WO2006093183A1 - Process for producing water for growth of marine organism and production apparatus - Google Patents

Process for producing water for growth of marine organism and production apparatus Download PDF

Info

Publication number
WO2006093183A1
WO2006093183A1 PCT/JP2006/303853 JP2006303853W WO2006093183A1 WO 2006093183 A1 WO2006093183 A1 WO 2006093183A1 JP 2006303853 W JP2006303853 W JP 2006303853W WO 2006093183 A1 WO2006093183 A1 WO 2006093183A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
sterilized
effective chlorine
water
sterilized seawater
Prior art date
Application number
PCT/JP2006/303853
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiko Katayose
Hiroaki Kamino
Original Assignee
Hoshizaki Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Denki Kabushiki Kaisha filed Critical Hoshizaki Denki Kabushiki Kaisha
Publication of WO2006093183A1 publication Critical patent/WO2006093183A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish

Definitions

  • the present invention cultivates marine fish such as tuna, hamachi, flounder and red sea bream, marine shells such as oysters and scallops, seaweeds such as seaweed, zooplankton and planktons such as phytoplankton.
  • the present invention relates to a production method and a production apparatus for growing water used for the purpose. Review of conventional technology
  • seawater used as water for nurturing marine organisms generally, a method of irradiating seawater with ultraviolet rays, a method of heat-treating seawater, a method of filtering seawater, and various disinfections to seawater There is a method of adding an agent or a bactericide.
  • These methods of disinfecting seawater are not suitable for practical use because they increase the cost of raising marine organisms.
  • Some seawater generated by these sterilization methods cannot form a good breeding environment.
  • the simplest method that requires no disinfectant or disinfectant to add large equipment is preferable for the growth of marine organisms! There is a possibility that residues may be generated in seawater.
  • the main object of the present invention is to provide marine organism growth water that can sufficiently suppress the formation of organic halogen compounds resulting from effective chlorine remaining in the growth water. To provide a manufacturing method and a manufacturing apparatus.
  • the object is to provide a filtration process for filtering seawater, and an electrolyzer for producing seawater sterilized to an effective chlorine concentration of 10 mg / L or less by electrolyzing the filtered seawater.
  • This is achieved by a method for producing water for breeding marine organisms, comprising a solution treatment step and an effective chlorine removal treatment step for removing effective chlorine remaining in seawater sterilized in the electrolytic treatment step within one hour.
  • a filtration process for filtering seawater, and an inorganic salt An electrolysis process in which a dilute aqueous solution is electrolyzed to produce sterilization water, and the sterilization water produced in the electrolysis process is mixed with filtered seawater to remove an effective chlorine concentration of 10 mg / L or less.
  • the sterilized seawater production process that produces the sterilized seawater, and the effective chlorine remaining in the sterilized seawater produced in the sterilized seawater production process is removed within 1 hour after the production of the sterilized seawater.
  • a filtration device that filters seawater, and an electrolytic device that generates sterilized seawater by electrolyzing the filtered seawater.
  • an effective chlorine removal treatment device that removes effective chlorine remaining in the sterilized seawater generated by the electrolyzer, and the sterilized seawater having an effective chlorine concentration of 10 mg / L or less by the electrolyzer.
  • a device for producing water for breeding marine organisms is adopted in which effective chlorine remaining in the generated sterilized seawater is removed by the removal treatment device within 1 hour after the generation of the sterilized seawater. Is desirable.
  • a filtration device for filtering seawater an electrolytic device for electrolyzing a dilute aqueous solution of an inorganic salt to produce sterilizing water, and sterilizing water produced by the electrolytic device
  • Sterilized seawater production means that mixes with the filtered seawater to produce sterilized seawater, and removal of effective chlorine that removes the effective chlorine remaining in the sterilized seawater produced by the sterilized seawater production means
  • the content of trihalomethane in the organohalogen compound is extremely small in sterilized seawater with almost no bacteria.
  • This breeding seawater is extremely excellent for the growth of marine organisms, and by using this breeding seawater, a favorable breeding environment for marine organisms can be formed.
  • the seawater for growth has a low content of organic halogen compounds, the waste liquid after use does not contaminate seawater such as the ocean to be drained.
