JPH09149A - Immersion water for holding freshness of perishable food, its production and producing device therefor - Google Patents

Immersion water for holding freshness of perishable food, its production and producing device therefor

Info

Publication number
JPH09149A
JPH09149A JP7154895A JP15489595A JPH09149A JP H09149 A JPH09149 A JP H09149A JP 7154895 A JP7154895 A JP 7154895A JP 15489595 A JP15489595 A JP 15489595A JP H09149 A JPH09149 A JP H09149A
Authority
JP
Japan
Prior art keywords
water
freshness
seawater
fresh
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7154895A
Other languages
Japanese (ja)
Inventor
Shinichi Nakamura
信一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T R P KK
Original Assignee
T R P KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T R P KK filed Critical T R P KK
Priority to JP7154895A priority Critical patent/JPH09149A/en
Publication of JPH09149A publication Critical patent/JPH09149A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE: To provide an immersion water capable of maintaining the freshness of a perishable food for a longer time than conventional water, excellent in sanitariness and useful for holding the freshness of the perishable food, to provide a method for producing the immersion water, and further to provide a device for producing the immersion water. CONSTITUTION: The immersion water for holding the freshness of a perishable food is produced by the electrolysis of sea water or water containing an electrolyte such as salt to reduce Escherichia call and general bacteria and further contains hypochloric acid and/or sodium hypochlorite produced by the electrolysis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、水産物等の保管・輸
送・加工などのために用いる生鮮品の鮮度の保持用の浸
漬水及びその製造方法及びその製造装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to immersion water for keeping the freshness of fresh products used for storage, transportation, processing, etc. of marine products, a method for manufacturing the same, and an apparatus for manufacturing the same.

【0002】[0002]

【従来の技術】従来より鮮魚などの保管・輸送・加工等
には水が用いられ、牡蠣等の貝類・海老・蟹・シャコ・
ウニなどの水産物も水に浸漬して生きたままで保管した
りしている。そして、このための水として通常は真水が
用いられている。
2. Description of the Related Art Conventionally, water has been used for storage, transportation, processing, etc. of fresh fish, and shellfish such as oysters, shrimp, crabs, shrimp,
Even seafood such as sea urchins are soaked in water and stored alive. And, fresh water is usually used as water for this purpose.

【0003】一方、水産物を保管工程や加工工程などで
真水に長時間浸漬しておくことは水が塩分を含む場合と
比べてその鮮度を維持するためにはあまり好ましくない
ので、真水ではなく海水や海岸沿いの浅井戸の半海水の
井水(海水と地下水の混じったもの)などが用いられる
ことがある。
On the other hand, it is not preferable to keep aquatic products in fresh water for a long time in the storage process or the processing process in order to maintain their freshness as compared with the case where the water contains salt. Well water along the coast and shallow wells (mixed seawater and groundwater) may be used.

【0004】しかし、海水を含む水は大腸菌群及び一般
細菌(一般生菌)で汚染されているので、水産物を保管
したりするために用いると衛生上の問題が生じることが
あった。
However, since water containing seawater is contaminated with coliform bacteria and general bacteria (general viable bacteria), it may cause hygiene problems when used for storing marine products.

【0005】[0005]

【発明が解決しようとする課題】そこで、この発明は、
従来よりも鮮度を維持でき衛生的に優れる生鮮品の鮮度
の保持用の浸漬水及びその製造方法及びその製造装置を
提供しようとするものである。
SUMMARY OF THE INVENTION Therefore, the present invention
It is an object of the present invention to provide immersion water for maintaining the freshness of fresh products which can maintain freshness and is excellent in hygiene as compared with conventional ones, a method for producing the same, and an apparatus for producing the same.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
この発明では次のような技術的手段を講じている。
In order to solve the above-mentioned problems, the present invention employs the following technical means.

【0007】この発明の生鮮品の鮮度の保持用の浸漬水
は、海水又は食塩等の電解質を含む水の電気分解により
大腸菌群及び一般細菌が低減せしめられていると共に、
電気分解により生成した次亜塩素酸又は/及び次亜塩素
酸ソーダを含有することを特徴とする。
The immersion water for keeping the freshness of the fresh products of the present invention is reduced in coliform bacteria and general bacteria by electrolysis of seawater or water containing an electrolyte such as salt, and
It is characterized by containing hypochlorous acid or / and sodium hypochlorite produced by electrolysis.

【0008】この生鮮品の鮮度の保持用の製氷用水は、
前記生鮮品の鮮度の保持用の浸漬水を凍らせて用いるこ
とを特徴とする。この生鮮品の鮮度の保持用の氷は、前
記生鮮品の鮮度の保持用の浸漬水を凍らせたことを特徴
とする。
The ice-making water for keeping the freshness of this fresh product is
It is characterized in that immersion water for keeping the freshness of the fresh product is frozen and used. The ice for keeping the freshness of the fresh product is characterized in that the immersion water for keeping the freshness of the fresh product is frozen.

【0009】この生鮮品の鮮度の保持用の洗浄用水は、
前記生鮮品の鮮度の保持用の浸漬水を、生鮮品の加工時
の洗浄のために用いることを特徴とする。
The cleaning water for maintaining the freshness of this fresh product is
The immersion water for maintaining the freshness of the fresh product is used for washing during processing of the fresh product.

【0010】また、この生鮮品の鮮度の保持用の浸漬水
の製造方法は、海水又は食塩等の電解質を含む水の大腸
菌群及び一般細菌を低減せしめると共に次亜塩素酸又は
/及び次亜塩素酸ソーダを生成せしめるように電気分解
することを特徴とする。海水又は食塩等の電解質を含む
水を微孔性薄膜により濾過して大腸菌群及び一般細菌と
汚濁物質を分離・除去することとして実施することもで
きる。
Further, the method for producing immersion water for keeping the freshness of the fresh product reduces the coliform bacteria and general bacteria of seawater or water containing electrolytes such as salt and reduces hypochlorous acid and / or hypochlorous acid. It is characterized by electrolyzing so as to generate acid soda. It is also possible to carry out by separating and removing coliform bacteria and general bacteria and pollutants by filtering water containing an electrolyte such as seawater or salt with a microporous thin film.

【0011】この生鮮品の鮮度の保持用の浸漬水の製造
装置は、海水又は食塩等の電解質を含む水の大腸菌群及
び一般細菌を低減せしめ且つ次亜塩素酸又は/及び次亜
塩素酸ソーダを生成せしめるための電気分解機構を具備
することを特徴とする。海水又は食塩等の電解質を含む
水の大腸菌群及び一般細菌と汚濁物質を分離・除去する
ための微孔性薄膜を具備することとして実施することも
できる。
This apparatus for producing immersion water for keeping the freshness of fresh products reduces the coliform bacteria and general bacteria of water containing electrolytes such as seawater or salt and reduces hypochlorous acid and / or sodium hypochlorite. It is characterized by comprising an electrolysis mechanism for producing It can also be carried out by providing a microporous thin film for separating and removing pollutants from coliform bacteria and general bacteria of water containing an electrolyte such as seawater or salt.

【0012】[0012]

【作用】この発明は、以下のような作用を有する。The present invention has the following functions.

