゾル
を混練して突き固め、中子に造型して焼成することを特
徴とするセラミック中子の製造方法。
1. A ceramic material characterized by kneading and solidifying silcasol to a compounding material formed by compounding zircon sand or fused silica particles with zircon powder, molding into a core and firing. Child manufacturing method.
JP1112392A 1992-01-24 1992-01-24 Production of ceramic core Withdrawn JPH05200480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1112392A JPH05200480A (en) 1992-01-24 1992-01-24 Production of ceramic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1112392A JPH05200480A (en) 1992-01-24 1992-01-24 Production of ceramic core

Publications (1)

Publication Number Publication Date
JPH05200480A true JPH05200480A (en) 1993-08-10

Family

ID=11769242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1112392A Withdrawn JPH05200480A (en) 1992-01-24 1992-01-24 Production of ceramic core

Country Status (1)

Country Link
JP (1) JPH05200480A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100439200B1 (en) * 2001-05-28 2004-07-07 천지산업주식회사 A composition of water-soluble ceramic core for investment casting and process of ceramic core by its composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100439200B1 (en) * 2001-05-28 2004-07-07 천지산업주식회사 A composition of water-soluble ceramic core for investment casting and process of ceramic core by its composition

Similar Documents

Publication Publication Date Title
US3758317A (en) Monolithic inorganic structures
US4025350A (en) Gellable binders
CN101955364A (en) Method for producing corundum-mullite sagger
JPH08283073A (en) Kiln tool
JP7003849B2 (en) Manufacturing method of castable refractory
JPH03146240A (en) Water soluble core and manufacture thereof and method for casting metal using core thereof
JPH11188454A (en) Mold sand
JPH05200480A (en) Production of ceramic core
JPH0663684A (en) Production of ceramic core for casting
TWI610736B (en) Highly exothermic feeder sleeves and manufacturing method thereof
US2220412A (en) Refractory and method of making same
JPH0636954B2 (en) Composition for easily disintegrating mold
JPS5849514B2 (en) Spalling resistant refractories
JPH05212487A (en) Production of casting mold
JPS59213669A (en) Manufacture of zircon-zirconia refrctories
JPH03174369A (en) Monolithic refractory
RU2284974C1 (en) Method of manufacturing mullite-corundum refractory articles
JP2524678B2 (en) Fireproof molding
JPH0663685A (en) Production of ceramic core for precision casting
GB2342349A (en) Binding refractories
JPH0541590B2 (en)
JPH08267420A (en) Manufacture of ceramic molding
JPH07110780B2 (en) Sintered fireproof material
JPH08117925A (en) Heat insulating pad for casting, its production and material for producing the pad
JP3219112B2 (en) Method for producing calcium aluminate ceramic sintered body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408