  • This breeding seawater is It is extremely useful as water for marine life.
  • FIG. 1 is a schematic configuration diagram schematically showing a first manufacturing apparatus which is an embodiment of a manufacturing apparatus according to the present invention
  • FIG. 2 is a schematic configuration diagram schematically showing a second manufacturing apparatus which is another embodiment of the manufacturing apparatus according to the present invention
  • FIG. 3 is a schematic configuration diagram schematically showing a third manufacturing apparatus which is another embodiment of the manufacturing apparatus according to the present invention.
  • FIG. 4 is a schematic configuration diagram schematically showing a fourth manufacturing apparatus which is another embodiment of the manufacturing apparatus according to the present invention.
  • FIG. 5 is a schematic configuration diagram schematically showing a negative pressure removal processing apparatus which is an example of a removal processing apparatus employed in the manufacturing apparatus according to the present invention
  • FIG. 6 is a schematic configuration diagram schematically showing an air bubble ring type removal treatment apparatus which is another example of the removal treatment apparatus employed in the production apparatus according to the present invention.
  • the present invention relates to a method and apparatus for producing water for breeding marine organisms.
  • Fig. 1 and Fig. 2 show the first manufacturing device 10a and the second manufacturing device 10b that employ a diaphragm-type electrolyzer, and Figs. 3 and 4 adopt a diaphragm-type electrolyzer.
  • the third manufacturing apparatus 20a and the fourth manufacturing apparatus 20b are shown.
  • the first manufacturing apparatus 10a obtains seawater (sterilized seawater) sterilized by non-membrane electrolysis using seawater as electrolyzed water, and removes effective chlorine remaining in the sterilized seawater.
  • the first production apparatus 10a includes a seawater storage tank 11 for storing seawater collected from ocean power, a filtration apparatus 12 for filtering seawater, a diaphragm-type electrolysis apparatus 13 for performing diaphragmless electrolysis using seawater as electrolyzed water, and And a removal treatment device 14 for removing effective chlorine remaining in electrolyzed water (sanitized seawater) produced by electrolysis in the electrolysis device 13.
  • the storage tank 11 and the filtration device 12 are connected to each other through a first supply pipe 15a, and are interposed in the first supply pipe 15a, and are driven into the storage tank 11 by driving the supply pump 16a.
  • the stored sea water is supplied to the filtration device 12.
  • the filtration device 12 includes a second supply line 15b connected to the electrolyzer 13, a third supply line 15c connected to the removal processing device 14, and a reflux tube connected to the aquaculture tank B described later. Road 15d is provided.
  • the electrolyzer 13 includes a fourth supply line 15e connected to the removal treatment apparatus 14, and the removal treatment apparatus 14 includes a fifth supply line 15f connected to the culture tank B.
  • a first switching valve 16b is interposed at a connecting portion between the first supply pipe 15a and the reflux pipe 15d, and the second supply pipe 15b and the third supply pipe are connected.
  • a second switching valve 16c is interposed at the connecting portion of 15c.
  • the aquaculture tank B is provided with a drain pipe b, and the reflux pipe 15d is connected to the drain pipe b.
  • a third switching valve 16d is interposed at this connecting portion.
  • the seawater A1 in the storage tank 11 is supplied to the filtration device 12 through the first supply line 15a.
  • the filtered and filtered seawater (filtered seawater A2) is supplied to the electrolyzer 13 through the second supply line 15b as electrolyzed water.
  • the filtered seawater A2 can be selectively supplied to the removal treatment device 14 through the third supply pipe 15c by switching the second switching valve 16c.
  • the filtered seawater A2 supplied to the electrolyzer 13 is sterilized by non-diaphragm electrolysis in the electrolyzer 13, and is removed through the third supply line 15c as sterilized seawater (sanitized seawater A3). Supplied to the processing device 14.
  • the sterilized seawater A3 supplied to the removal treatment device 14 is subjected to removal treatment of residual effective chlorine.
  • the non-chlorine seawater A4 which is free of effective chlorine and contains substantially no effective chlorine, is supplied to the aquaculture tank B through the fifth supply line 15f as growth water.