【0013】海水又は食塩等の電解質を含む水を電気分
解すると酸化分解反応によって大腸菌群及び一般細菌
(一般生菌)は低減ないし消滅すると共に、電気分解に
より次亜塩素酸(HClO)又は/及び次亜塩素酸ソー
ダ(NaClO→Na+ +ClO- )が生成するので、
浸漬する生鮮品に対する大腸菌群及び一般細菌の活動を
次亜塩素酸又は/及び次亜塩素酸ソーダにより抑制ない
し停止させることができる。
When electrolyzing seawater or water containing an electrolyte such as salt, coliform bacteria and general bacteria (general viable bacteria) are reduced or eliminated by an oxidative decomposition reaction, and electrolysis causes hypochlorous acid (HClO) and / or Since sodium hypochlorite (NaClO → Na + + ClO ) is produced,
The activity of coliform bacteria and general bacteria on the soaked perishable product can be suppressed or stopped by hypochlorous acid and / or sodium hypochlorite.

【0014】また、海水又は食塩等の電解質を含む水の
大腸菌群及び一般細菌や汚濁物質を微孔性薄膜により分
離・除去するようにすると、より清浄な生鮮品の鮮度の
保持用の浸漬水を得ることができる。
Further, when the coliforms and general bacteria of water containing electrolytes such as salt water or salt and general pollutants are separated and removed by a microporous thin film, immersion water for maintaining a fresher freshness of fresh products can be obtained. Can be obtained.

【0015】さらに、この生鮮品の鮮度の保持用の浸漬
水から生鮮品の鮮度の保持用の氷を製造すると、この氷
は大腸菌群及び一般細菌が低減ないし消滅し衛生的に優
れ且つ次亜塩素酸又は/及び次亜塩素酸ソーダを含有し
ているので、これを生鮮品の保冷用等に用いると、たと
え生鮮品の浸漬水として真水を用いた場合でも、氷から
溶け出してきた次亜塩素酸又は/及び次亜塩素酸ソーダ
の抗菌作用により、生鮮品の鮮度の維持に優れる。
Further, when ice for keeping freshness of fresh products is produced from immersion water for keeping freshness of fresh products, coliform bacteria and general bacteria are reduced or disappeared in the ice, which is excellent in hygiene and hypochlorous. Since it contains chloric acid or / and sodium hypochlorite, if it is used for keeping cold fresh foods, etc., even if fresh water is used as immersion water for fresh foods, Due to the antibacterial action of chlorous acid and / or sodium hypochlorite, the freshness of fresh products is excellently maintained.

【0016】この生鮮品の鮮度の保持用の浸漬水を生鮮
品の加工時、例えば鮮魚の内蔵などを取り出す際に魚の
身からその血を洗い流す洗浄用水として用いると、浸漬
水に含有される次亜塩素酸又は/及び次亜塩素酸ソーダ
の殺菌作用を、生鮮品の切り身などに及ぼすことによっ
て食品衛生上より好ましいものとなる。
When this immersion water for maintaining the freshness of the fresh product is used as a cleaning water for washing away the blood from the fish body when processing the fresh product, for example, when taking out the built-in of fresh fish, etc. By exerting the bactericidal action of chlorous acid and / or sodium hypochlorite on the fillets of fresh products, it becomes more preferable in terms of food hygiene.

【0017】[0017]

【実施例】以下、この発明の構成を実施例として示した
図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of the present invention will be described below with reference to the drawings showing an embodiment.

【0018】図1に示すように、この実施例の電気分解
機構1は、電解通路2を具備せしめている。すなわち、
陽極板3(陽極電極)の両側に陰極板4(陰極電極)を
配設していると共に、電解通路2をこれら両電極相互の
間に形成している。陽極板3と陰極板4には、公知の整
流器により電流が供給される。陽極板3と陰極板4との
間の間隔は好適には約1〜10mm程度の範囲内で設定
可能であるが、以下の実施例では5mmに設定してお
り、連設した電解通路2の全長は180mmに設定して
いる。電解通路2の電極面積は3dm2 で、整流器の出
力としては定電流DC12Ampを供給すべく、電圧約
5Vを印加している。
As shown in FIG. 1, the electrolysis mechanism 1 of this embodiment has an electrolytic passage 2. That is,
A cathode plate 4 (cathode electrode) is arranged on both sides of the anode plate 3 (anode electrode), and an electrolytic passage 2 is formed between these electrodes. A current is supplied to the anode plate 3 and the cathode plate 4 by a known rectifier. The distance between the anode plate 3 and the cathode plate 4 can be preferably set within a range of about 1 to 10 mm, but in the following examples, it is set to 5 mm, and the electrolytic passages 2 connected in series are connected. The total length is set to 180 mm. The electrode area of the electrolysis passage 2 is 3 dm 2 , and a voltage of about 5 V is applied to supply a constant current DC 12 Amp as the output of the rectifier.

【0019】両電極の間には短絡防止のためにパッキン
5を介装しており、このパッキン5は外組み部分を残し
て内部をくり抜いた枠形状としている。くり抜いた内部
の部分が電解通路2を形成する。両陰極板4の外側に
は、パッキン6及び塩化ビニール板7を介してステンレ
ス板8を外装している。
A packing 5 is interposed between both electrodes to prevent a short circuit, and the packing 5 has a frame shape in which the inside is hollowed out leaving an externally assembled portion. The hollowed-out internal portion forms the electrolytic passage 2. A stainless steel plate 8 is provided outside the both cathode plates 4 with a packing 6 and a vinyl chloride plate 7 interposed therebetween.

【0020】海水又は食塩等の電解質を含む水は定量ポ
ンプにより一方のステンレス板8の下方に貫通する孔H
から流入させ、塩化ビニール板7、陰極板4のそれぞれ
を貫通する孔Hを通り、陽極板3と接触し、陰極板4と
陽極板3との間の電解通路2(パッキン5の内部の部
分)を通り、陽極板3の上方を貫通する孔Hを通り、陽
極板3の逆面に至る。この逆面側の陰極板4と陽極板3
との間の電解通路2(パッキン5の内部の部分)を通
り、前記と同様に陰極板4、塩化ビニール板7、ステン
レス板8のそれぞれの下方を貫通する孔(図示せず)を
通り流出する。
A hole H that penetrates below one of the stainless steel plates 8 is provided for the seawater or water containing an electrolyte such as salt by a metering pump.
Flow through the holes H passing through the vinyl chloride plate 7 and the cathode plate 4, respectively, and come into contact with the anode plate 3, and the electrolytic passage 2 between the cathode plate 4 and the anode plate 3 (the portion inside the packing 5). ), Through a hole H penetrating above the anode plate 3 to reach the opposite surface of the anode plate 3. The cathode plate 4 and the anode plate 3 on the opposite surface side
Through the electrolytic passage 2 (inner portion of the packing 5) between the cathode plate 4, the vinyl chloride plate 7, and the stainless steel plate 8 and through holes (not shown) penetrating below each of them. To do.

【0021】このような構造とした電解モジュール(交
換可能な構成部分)を、複数個形成した。
A plurality of electrolytic modules (replaceable components) having such a structure were formed.