  • the breeding water A4 supplied to the aquaculture tank B forms a good breeding environment for marine organisms.
  • the first production apparatus 10a basically drains the cultivating water A4 in the aquaculture tank B at the end of the aquaculture as waste liquid to the adjacent ocean, etc.
  • the cultivation water A4 in the cultivation tank B at the end of the cultivation is treated as treated water and filtered through the reflux line 15d. Can be refluxed to 12.
  • the removal treatment device 14 for removing effective chlorine the negative pressure removal treatment device C1 shown in FIG. 5 or the air publishing removal treatment device shown in FIG. C2 can be employed, and a neutralization removal device for adding sodium thiosulfate for neutralizing available chlorine can be employed for simplification of the device.
  • a negative pressure removal treatment apparatus C1 shown in FIG. 5 is arranged in a state where a porous pipe 32 is refracted in a tank main body 31, and a negative pressure supply pipe 33 is provided in the tank main body 31. It is consolidated.
  • the negative pressure supply pipe 33 is provided with a decompression pump 33 a in the middle thereof, and is opened in the tank body 31.
  • the porous pipe 32 has innumerable fine pores that allow only gas to pass through.
  • the upstream side is the fourth supply line 15e or the third supply line 15c and the fourth supply line.
  • a fifth supply line 15f is connected to the downstream side 15e.
  • the sterilized seawater A3 is introduced into the porous pipe 32 and flows in the porous pipe 32, and passes through the fourth supply line 15f. Supplied to aquaculture tank B. During this time, negative pressure is supplied into the tank body 31 through the negative pressure supply pipe 33, and the tank body 31 is in a predetermined negative pressure state. For this reason, volatile components contained in the sterilized seawater A3 flowing in the porous pipe 32 pass through the peripheral wall of the porous pipe 32 and flow into the tank body 31, and the suction action of the decompression pump 33 a It is discharged out of the system through the negative pressure supply line 33.
  • a typical example of volatile components contained in sanitized seawater A3 is available chlorine remaining in sanitized seawater A3. For this reason, effective chlorine remaining in the sterilized seawater A3 is almost removed from the sterilized seawater A3 while flowing in the porous pipe 32, and becomes non-chlorine seawater A4 (water for breeding).
  • the air publishing removal treatment apparatus C2 shown in FIG. 6 includes a tank body 34, an air introduction pipe 35, and an exhaust pipe 36, and sterilized seawater A3 is introduced into the tank body 34.
  • An introduction pipe 37 and a lead-out pipe 38 for leading the non-chlorine seawater A 4 generated by the removal treatment in the tank body 34 face the bottom.
  • the introduction pipe 37 is connected to the fourth supply line 15e, or the third supply line 15c and the fourth supply line 15e.
  • the outlet pipe 38 is connected to a fifth supply line 15f, and a supply pump 38a is interposed in the middle.
  • the air introduction pipe 35 includes an introduction pipe part 35a, an air ejection pipe part 35b, and an air supply pump 35c interposed in the introduction pipe part 35a.
  • the air ejection pipe part 35b has many An air ejection hole 35d is provided and extends along the bottom of the tank body 34.
  • air is supplied to the air ejection pipe part 35b through the introduction pipe part 35a by the air supply pump 35c, and is ejected into the tank main body 34 from the many air ejection holes 35d.
  • the air in the bubble form makes sufficient contact with the effective chlorine remaining in the sterilized seawater A3, takes in the effective chlorine, and stays in the upper space in the tank body 34.
  • the retained air containing effective chlorine is exhausted outside the system through the exhaust pipe 36.
  • the sterilized seawater A3 introduced into the tank body 34 is exposed to countless bubble-like air ejected from the air ejection holes 35d, and remains.
  • the effective chlorine is removed and becomes non-chlorine seawater A4.
  • Non-chlorine seawater A4 is supplied as aquaculture water from the outlet pipe 38 to the aquaculture tank B through the fifth supply line 15f.
  • the first manufacturing method and the second manufacturing method according to the present invention can be implemented.
  • the filtered seawater A2 is supplied to the electrolyzer 13 through the second supply line 15b, and the sterilized seawater A3 is generated by electroless membrane electrolysis in the electrolyzer 13 to produce the sterilized water produced.
  • Seawater A3 is supplied to the removal treatment device 14 through the fourth supply line 15e, the effective chlorine remaining in the sterilized seawater A3 is removed, and the non-chlorine seawater A4 generated by the removal treatment is used as growth water.
  • This is a method of supplying to the culture tank B through the fifth supply line 15f.
  • the electrolysis conditions in electrolyzer 13 are set so that the concentration of effective chlorine in electrolyzed product water is 10 mgZL or less, preferably 5 mgZL.
  • the generated effective chlorine sterilizes the bacteria in the filtered seawater A2, and the filtered seawater A2 becomes sanitized seawater A3.
  • the sterilized seawater A3 is subjected to the removal treatment of residual effective chlorine in the removal treatment apparatus 14, but it is necessary to perform the removal treatment within a maximum of one hour. It is preferable that the removal treatment be performed promptly without stagnation in the removal treatment apparatus 14 after a predetermined amount of the sterilized seawater A3 is supplied into the removal treatment apparatus 14.
  • the filtered seawater A2 is supplied to the electrolyzer 13 through the second supply line 15b and introduced into the third supply line 15c. diaphragm The sterilizing water A generated by electrolysis to produce sterilizing water A is introduced into the third supply line 15c, and the sterilizing water A is mixed with the filtered seawater A2 in the third supply line 15c. As a result, sterilized seawater A3 is generated in the third supply conduit 15c, and the generated sterilized seawater A3 is supplied to the removal processing device 14.
  • the sterilized seawater A3 is treated to remove the remaining effective chlorine in the removal processing device 14 to become non-chlorine seawater A4, and the non-chlorine seawater A4 is supplied as aquaculture water to the aquaculture tank B through the fifth supply line 15f .
  • the electrolysis conditions in the electrolyzer 13 are set so that the concentration of effective chlorine in the electrolyzed product water is higher than lOmgZL, for example, 200 mgZL.
  • the produced effective chlorine has sterilizing ability, and sterilized seawater A3 with an effective chlorine concentration of lOmgZL or less is produced by mixing sterilizing water A with filtered seawater A2. Removal of effective chlorine remaining in the removal seawater A3 in the removal treatment device 14 must be performed within a maximum of 1 hour. It is preferable that the removal treatment is performed promptly without sterilized seawater A3 remaining in the removal treatment apparatus 14.
  • the second production apparatus 10b shown in FIG. 2 filters electrolytically generated acidic water (sterilization water) generated by non-diaphragm electrolysis using a dilute aqueous solution of an inorganic salt mainly composed of NaCl as electrolyzed water. It is mixed with seawater to produce sterilized seawater, and effective chlorine remaining in the sterilized seawater is removed.
  • the second manufacturing apparatus 10b has the same configuration as the first manufacturing apparatus 10a except for this point, and can perform a similar manufacturing method. Therefore, in the second manufacturing apparatus 10b, parts and members common to the first manufacturing apparatus 10a are denoted by common reference numerals, and detailed description of the structure is omitted.
  • the electrolyzer 13 that constitutes the manufacturing apparatus 10b is mainly composed of a non-diaphragm electrolyzer 13a.
  • the electrolyzer 13a is mainly composed of a supply pipe 13b that supplies tap water and a high-concentration aqueous solution of inorganic salt.
  • a tank 13c and an introduction pipe 13d for introducing a high-concentration aqueous solution into the supply pipe 13b are provided.
  • a high concentration aqueous solution of inorganic salt is introduced into the supply line 13b, and a dilute aqueous solution in which the concentration of the inorganic salt is diluted to a predetermined concentration is generated in the supply line 13b.
  • the produced dilute aqueous solution is supplied to the electrolysis chamber R as electrolyzed water and electrolyzed in the electrolysis chamber R.
  • the electrolyzed water produced in the electrolysis chamber R is connected to the filter device 12 as seawater A for sterilization. It is introduced into the filtered seawater A2 flowing through the third supply line 15c and mixed. As a result, in the middle of the third supply line 15c, sterilized seawater A3 having a residual effective chlorine concentration of lOmgZL or less is generated.