【0022】電解通路2を画定する陽極板3と陰極板4
との電極極性は公知の電気的方法で可変とし、一定時間
毎に転換した。こうすることにより電解通路2の流水中
にある荷電物質が、対応する反対荷電電極に析出成長す
ることを防止することができる。また、両電極板の極性
を固定とした場合は陽極側に選定した電極板ばかりが溶
滅していく片減り現象が生じるが、電極極性を可変とし
たことにより交互に陽極となった側が溶滅していく。し
たがって両電極の経時的な消耗の割合いをほぼ均等にす
ることができる。
Anode plate 3 and cathode plate 4 defining the electrolytic passage 2.
The electrode polarities of and were made variable by a known electric method, and were changed at regular intervals. By doing so, it is possible to prevent the charged substance in the flowing water of the electrolytic passage 2 from being deposited and grown on the corresponding oppositely charged electrode. Also, when the polarities of both electrode plates are fixed, only the electrode plate selected on the anode side will melt away, which causes a one-sided phenomenon, but by changing the electrode polarity, the side that became the anode will melt away. To go. Therefore, the rate of wear of both electrodes over time can be made substantially equal.

【0023】ところで、海水や半海水などのような海水
を含む水は塩分(NaCl)を含むので、電気分解する
と、酸化分解反応によりその中に含まれている大腸菌群
及び一般細菌や汚濁物質は殺菌され低減ないし消滅す
る。
By the way, since water containing seawater, such as seawater and semi-seawater, contains salt (NaCl), when electrolyzed, coliform bacteria, general bacteria and pollutants contained therein due to oxidative decomposition reaction. Sterilized to reduce or disappear.

【0024】また、電気分解処理後の海水又は食塩等の
電解質を含む水中には生成した次亜塩素酸(HClO)
又は/及び次亜塩素酸ソーダ(NaClO→Na+ +C
lO - )が含まれており、この次亜塩素酸又は/及び次
亜塩素酸ソーダの殺菌作用により、生鮮品に対する大腸
菌群及び一般細菌の活動を抑制せしめることができる。
さらに機械的な濾過処理では除去できない水溶性の汚濁
物質も、電気分解による酸化分解でより清浄なものとな
る。
[0024] In addition, after the electrolysis treatment, such as seawater or salt
Hypochlorous acid (HClO) formed in water containing electrolyte
Or / and sodium hypochlorite (NaClO → Na++ C
10 -) Is included, and this hypochlorous acid or / and the following
Due to the bactericidal action of sodium chlorite, the large intestine against fresh products
It is possible to suppress the activities of bacterial groups and general bacteria.
Furthermore, water-soluble pollution that cannot be removed by mechanical filtration.
Substances are also made cleaner by oxidation decomposition by electrolysis.
You.

【0025】こうして、海水又は食塩等の電解質を含む
水から清浄で且つ殺菌作用を有する水を得ることがで
き、これを生鮮品の浸漬水として用いることができる。
海水や半海水のように海水を含む水を原料として用いる
と、コスト的に有利であるという利点がある。
In this way, clean and sterilizing water can be obtained from seawater or water containing electrolytes such as salt, and this can be used as immersion water for fresh products.
The use of seawater-containing water such as seawater or semi-seawater as a raw material is advantageous in terms of cost.

【0026】次に、この実施例の使用状態を説明する。
海水又は食塩等の電解質を含む水は、電気分解機構1の
陽極電極で次の反応が起こる。
Next, the usage state of this embodiment will be described.
Seawater or water containing an electrolyte such as salt causes the following reaction at the anode electrode of the electrolysis mechanism 1.

【0027】 2Cl- →Cl2 +2e- …(1) Cl2 +H2 O→HClO+HCl …(2) 一方、陰極電極では、次の反応が起こる。2Cl → Cl 2 + 2e (1) Cl 2 + H 2 O → HClO + HCl (2) On the other hand, the following reaction occurs at the cathode electrode.

【0028】 2Na+ +2e- →2Na …(3) 2Na+2H2 O→2NaOH+H2 …(4) 電気分解をすべき海水又は食塩等の電解質を含む水のp
Hがアルカリ性側の場合、電解処理後の海水又は食塩等
の電解質を含む水中の次亜塩素酸(HClO)は式(4)
の水酸化ナトリウム(NaOH)で中和され次亜塩素酸
ソーダ(NaClO)が多くなる。
2Na + + 2e → 2Na (3) 2Na + 2H 2 O → 2NaOH + H 2 (4) p of water containing an electrolyte such as seawater or salt to be electrolyzed
When H is on the alkaline side, hypochlorous acid (HClO) in water containing electrolytes such as seawater or salt after electrolytic treatment has the formula (4)
Sodium hypochlorite (NaClO) is increased by neutralization with sodium hydroxide (NaOH).

【0029】一方、酸性側の場合、式(4) の水酸化ナト
リウム(NaOH)が中和されるので、式(2) の次亜塩
素酸(HClO)はそのままで存在する。
On the other hand, in the case of the acidic side, since sodium hydroxide (NaOH) of the formula (4) is neutralized, the hypochlorous acid (HClO) of the formula (2) exists as it is.

【0030】ところで、次亜塩素酸(HClO)は、次
亜塩素酸ソーダ(NaClO→Na + +ClO- )より
数十倍も殺菌効果が高い。電解処理後の水の組成はpH
8〜9でHClOが20〜40%、ClO- が80〜9
6%、pH6〜7ではHClOが96〜80%、ClO
- が4〜20%である。
By the way, hypochlorous acid (HClO) is
Sodium chlorite (NaClO → Na ++ ClO-)Than
The bactericidal effect is several ten times higher. The composition of water after electrolysis is pH
8-9, HClO 20-40%, ClO-Is 80-9
At 6%, pH 6-7, HClO is 96-80%, ClO
-Is 4 to 20%.

【0031】この水を水産物の大腸菌群及び一般細菌の
増殖を抑制しつつ、その保存・輸送・加工などをするた
めに用いる。なお、電解処理後の水が大腸菌等の病原・
腐敗細菌に対して残留塩素濃度1ppmであっても、1
分程度の接触時間で十分に殺菌力が認められた。
This water is used for storage, transportation, processing, etc. while suppressing the growth of coliform bacteria and general bacteria of marine products. The water after electrolysis is
Even if the residual chlorine concentration is 1 ppm for spoilage bacteria, 1
Sufficient bactericidal power was observed with a contact time of about a minute.

【0032】ところで上記の電気分解工程の前か後もし
くは両方に、海水又は食塩等の電解質を含む水の濾過処
理工程を設けるとより好ましい。海水又は食塩等の電解
質を含む水の大腸菌群及び一般細菌や汚濁物質を微孔性
薄膜により分離・除去するようにすると、より清浄な生
鮮品の鮮度の保持用の浸漬水を得ることができる。
By the way, it is more preferable to provide a filtration treatment step of seawater or water containing an electrolyte such as salt before, after or both of the electrolysis step. Separation and removal of coliform bacteria and general bacteria and pollutants of water containing electrolytes such as seawater or salt with a microporous thin film can obtain a cleaner immersion water for keeping the freshness of fresh products. .

【0033】微孔性薄膜としては1μ以下の孔径を持つ
例えばメンブレンフィルターやカートリッジフィルタ
ー、中空子フィルター等を用いることができる。大腸菌
の他の病原性の菌を除去するため、微孔性薄膜の孔径は
0.3μ以下、望ましくは0.1μ以下とすることが好
ましい。
As the microporous thin film, for example, a membrane filter, a cartridge filter, a hollow filter or the like having a pore size of 1 μm or less can be used. In order to remove other pathogenic bacteria such as Escherichia coli, the pore diameter of the microporous thin film is preferably 0.3 μm or less, and more preferably 0.1 μm or less.

【0034】なお、濾過面の微孔への汚れ等の詰まりを
防止して連続的・長時間・経済的に運転するため、公知
のクロスフロー方式による濾過面の常時洗浄と、定期的
な加圧空気による逆洗浄とを併せて行うことが好まし
い。
In addition, in order to prevent clogging of fine pores on the filter surface with dirt and the like, and to operate continuously, for a long time, and economically, the filter surface is constantly washed by a known cross-flow method and periodically added. It is preferable to carry out the back washing with compressed air together.

【0035】次に、従来より鮮魚などの水産物の保冷・
輸送・加工には大量の氷が用いられており、また、牡蠣
等の貝類・海老・蟹・シャコ・ウニなどは氷水を用い、
生きたままで保管している。ところでこのために用いて
いる氷は真水から製氷しており、溶けると真水に戻って
いた。水産物を真水に長時間浸漬しておくことは、海水
や塩水での場合と比べて鮮度を維持するためにはあまり
好ましくない。したがって、できれば真水から製氷した
真水氷ではなく、海水や浅井戸の半海水の井水を製氷用
水として製造した海水氷や塩水氷を用いることが好まし
い。しかし、海水や浅井戸の半海水の井水などは通常は
大腸菌群及び一般細菌などの細菌で汚染されているの
で、海水氷を製造するための製氷用水として使用するこ
とには問題があった。
[0035] Next, keeping cold of marine products such as fresh fish
A large amount of ice is used for transportation and processing, and ice water is used for shellfish such as oysters, shrimp, crab, shrimp, sea urchin,
It is kept alive. By the way, the ice used for this purpose was made from fresh water, and when it melted, it returned to fresh water. Immersing marine products in fresh water for a long time is not so preferable for maintaining freshness as compared with the case of using seawater or salt water. Therefore, if possible, it is preferable to use not seawater ice made from fresh water, but seawater ice or saltwater ice produced as well water for making ice from semi-seawater of shallow wells. However, since seawater and well water of a semi-seawater of a shallow well are usually contaminated with bacteria such as coliform bacteria and general bacteria, there was a problem in using it as ice-making water for producing seawater ice. .

【0036】ところが、上記のようにして得た生鮮品の
鮮度の保持用の浸漬水を、生鮮品の鮮度の保持用の製氷
用水として用い、さらにこれを凍らせて生鮮品の鮮度の
保持用の氷とすると、大腸菌群及び一般細菌が無力化し
ていると共に、次亜塩素酸又は次亜塩素酸ソーダにより
殺菌力を有する氷を得ることができる。
However, the immersion water for maintaining the freshness of the fresh product obtained as described above is used as ice making water for maintaining the freshness of the fresh product, and further frozen to retain the freshness of the fresh product. If the ice is used, the coliform bacteria and general bacteria are inactivated, and ice having bactericidal activity can be obtained by hypochlorous acid or sodium hypochlorite.

【0037】上記のようにして処理されたほぼ無菌の清
浄海水を用いて製造された氷は、例えば予め殺菌処理を
行った無菌の水産物などの保管・輸送・加工などに用い
られる。なお、電解処理水の殺菌効力は空気中に開放さ
れた状態では経時的に緩やかに低下していくが、これを
氷とした場合には経時的な低下が殆ど認められなかっ
た。 (実施例1)原水として採取した海水に、次のようにし
て電気分解処理を施した。この海水の原水のNaCl濃
度は、3.2%であった。
The ice produced using the substantially sterile clean seawater treated as described above is used, for example, for the storage, transportation, and processing of sterile marine products that have been sterilized in advance. The sterilization effect of the electrolytically treated water gradually decreased with time when it was opened to the air, but when ice was used, almost no decrease with time was observed. (Example 1) Seawater collected as raw water was electrolyzed as follows. The NaCl concentration of this raw seawater was 3.2%.

【0038】図2に示すように、原水タンク9内の海水
を定量ポンプPにより電気分解機構1の電解通路(図1
参照)へと供給した。10は、整流器である。電気分解後
の海水は、処理水タンク11に貯留される。
As shown in FIG. 2, seawater in the raw water tank 9 is electrolyzed by the metering pump P (see FIG. 1).
). 10 is a rectifier. Seawater after electrolysis is stored in the treated water tank 11.

【0039】電気分解機構1の電解面積は陰極と陽極共
にそれぞれ図1に示す電解モジュール1個で3dm2
し、この電解モジュールを7個並列に連結したもの(総
電極面積は3×7=21dm2 )を用いた。電気分解の
条件は30Ampで3.0〜3.5V、電気分解の処理
速度は、300ml/分とした。 (実施例2)原水として、半海水(海水が混じった井
水)を採取した。この半海水は海岸近くの浅い井戸から
汲み上げたものであり、海水が半分近く混ざっていた。
そのNaCl濃度は1.4%で、電気伝導度は25〜2
7×1,000μs/cmであった。そして、先ずこの
半海水に微孔性薄膜を用いて濾過処理を施し、これに実
施例1と同じようにして電気分解処理を施した。
The electrolysis area of the electrolysis mechanism 1 was 3 dm 2 for each of the cathode and anode, and the electrolysis module shown in FIG. 1 was 3 dm 2, and seven electrolysis modules were connected in parallel (total electrode area: 3 × 7 = 21 dm). 2 ) was used. The electrolysis conditions were 30 Amp and 3.0 to 3.5 V, and the electrolysis treatment rate was 300 ml / min. (Example 2) As raw water, semi-sea water (well water mixed with sea water) was collected. This half seawater was pumped from a shallow well near the coast, and almost half of the seawater was mixed.
Its NaCl concentration is 1.4% and its electrical conductivity is 25-2.
It was 7 × 1,000 μs / cm. Then, this semi-seawater was first subjected to a filtration treatment using a microporous thin film, and then subjected to an electrolysis treatment in the same manner as in Example 1.

【0040】(1) 半海水の濾過処理 図3に示すように、濾過処理には微孔性薄膜12として中
空糸膜を有する中空糸フィルター13(クラレ社製、商品
名SF膜0.3μ)を使用した。この中空糸の長さは1
mで、濾過面積は7m2 である。
(1) Filtration treatment of semi-seawater As shown in FIG. 3, the filtration treatment involves a hollow fiber filter 13 having a hollow fiber membrane as a microporous thin film 12 (Kuraray Co., Ltd., trade name SF membrane 0.3 μ). It was used. The length of this hollow fiber is 1
m, the filtration area is 7 m 2 .

【0041】半海水は、定量ポンプPにより中空糸フィ
ルター13へ供給される。濾過圧は1Kg/cm2 に設定
し、2,000リットル/Hの割合で濾過処理を行っ
た。クロスフローのバルブ14を開けて、処理水とクロス
フロー水の比を2:1程度にすることにより濾過面に濾
過方向とはほぼ直角な流れを与え、濾過面へ汚れが付着
することを防止した。濾過処理された半海水は、バルブ
15から出てくる。
The half seawater is supplied to the hollow fiber filter 13 by the metering pump P. The filtration pressure was set to 1 kg / cm 2 , and the filtration treatment was performed at a rate of 2,000 liters / H. By opening the cross-flow valve 14 and setting the ratio of treated water to cross-flow water to about 2: 1, a flow is applied to the filtration surface almost at right angles to the filtration direction, preventing dirt from adhering to the filtration surface. did. Filtered semi-sea water valve
Coming out of fifteen.

【0042】また、1時間に1回1分間空気加圧しなが
ら逆洗浄することにより、濾過面の目詰まりを防止し
た。16は、逆洗ドレンである。
Further, by back-washing once a hour for 1 minute while pressurizing with air, clogging of the filtration surface was prevented. 16 is a backwash drain.