  • the produced sterilized seawater A3 is supplied to the removal treatment device 14 through the third supply line 15c, and the remaining effective chlorine is quickly removed in the removal treatment device 14.
  • the removed seawater A4 from which the remaining effective chlorine has been removed is supplied to the aquaculture tank B as the water for growth.
  • the third production apparatus 20a shown in FIG. 3 mixes electrolytically generated acidic water (sterilization seawater) generated by diaphragm membrane electrolysis using seawater as electrolyzed water, and mixes it with filtered seawater.
  • the effective chlorine remaining in the sterilized seawater is removed.
  • the third production equipment 20a consists of a seawater storage tank 21 for storing seawater A1 collected from the ocean, a filtration device 22 for filtering the seawater A1, and a diaphragm type for electrolyzing the diaphragm using the filtered seawater A2 as electrolyzed water.
  • seawater produced by mixing the electrolyzed acidic water (sterilization water A) produced by electrolysis with the electrolyzer 23 and the filtered seawater A2 And a removal treatment device 24 for removing effective chlorine remaining in the sterilized seawater A3.
  • the storage tank 21, filtration apparatus 22, and removal treatment apparatus 24 other than the electrolysis apparatus 23 are the same as the storage tank 11, filtration apparatus 12, and removal treatment apparatus 14 that constitute the first production apparatus 10a. The thing is adopted.
  • the storage tank 21 and the filtration apparatus 22 are connected to each other through the first supply pipe 25a, and are interposed in the first supply pipe 25a.
  • the seawater A1 stored in the storage tank 21 is supplied to the filtration device 22 by driving the pump 26a.
  • the filtration device 22 includes a second supply line 25b connected to the electrolyzer 23, a third supply line 25c connected to the removal treatment device 24, and a reflux line 25d connected to the culture tank B.
  • the electrolyzer 23 includes a first outflow pipe 25e that communicates with the anode-side electrolysis chamber R1 formed in the electrolytic cell 23a, and a second outflow pipe 25f that communicates with the cathode-side electrolysis chamber R2.
  • the first outflow pipe 25e is connected to the third supply pipe 25c, and the second outflow pipe 25f is connected to a storage tank (not shown).
  • the removal processing device 24 includes a fifth supply line 25g connected to the aquaculture tank B.
  • a first supply pipe 25a and a reflux pipe 25d The first switching valve 26b is interposed at the connecting portion, and the second switching valve 26c is interposed at the connecting portion between the drain pipe b and the return pipe 25d provided in the culture tank B.
  • the seawater A1 in the storage tank 21 is supplied to the filtration apparatus 22 through the first supply pipe 25a, filtered, and filtered.
  • the seawater (filtered seawater A2) is supplied as electrolyzed water to the electrolysis chambers Rl and R2 of the electrolyzer 23 through the second supply pipe 25b and to the removal treatment device 24 through the third supply pipe 25c. Supplied.
  • the filtered seawater A2 supplied to the electrolyzer 23 is subjected to diaphragm membrane electrolysis in the electrolyzer 23, and electrolyzed acidic water is produced in the anode electrolysis chamber R1, and electrolysis alkaline is produced in the cathode electrolysis chamber R2.
  • Sexual water is produced.
  • the electrolytically generated acidic water is introduced into the third supply line 25c as seawater A for sterilization, mixed with the filtered seawater A2 in the third supply line 25c to generate sterilized seawater A3, and is supplied to the removal treatment device 24. Is done.
  • the electrolytically generated alkaline water is supplied to a storage tank (not shown) through the second outflow pipe 25f and used as various devices, equipment, and other cleaning water.
  • Non-chlorine seawater A4 from which effective chlorine has been removed and which does not substantially contain effective chlorine is supplied as aquaculture water to aquaculture tank B through 25 g of the fifth supply line.
  • the breeding water A4 supplied to the aquaculture tank B forms a good breeding environment for marine organisms.
  • the manufacturing apparatus 20a basically uses the water for cultivation A4 in the aquaculture tank B at the time of completion of the cultivation as a waste liquid to the adjacent ocean or the like. Force to drain Drainage water A4 in the cultivation tank B at the end of the aquaculture When there are few foreign substances in the cultivation water A4 in the cultivation tank B, the cultivation water A4 in the aquaculture tank B at the end of the cultivation is As such, it can be recirculated to the filtration device 22 through the return pipe 25d and reused.
  • the electrolysis conditions in the electrolysis apparatus 23 are set so that the concentration of effective chlorine in the acid water generated by electrolysis is higher than lOmgZL, for example, about 30 mgZL.
  • the produced effective chlorine has sterilizing ability, and the effective chlorine concentration remaining in the produced sterilized seawater A3 should be less than lOmgZL.
  • Disinfection seawater A3 removal treatment equipment 24 Try to do it quickly.
  • a fourth production apparatus 20b shown in FIG. 4 uses electrolytically generated acidic water (sterilization water A) generated by diaphragm membrane electrolysis using a dilute aqueous solution of an inorganic salt mainly composed of NaCl as electrolyzed water. This is mixed with filtered seawater A2 to produce sterilized seawater A3, and the effective chlorine remaining in sterilized seawater A3 is removed.
  • the fourth manufacturing apparatus 20b has the same configuration as the third manufacturing apparatus 20a except for this point, and can perform a similar manufacturing method. Therefore, in the fourth manufacturing apparatus 20b, parts and parts common to the third manufacturing apparatus 20a are denoted by common reference numerals, and detailed description of the structure is omitted.
  • the electrolyzer 23 that constitutes the manufacturing apparatus 20b is mainly composed of a diaphragm electrolyzer 23a.
  • the electrolyzer 23a mainly includes a supply pipe 23b that supplies tap water and a high-concentration aqueous solution of inorganic salt.
  • a tank 23c and an introduction line 23d for introducing a high concentration aqueous solution into the supply line 23b are provided.
  • a high-concentration aqueous solution is introduced into the supply line 23b, and a dilute aqueous solution in which the concentration of the inorganic salt is diluted to a predetermined concentration is generated in the supply line 23b.
  • the produced dilute aqueous solution is supplied to each electrolysis chamber Rl, R2 as electrolyzed water and electrolyzed in each electrolysis chamber Rl, R2.
  • the electrolytically generated acidic water generated in the anode electrolysis chamber R1 is introduced and mixed as sterilized seawater A into the filtered seawater A2 flowing through the third supply pipe 25c.
  • sterilized seawater A3 having a residual effective chlorine concentration of lOmgZL or less is generated in the middle of the third supply line 25c.
  • the generated sterilized seawater A3 is supplied to the removal treatment device 24 through the third supply line 25c, and the remaining effective chlorine is quickly removed in the removal treatment device 24.
  • Non-chlorine seawater A4 produced by removing residual available chlorine is supplied to aquaculture tank B as breeding water.
  • Example 1 In this experiment, for the sterilized seawater A3 produced by the production method according to the present invention, the reaction between the effective chlorine concentration remaining in the sterilized seawater A3 and the organic compounds contained in the sterilized seawater A3. An experiment was conducted to confirm the behavior of the response over time.
  • the sterilized seawater A3 which is an intermediate produced by the production apparatus according to the present invention
  • the remaining effective chlorine is 0.2 mgZL of sterilized seawater (test water 1)
  • the remaining effective chlorine is 2. OmgZL.
  • Sterilized seawater (sample water 2), residual Effective chlorine is 5.OmgZL sanitized seawater (test water 3), residual effective chlorine is lOmgZL sanitized seawater (test water 4), residual effective chlorine is 27.2 mgZL sanitized seawater (test water) Water 5) was produced, and the amount of organic halide produced when these sterilized seawater A3 was allowed to stand was measured over time. The results obtained for each test water are shown in Table 1 to Table 5.