【0043】(2) 濾過処理前後の半海水の細菌検査 半海水とこの半海水を濾過処理したものとの細菌検査を
行った。細菌検査は、島久薬品BACcTコロニーカウ
ント法によった。
(2) Bacterial test before and after filtering seawater The seawater and the one obtained by filtering this seawater were tested for bacteria. Bacterial examination was carried out by the BACcT colony counting method of Shimakyu Pharmaceutical.

【0044】大腸菌群シャーレCC、VRB培地とテト
ラゾリウム指示薬(TTC)を含んだ培養皿を用いた。
また、一般生菌シャーレAC、標準寒天培地とテトラゾ
リウム指示薬(TTC)を含んだ培養皿を使用した。
A culture dish containing coliform petri dish CC, VRB medium and tetrazolium indicator (TTC) was used.
In addition, a culture dish containing a general viable petri dish AC, a standard agar medium and a tetrazolium indicator (TTC) was used.

【0045】検査結果は、原水とした半海水の一般細菌
は1.1×103 、大腸菌群は4.2×102 であっ
た。一方、濾過処理後の清浄な半海水の一般細菌は3.
0×10、大腸菌群は0であった。原水として採取した
半海水は大腸菌群及び一般細菌によって汚染されたもの
であったが濾過処理後には清浄なものとなっている。
As a result of the test, general bacteria of the half seawater used as raw water was 1.1 × 10 3 , and coliform bacteria was 4.2 × 10 2 . On the other hand, the general bacteria of clean semi-sea water after filtration treatment are 3.
0 × 10, 0 for coliforms. The semi-seawater sampled as raw water was contaminated with coliform bacteria and general bacteria, but it became clean after filtration.

【0046】なお、この濾過処理後の段階の半海水は次
亜塩素酸や次亜塩素酸ソーダは含有しておらず殺菌作用
は具備していないものの、大腸菌群及び一般細菌の大部
分が除去されており、例えば予め殺菌処理を行った無菌
の水産物などの保管・輸送・加工などに好適に用いるこ
とができる。
Although the half seawater after the filtration treatment does not contain hypochlorous acid or sodium hypochlorite and has no bactericidal action, most of coliform bacteria and general bacteria are removed. For example, it can be suitably used for storage, transportation, and processing of aseptic marine products that have been sterilized in advance.

【0047】また、このこの濾過処理後の段階の半海水
を製氷して氷を製造した場合、大腸菌群及び一般細菌の
大部分が除去されており、例えば予め殺菌処理を行った
無菌の水産物などの保管・保冷・輸送・加工などに好適
に用いることができる。
When ice is produced by making ice from the half-sea water after the filtration treatment, most of coliform bacteria and general bacteria are removed. For example, aseptic aquatic products that have been sterilized in advance. It can be suitably used for storage, cold storage, transportation, processing, etc.

【0048】(3) 濾過処理後の半海水の電気分解処理 濾過処理後の半海水を、実施例1と同様にして電気分解
処理した。
(3) Electrolysis treatment of semi-sea water after filtration treatment The semi-sea water after filtration treatment was electrolyzed in the same manner as in Example 1.

【0049】電気分解機構1の電解面積は陰極と陽極共
にそれぞれ図1に示す電解モジュール1個で3dm2
し、この電解モジュールを7個並列に連結したもの(総
電極面積は3×7=21dm2 )を用いた。電気分解の
条件は30Ampで3.0〜3.5V、電気分解の処理
速度は、300ml/分とした。
The electrolysis area of the electrolysis mechanism 1 is 3 dm 2 for each of the cathode and the anode, and each of the electrolysis modules shown in FIG. 1 is 3 dm 2, and seven electrolysis modules are connected in parallel. 2 ) was used. The electrolysis conditions were 30 Amp and 3.0 to 3.5 V, and the electrolysis treatment rate was 300 ml / min.

【0050】なお、処理水の殺菌力は原水のpHに左右
されるので、参考のために真水からそのNaCl濃度を
3.2%に調整すると共に20%HClによりそのpH
を調整した食塩水を用いて、残留塩素濃度の異なる処理
水を作った。
Since the sterilizing power of the treated water depends on the pH of the raw water, the NaCl concentration of fresh water is adjusted to 3.2% and the pH is adjusted with 20% HCl for reference.
Treated water having different residual chlorine concentrations was prepared using the saline solution adjusted to.

【0051】上記実施例1及び実施例2の処理水を用い
て、次の各試験を行った。 A)処理水の状態で放置した場合の残留塩素濃度(pp
m)の推移試験 処理水を広口の100cc透明ガラスビンに貯留し、密
栓して室内に放置した。そして2日ごとにフタを開け、
ピペットで0.1〜1.0ml程度サンプルを採り、そ
の残留塩素濃度を測定した。結果を、表1に示す。
The following tests were carried out using the treated water of Examples 1 and 2 above. A) Residual chlorine concentration when left in treated water (pp
Transition test of m) Treated water was stored in a wide-mouthed 100 cc transparent glass bottle, tightly stoppered and left indoors. Then open the lid every two days,
A sample of 0.1 to 1.0 ml was taken with a pipette and the residual chlorine concentration was measured. Table 1 shows the results.

【0052】なお結果に示されるように、処理水中の残
留塩素濃度はそのままの状態で放置しておくと徐々に低
減していった。
As shown in the results, the residual chlorine concentration in the treated water gradually decreased when left as it was.

【0053】B)製氷後の氷の残留塩素濃度(ppm)
の変化試験 上記の各電解処理水を300mlづつポリ袋に充填し、
大型冷蔵庫の製氷室で製氷した。製氷後は氷の状態のま
まで冷凍保存し、殺菌作用についての重要な指標である
残留塩素濃度が経時的に低減することがないかについて
試験した。
B) Residual chlorine concentration (ppm) of ice after ice making
Change test of each of the above electrolyzed water is filled into a plastic bag, 300 ml each,
Ice was made in the ice making room of a large refrigerator. After ice making, it was frozen and stored in an ice state, and it was tested whether or not the residual chlorine concentration, which is an important index for the bactericidal action, decreases with time.

【0054】製氷後12日経過後に製氷室から取り出
し、砕氷してアイスボックスに入れた。30分経過時に
氷が溶け始めてから逐次ピペットで採水し、残留塩素濃
度を測定した。3時間経過時には約20%が水になって
おり、5時間経過時には約40%が水に、8時間経過時
には約60%が水に、24時間経過時には100%水に
なっていた。結果を、表2に示す。
After 12 days from the ice making, it was taken out from the ice making chamber, crushed into ice and put in an ice box. After 30 minutes had elapsed since the ice began to melt, water was successively pipetted to measure the residual chlorine concentration. About 20% was water after 3 hours, about 40% was water after 5 hours, about 60% was water after 8 hours, and 100% was water after 24 hours. Table 2 shows the results.

【0055】結果(表1の0日経過時の残留塩素濃度と
対比)に示されるように、製氷後12日経過後において
も氷中の残留塩素濃度は電気分解処理当時から殆ど変化
していなかった。すなわち、氷の状態を維持している場
合には、殺菌力のある氷としての機能を十分に保持して
いた。
As shown in the results (comparison with the residual chlorine concentration at 0 days in Table 1), the residual chlorine concentration in ice remained almost unchanged from the time of electrolysis even after 12 days from ice making. . That is, when the ice state was maintained, the function as ice having bactericidal power was sufficiently retained.

【0056】また砕氷し溶け出した後の残留塩素濃度の
低下速度も緩やかなものであり、氷が溶ける速度が遅い
保冷車での輸送及び着地に於ける保管とで合計2〜3日
かかったとしても、この実施例の氷は殺菌氷としての機
能を十分果たすことができるものと考えられる。
The rate of decrease in the residual chlorine concentration after crushing ice and melting was slow, and it took a total of 2 to 3 days for transportation by a cold carrier and storage for landing on which the ice melts slowly. Even so, it is considered that the ice of this example can sufficiently function as sterilized ice.

【0057】C)殺菌氷を用いた保冷活きアサリの浸漬
海水の残留塩素濃度の測定 製氷室に1か月以上保存した上記殺菌氷を砕氷(残留塩
素濃度は製氷当時とかわらなかった)し、この殺菌氷を
活きアサリを浸漬したそのままの海水に加え、一定時間
経過後に殺菌効果の指標となる残留塩素濃度を測定し
た。
C) Measurement of Residual Chlorine Concentration of Immersion Seawater of Cold-keeping Live Clams Using Sterilized Ice The sterilized ice stored in the ice making chamber for one month or more was crushed into ice (residual chlorine concentration was not changed at the time of ice making), This sterilized ice was added to the raw seawater in which the clams were immersed, and after a certain period of time, the residual chlorine concentration, which is an index of the sterilization effect, was measured.

【0058】活きアサリは発泡スチロール製容器に載置
され透明なラップでパックされたもの(スーパー・マー
ケットで販売)であり、海水は入っていないもので、こ
のパック3個分の活きアサリの合計1,050gを、そ
のままの海水(NaCl濃度3.2%)1リットルの入
ったポリバケツに入れ、3時間放置して馴染ませた。そ
してこのポリバケツに砕氷した殺菌氷を投入し、30分
経過後と24時間経過後にサンプルを採取して残留塩素
濃度の測定を行った。結果を、表3に示す。
The live clams are placed in a Styrofoam container and packed in a transparent wrap (sold in the supermarket), and do not contain seawater. A total of 1 live clam for 3 packs is included. , 050 g was put in a poly bucket containing 1 liter of the sea water (NaCl concentration 3.2%) as it was, and left standing for 3 hours to be acclimated. Then, crushed sterilized ice was put into this poly bucket, and samples were taken after 30 minutes and 24 hours and the residual chlorine concentration was measured. The results are shown in Table 3.

【0059】表3の実施例2の項目に示すように、殺
菌氷の残留塩素濃度が63ppmあった場合、これをア
サリを浸漬した海水に加えたとき、殺菌に必要な2pp
m以上の濃度を30分は持続していた。
As shown in the item of Example 2 in Table 3, when the residual chlorine concentration of sterilized ice was 63 ppm, when this was added to seawater in which clams were immersed, 2 pp required for sterilization was added.
A concentration of m or more was maintained for 30 minutes.

【0060】また表3の実施例1の項目に示すよう
に、殺菌氷の残留塩素濃度が102ppmあった場合、
ポリバケツ内の海水は24時間経過後にも残留塩素濃度
0.5ppmを維持していた。つまり、このような状況
で使用する場合には、殺菌氷の残留塩素濃度を100p
pm以上、望ましくは300ppm以上に調整したもの
を用いればよい。
Further, as shown in the item of Example 1 in Table 3, when the residual chlorine concentration of the sterilized ice was 102 ppm,
The seawater in the poly bucket maintained the residual chlorine concentration of 0.5 ppm even after 24 hours. In other words, when using in such a situation, the residual chlorine concentration of sterilized ice should be 100 p
What was adjusted to pm or more, preferably 300 ppm or more may be used.

【0061】D)活きアサリ自体及びその浸漬水の細菌
検査 ポリ袋に前記と同じ活きアサリ約150g(13〜14
個)を入れ、海水そのもの75gと殺菌氷75gとを加
えた。一方、比較例として、前記活きアサリ約150g
と海水そのもの150gを収容したものを同様にして調
整した。そしてそれぞれを24時間放置した後、次の方
法により細菌検査を行った。
D) Bacterial examination of the live clam itself and its soaking water About 150 g (13 to 14) of the same live clam as above in a plastic bag
Individual pieces) and 75 g of seawater itself and 75 g of sterilized ice were added. On the other hand, as a comparative example, about 150 g of the fresh clams
And seawater itself containing 150 g was adjusted in the same manner. After leaving each for 24 hours, the bacteria were tested by the following method.

【0062】活きアサリを無菌水中で擦り潰したもの
と、活きアサリを浸漬していた「海水+殺菌氷」の浸漬
水から1mlづつ採水した。培地として一般細菌用には
標準寒天培地を、大腸菌群にはデゾキシコレート培地を
用いた。一般細菌は37℃48時間培養後に、大腸菌群
は37℃24時間培養後に判定した。比較例のものにつ
いても同様にして細菌検査を行った。結果を、表4に示
す。
1 ml each of fresh clams crushed in sterile water and immersion water of "sea water + sterilized ice" in which the live clams were immersed were sampled. As the medium, a standard agar medium was used for general bacteria, and dezoxycholate medium was used for coliforms. General bacteria were evaluated after culturing at 37 ° C. for 48 hours, and coliform bacteria after culturing at 37 ° C. for 24 hours. Bacterial tests were carried out in the same manner for the comparative example. Table 4 shows the results.

【0063】結果に示されるように、活きアサリの身自
体よりも活きアサリの浸漬水の方が細菌による汚染が著
しく、また、殺菌氷の元の水のpHが8台のもの(表1
参照、実施例1〜、参考、)と比べ、pHが8
以下のもの(表1参照、実施例2〜、参考、)
の方が除菌効果が高かった。 (実施例3)原水として半海水を使用する、実用規模の
生鮮品の鮮度の保持用の浸漬水の製造システムを構成し
た。この半海水は海岸埋め立て地の約5mの浅井戸から
汲み上げたものであって、そのNaCl濃度は2.8〜
3.2%(平均3.0%)であった。
As shown in the results, the water soaked in the live clams is more contaminated by bacteria than the live clams themselves, and the pH of the original water of the sterilized ice is 8 units (Table 1).
PH of 8 compared with the reference, Example 1-, reference,)
The following (see Table 1, Examples 2 to, Reference)
Was more effective in sterilization. (Example 3) A semi-sea water was used as raw water, and a production system of immersion water for maintaining the freshness of a fresh product on a practical scale was constructed. This half-seawater was pumped up from a shallow well of about 5 m in the coastal landfill, and its NaCl concentration was 2.8-
It was 3.2% (average 3.0%).

【0064】図4のシステム・フロー図に示すように、
半海水は先ず原水タンク9に貯留される。そして、定量
ポンプPにより5μ複式キュノフィルター17へ送られ、
大まかな夾雑物が濾過・除去される。次いで、微孔性薄
膜として2連の中空糸フィルター13(クラレ社製、商品
名SFフィルター、SF312、0.1μ、7m2 )を
通過し、ほぼ除菌された半海水が得られる。この除菌半
海水は、一次タンク18に貯留される。半海水の濾過処理
の量は、4m3 /Hとした。なお、Sはタンク内の液面
のレベルセンサ、Fはフィルターである。
As shown in the system flow diagram of FIG.
The half seawater is first stored in the raw water tank 9. Then, it is sent to the 5μ double-sided cuno filter 17 by the quantitative pump P,
Rough contaminants are filtered and removed. Then, it passes through two hollow fiber filters 13 (Kuraray Co., Ltd., trade name SF filter, SF312, 0.1 μ, 7 m 2 ) as a microporous thin film to obtain semi-seawater almost sterilized. This sterilized half seawater is stored in the primary tank 18. The amount of semi-sea water filtration treatment was 4 m 3 / H. In addition, S is a level sensor of the liquid level in the tank, and F is a filter.