  • Test water 0 Seawater with zero effective chlorine concentration in filtered seawater
  • Test water 1 sterilized seawater with residual effective chlorine concentration Q of 2 mg / L
  • Test water 0 Seawater with zero effective chlorine concentration in filtered seawater
  • Test water 2 Residual effective chlorine concentration 2. (immediately after kg / L of sterilized seawater, lhr, 6hr: immediately after sterilized seawater is generated, 1 hour later, 6:00
  • Test water 0 Seawater with zero effective chlorine concentration in filtered seawater
  • Test water 3 Residual effective chlorine concentration 5. Immediately after sterilized seawater with Qmg / L, lhr, 6hr: Immediately after producing sterilized seawater, 1 hour, 6 hours later
  • Test water 4 Immediately after sterilized seawater with residual effective chlorine concentration I Qmg / L, lhr, 6hr: Immediately after producing sterilized seawater, 1 hour later, 6:00
  • Test water 0 Seawater with zero effective chlorine concentration in filtered seawater
  • Test water 4 sterilized seawater with residual effective chlorine concentration of 27.2 mg / L
  • bromoform a kind of trihalomethane.
  • Bromoform is derived from hypochlorous acid, which is an effective chlorine component remaining in sterilized seawater A3, and bromine that is potentially contained in seawater, and is a chemical that is suspected as a carcinogenic substance. It is a substance.
  • the amount of bromoform produced in the sterilized seawater A3 increases significantly in proportion to the standing time of the sterilized seawater A3. Therefore, in order to reduce the amount of bromoform produced in the sterilized seawater A3, it is important to remove the effective chlorine remaining in the sterilized seawater A3 as quickly as possible.
  • Example 2 In this experiment, growth was achieved by removing residual effective chlorine from the sterilized seawater A3. In order to confirm the safety of raw water A4, a mutagenicity test (Ames test) using two types of water for breeding A3 was attempted.
  • the Ames test is a widely used mutagenicity test that is a means of detecting genotoxicity of mutagens and carcinogens in environmental samples of complex composition containing many chemical substances. .
  • the growth water A4 used for the mutagenicity test the growth water (test water 6) obtained by subjecting the removed seawater A3 with 0.3 mgZL of residual effective chlorine to the removal treatment and residual The water used for the cultivation (test water 7), which was obtained by subjecting the removed seawater A3 with effective chlorine of 3. Omg / L to the removal treatment, was adopted.
  • the preincubation method was adopted.
  • test water which is the test solution
  • LOOO ⁇ L of test water which is the test solution
  • metabolic activation is performed
  • 0.5 mL of S9mix is added and positive.
  • the direct method add 0.5 mL of 0.1 M sodium-phosphate buffer, and add 100 L of the precultured test strain suspension.
  • the direct method add 0.5 mL of 0.1 M sodium phosphate buffer before preparing the top agar.
  • Control seawater and positive control substances should be sterilized by filtration.
  • Salmonella typhimurium TA98 strain and TA100 strain were employed.
  • the top agar employs three types of top agar A, B, C with the composition shown in Table 6 and tested. Add 2111] ⁇ top agar 8 when the amount of liquid added is 62.5-250, and add 1.5 mL of top agar B when the amount of liquid added is 500 L. If the addition amount is 1 000 L, add TopAgar C in 1 mL. In this state, mix carefully in the test tube so that bubbles do not form, pour the test tube contents onto the minimum glucose agar culture on the plate and spread it quickly and evenly. Then invert the plate and incubate at 37 ° C for 48 hours. At the end of the culture, count the number of colonies caused by back mutations on the plate. The results obtained are shown in Table 7 and Table 8.
  • the mutagenicity is determined to be positive when the number of revertant colonies of the test substance increases more than twice that of the positive control and a dose dependency is observed. Under this test condition, mutagenic ability is not observed.
  • TA98 Salmonella typhimurium TA98 strain
  • TA100 Salmonella typhimurium TA100 strain Am es test results
  • TA98 Salmonella typhi dish rium TA98 strain
  • TA100 Salmonella ty hi murium TA100 strain

Abstract

A system for producing water for growth of marine organisms, comprising the filtration step of filtering seawater; the electrolysis step of electrolyzing the filtered seawater to thereby obtain a sterile seawater having its available chlorine concentration reduced to ≤ 10 mg/L; and the available chlorine removing step of removing any available chlorine remaining in the seawater having been sterilized in the electrolysis step within a period of 1 hr.