【0065】そして、濾過処理後の半海水は定量ポンプ
Pにより電気分解機構1へ送られ、電気分解処理が施さ
れる。電気分解処理後の半海水は、二次タンク19に貯留
される。電気分解機構1の電解面積は図1に示す電解モ
ジュール1個で3dm2 とし、この電解モジュールを1
2個並列に連結したもの(総電極面積は3×12=36
dm2 )を用いた。電気分解の条件は各電解モジュール
それぞれに対して各12Amp(12個の電解モジュー
ルを全て使う場合は12Amp×12=144Amp)
で5V、電気分解の処理量は1〜2m3 /Hとし、電解
処理水の残留塩素濃度は2個の電解モジュールを使う場
合の10ppmから8個の電解モジュールを使う場合の
220ppmなどの間で可変の設定ができるようにし
た。
Then, the semi-seawater after the filtering process is sent to the electrolysis mechanism 1 by the metering pump P and subjected to the electrolysis process. The half seawater after the electrolysis treatment is stored in the secondary tank 19. The electrolysis area of the electrolysis mechanism 1 is 3 dm 2 with one electrolysis module shown in FIG.
Two connected in parallel (total electrode area is 3 × 12 = 36
dm 2 ) was used. The conditions of electrolysis are 12 Amp for each electrolysis module (12 Amp x 12 = 144 Amp when all 12 electrolysis modules are used)
5V, the amount of electrolysis processed is 1-2 m 3 / H, and the residual chlorine concentration of electrolytically treated water is between 10 ppm when using two electrolysis modules and 220 ppm when using eight electrolysis modules. Enabled variable settings.

【0066】ところで、生牡蠣や海老、蟹や鮮魚などの
輸送には大量の砕氷が必要とされるが、加工・流通過程
に於ける鮮度保持や細菌汚染の防止に関し、その浸漬水
や氷として上記の各実施例に於いて示したものが極めて
大きな寄与をするものと確信される。
By the way, a large amount of crushed ice is required for the transportation of raw oysters, shrimp, crabs, and fresh fish, but in order to maintain freshness and prevent bacterial contamination in the processing and distribution process, it is used as immersion water or ice. It is believed that what has been shown in each of the above examples makes a very large contribution.

【0067】また、食生活の変化に伴って各家庭では丸
ごとの魚は購入せず、スーパー・マーケットなどで刺し
身(お造り)や切り身などに加工された鮮魚を利用する
ことが多くなってきており、各販売店に併設された調理
場で加工を行っている。しかし近年、全漁連や各県漁連
では水産物などの集中加工流通システムを開発してお
り、鮮度の高い水産物その他の生鮮品の提供に関し上記
の各実施例のものは非常に大きな寄与をするものと確信
される。
Also, due to changes in eating habits, it is becoming more common for households not to purchase whole fish, but to use fresh fish processed into sashimi (sashimi) and fillets at supermarkets. It is processed in the kitchen attached to each store. However, in recent years, all fishing associations and each prefecture fishing association have developed a centralized processing and distribution system for marine products and the like, and it is assumed that the above-mentioned embodiments make a great contribution to the provision of fresh marine products and other fresh products. Be convinced.

【0068】[0068]

【表1】 [Table 1]

【0069】[0069]

【表2】 [Table 2]

【0070】[0070]

【表3】 [Table 3]

【0071】[0071]

【表4】 [Table 4]

【0072】[0072]

【発明の効果】この発明は上述のような構成であり、次
の効果を有する。
The present invention is configured as described above and has the following effects.

【0073】海水又は食塩等の電解質を含む水の大腸菌
群及び一般細菌は電気分解により低減ないし消滅してお
り、また浸漬する生鮮品に対する大腸菌群及び一般細菌
の活動は次亜塩素酸又は/及び次亜塩素酸ソーダにより
抑制ないし停止させることができる。したがって、従来
よりも鮮度を維持でき衛生的に優れる生鮮品の鮮度の保
持用の浸漬水及びその製造方法及びその製造装置を提供
することができる。
The coliforms and general bacteria of seawater or water containing electrolytes such as salt have been reduced or eliminated by electrolysis, and the activities of the coliforms and general bacteria to the fresh food to be immersed are hypochlorous acid and / or It can be suppressed or stopped by sodium hypochlorite. Therefore, it is possible to provide the immersion water for maintaining the freshness of fresh products which can maintain the freshness and is hygienically superior to the conventional one, the manufacturing method thereof, and the manufacturing apparatus thereof.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の生鮮品の鮮度の保持用の浸漬水の製
造装置の実施例の電気分解機構を説明する分解斜視図。
FIG. 1 is an exploded perspective view illustrating an electrolysis mechanism of an embodiment of an apparatus for producing immersion water for maintaining freshness of fresh products according to the present invention.

【図2】この発明の実施例1を説明するシステムフロー
図。
FIG. 2 is a system flow chart for explaining the first embodiment of the present invention.

【図3】この発明の実施例2を説明するシステムフロー
図。
FIG. 3 is a system flow chart illustrating a second embodiment of the present invention.

【図4】この発明の実施例3を説明するシステムフロー
図。
FIG. 4 is a system flow diagram illustrating a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 電気分解機構 12 微孔性薄膜 1 Electrolysis mechanism 12 Microporous thin film

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 海水又は食塩等の電解質を含む水の電気
分解により大腸菌群及び一般細菌が低減せしめられてい
ると共に、電気分解により生成した次亜塩素酸又は/及
び次亜塩素酸ソーダを含有することを特徴とする生鮮品
の鮮度の保持用の浸漬水。
1. Coliform bacteria and general bacteria are reduced by electrolysis of water containing electrolytes such as seawater or salt, and hypochlorite and / or sodium hypochlorite produced by electrolysis are contained. Immersion water for maintaining the freshness of fresh products, characterized by
【請求項2】 請求項1記載の生鮮品の鮮度の保持用の
浸漬水を凍らせて用いることを特徴とする生鮮品の鮮度
の保持用の製氷用水。
2. Ice-making water for maintaining the freshness of fresh products, characterized in that the immersion water for maintaining the freshness of fresh products according to claim 1 is used after being frozen.
【請求項3】 請求項1記載の生鮮品の鮮度の保持用の
浸漬水を凍らせたことを特徴とする生鮮品の鮮度の保持
用の氷。
3. Ice for keeping freshness of the fresh product, characterized in that the immersion water for keeping the freshness of the fresh product according to claim 1 is frozen.
【請求項4】 請求項1記載の生鮮品の鮮度の保持用の
浸漬水を、生鮮品の加工時の洗浄のために用いることを
特徴とする生鮮品の鮮度の保持用の洗浄用水。
4. Cleaning water for maintaining freshness of fresh products, characterized in that immersion water for maintaining freshness of fresh products according to claim 1 is used for cleaning during processing of fresh products.
【請求項5】 海水又は食塩等の電解質を含む水の大腸
菌群及び一般細菌を低減せしめると共に次亜塩素酸又は
/及び次亜塩素酸ソーダを生成せしめるように電気分解
することを特徴とする生鮮品の鮮度の保持用の浸漬水の
製造方法。
5. Freshness characterized by electrolyzing so as to reduce coliform bacteria and general bacteria of water containing an electrolyte such as seawater or salt and to generate hypochlorous acid and / or sodium hypochlorite. A method for producing immersion water for maintaining the freshness of a product.
【請求項6】 海水又は食塩等の電解質を含む水を微孔
性薄膜により濾過して大腸菌群及び一般細菌と汚濁物質
を分離・除去する請求項5記載の生鮮品の鮮度の保持用
の浸漬水の製造方法。
6. The immersion for keeping freshness of perishables according to claim 5, wherein seawater or water containing an electrolyte such as salt is filtered through a microporous thin film to separate and remove coliform bacteria and general bacteria and pollutants. Water production method.
【請求項7】 海水又は食塩等の電解質を含む水の大腸
菌群及び一般細菌を低減せしめ且つ次亜塩素酸又は/及
び次亜塩素酸ソーダを生成せしめるための電気分解機構
を具備することを特徴とする生鮮品の鮮度の保持用の浸
漬水の製造装置。
7. An electrolysis mechanism for reducing coliform bacteria and general bacteria of water containing an electrolyte such as seawater or salt and for producing hypochlorous acid and / or sodium hypochlorite. An apparatus for producing immersion water for maintaining the freshness of fresh products.
【請求項8】 海水又は食塩等の電解質を含む水の大腸
菌群及び一般細菌と汚濁物質を分離・除去するための微
孔性薄膜を具備する請求項7記載の生鮮品の鮮度の保持
用の浸漬水の製造装置。
8. The freshness-preserving fresh product according to claim 7, comprising a microporous thin film for separating and removing contaminants such as coliforms and general bacteria of water containing electrolytes such as seawater or salt. Immersion water production equipment.
JP7154895A 1995-06-21 1995-06-21 Immersion water for holding freshness of perishable food, its production and producing device therefor Pending JPH09149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7154895A JPH09149A (en) 1995-06-21 1995-06-21 Immersion water for holding freshness of perishable food, its production and producing device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7154895A JPH09149A (en) 1995-06-21 1995-06-21 Immersion water for holding freshness of perishable food, its production and producing device therefor

Publications (1)

Publication Number Publication Date
JPH09149A true JPH09149A (en) 1997-01-07

Family

ID=15594312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7154895A Pending JPH09149A (en) 1995-06-21 1995-06-21 Immersion water for holding freshness of perishable food, its production and producing device therefor

Country Status (1)

Country Link
JP (1) JPH09149A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245210B1 (en) 1998-04-24 2001-06-12 Omega Co., Ltd. Ice having sterilizing power and manufacturing method thereof
JP2001198575A (en) * 1999-10-29 2001-07-24 Toyama Chem Co Ltd Antibacterial agent consisting of weakly alkaline aqueous solution obtained by electrolyzing seawater and method for imparting antibacterial action to seawater
US6690678B1 (en) 1998-11-10 2004-02-10 International Business Machines Corporation Method and system in a packet switching network for dynamically adjusting the bandwidth of a continuous bit rate virtual path connection according to the network load
JP2007202508A (en) * 2006-02-03 2007-08-16 Hoshizaki Electric Co Ltd Preservation water for fish and shellfish, method for preserving fish and shellfish, and device for generating electrolytic water used in the method
JP2007209941A (en) * 2006-02-13 2007-08-23 Hoshizaki Electric Co Ltd Cold seawater making apparatus in aseptic state
JP2015144976A (en) * 2014-01-31 2015-08-13 株式会社イシダ Electrolytic hypochlorite water-generating apparatus
JP2021071234A (en) * 2019-10-31 2021-05-06 ジオシステム株式会社 Heat exchange device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245210B1 (en) 1998-04-24 2001-06-12 Omega Co., Ltd. Ice having sterilizing power and manufacturing method thereof
US6690678B1 (en) 1998-11-10 2004-02-10 International Business Machines Corporation Method and system in a packet switching network for dynamically adjusting the bandwidth of a continuous bit rate virtual path connection according to the network load
JP2001198575A (en) * 1999-10-29 2001-07-24 Toyama Chem Co Ltd Antibacterial agent consisting of weakly alkaline aqueous solution obtained by electrolyzing seawater and method for imparting antibacterial action to seawater
JP4691684B2 (en) * 1999-10-29 2011-06-01 富山化学工業株式会社 A bactericidal agent comprising a weakly alkaline aqueous solution obtained by electrolyzing seawater and a method for imparting bactericidal action to seawater.
JP2007202508A (en) * 2006-02-03 2007-08-16 Hoshizaki Electric Co Ltd Preservation water for fish and shellfish, method for preserving fish and shellfish, and device for generating electrolytic water used in the method
JP2007209941A (en) * 2006-02-13 2007-08-23 Hoshizaki Electric Co Ltd Cold seawater making apparatus in aseptic state
JP2015144976A (en) * 2014-01-31 2015-08-13 株式会社イシダ Electrolytic hypochlorite water-generating apparatus
JP2021071234A (en) * 2019-10-31 2021-05-06 ジオシステム株式会社 Heat exchange device

Similar Documents

Publication Publication Date Title
Carlucci et al. Factors affecting the survival of bacteria in sea water
KR100443448B1 (en) Electrolyzed functional water, and production process and production apparatus thereof
US5256268A (en) Water treatment method and apparatus
CN103058332B (en) Household electrically functional acidic ionized water generator and control method
JPH09149A (en) Immersion water for holding freshness of perishable food, its production and producing device therefor
Yao et al. Electrochemical inactivation kinetics of boron-doped diamond electrode on waterborne pathogens
WO2006093183A1 (en) Process for producing water for growth of marine organism and production apparatus
KR20100059089A (en) Method and equipment for the disinfection of sea water
KR101652671B1 (en) Portable Pot for Generating Disinfective Water
US20030098283A1 (en) Aquaculture water for marine fauna and flora and production method and system of the same
JPH10128336A (en) Method and apparatus for preparing disinfectant, disinfectant, and strilization method
JP2003050068A (en) Ice composition containing hydrogen peroxide, and method of preserving perishable food
JP3363248B2 (en) Sterilized water, its production method and production equipment
KR101956575B1 (en) Electrolysis apparatus for producing between germicide and detergent
JP3349810B2 (en) Apparatus and method for sterilizing food and maintaining freshness
CN112956488B (en) Preparation method of sea salt disinfectant
KR100491985B1 (en) Sanitation treatment method and apparatus for live fish tank and shellfish using electrolyzed seawater produced by no membrane electrolytic system
JP2000166524A (en) Washing and sterilizing apparatus for fresh food and method therefor
JPH0852475A (en) Production of treating liquid for sterilization and apparatus for producing the same
JPH06246273A (en) Device for producing sterilizing water
JPH09157900A (en) Electrolytic reactor
CN213707990U (en) High-efficient sewage chemistry biological treatment device
JPH07274921A (en) Microbicidal process for food, etc., and apparatus for producing strongly acidic water for the process
JP2000023619A (en) Freshness maintenance of perishable food
JPH06237747A (en) Production of treating solution for sterilization and production device therefor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040123

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040301

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040528