Description

明 細 書  Specification
海洋生物の育成用水の製造方法および製造装置  Method and apparatus for producing marine organism growing water
発明の技術分野  TECHNICAL FIELD OF THE INVENTION
[0001] 本発明は、マグロ、ハマチ、ヒラメ、マダイ等の海洋魚類、カキ、ホタテ等の海洋貝 類、ワカメ等の海藻類、動物プランクトン、植物プランクトン等のプランクトン類等の海 洋生物を育成するために使用する育成用水の製造方法および製造装置に関する。 従来技術の検討  [0001] The present invention cultivates marine fish such as tuna, hamachi, flounder and red sea bream, marine shells such as oysters and scallops, seaweeds such as seaweed, zooplankton and planktons such as phytoplankton. The present invention relates to a production method and a production apparatus for growing water used for the purpose. Review of conventional technology
[0002] 海洋生物を育成する養殖場にお!、ては、海洋生物の孵化、成育、生育等の育成に 適した環境を形成することが重要であり、海洋生物の育成環境の形成には、育成用 水が最も大きく関わっている。このため、海洋生物の良好な育成環境を形成するため の育成用水としては、清浄で十分に除菌されて細菌類が皆無に近い良好な海水が 要求される。  [0002] In farms that cultivate marine organisms, it is important to create an environment suitable for nurturing, growing, and growing marine organisms. The water for cultivation is the most involved. For this reason, clean water that is clean and sufficiently sterilized and has almost no bacteria is required as the water for forming a good growth environment for marine organisms.
[0003] 海洋生物の育成用水として使用される海水を除菌する手段としては、一般には、海 水に紫外線照射する方法、海水を加熱処理する方法、海水を濾過する方法、海水 に各種の消毒剤や殺菌剤を添加する方法等がある。海水を除菌するこれらの方法は 、海洋生物の育成コストを高めるので実用に適していない。また、これらの除菌方法 によって生成された海水には、良好な育成環境を形成し得ないものもある。最も簡単 で大きな装置を要しない消毒剤や殺菌剤を添加する方法では、海洋生物の育成にと つて好ましくな!/、残留物が海水中に生成されるおそれがある。  [0003] As means for sterilizing seawater used as water for nurturing marine organisms, generally, a method of irradiating seawater with ultraviolet rays, a method of heat-treating seawater, a method of filtering seawater, and various disinfections to seawater There is a method of adding an agent or a bactericide. These methods of disinfecting seawater are not suitable for practical use because they increase the cost of raising marine organisms. Some seawater generated by these sterilization methods cannot form a good breeding environment. The simplest method that requires no disinfectant or disinfectant to add large equipment is preferable for the growth of marine organisms! There is a possibility that residues may be generated in seawater.
[0004] 近年、海水を電解して生成される電解生成水の殺菌能に着目し、海水を電解処理 して除菌する方法や、電解にて生成された殺菌能を有する電解生成水を海水に添 加して除菌処理する方法が提案されている。これらの除菌処理方法は、上記した従 来の除菌処理方法に比較してコストの面で有利であるとともに、消毒剤や殺菌剤に 起因する育成に影響を及ぼす残留物を生成させることがないという利点がある。しか しながら、海水の電解により生成された殺菌能を有する電解生成水は、海水の除菌 処理に消費される以上の有効塩素を含有していることから、海洋生物の育成用水と して使用する海水には、有効塩素がかなりの量残留することになる。このような育成 用海水は、程度は低いとしても殺菌能を有しているので、微細藻類等の育成に対し て有害に作用し、微細藻類等の増殖に悪影響を及ぼすことになる。例えば、海洋無 脊椎動物の幼生の培養に重要な餌となる微細藻類等の増殖に悪影響を及ぼすこと になる。従って、海洋生物の良好な育成環境を形成する育成用海水は、微細藻類等 の育成に悪影響を及ぼすものでないことが肝要である。 [0004] In recent years, focusing on the sterilizing ability of electrolyzed water produced by electrolyzing seawater, a method of sterilizing seawater by electrolytic treatment or electrolyzed water having sterilizing ability produced by electrolysis has been In addition, a method for sterilization treatment has been proposed. These sterilization treatment methods are advantageous in terms of cost compared to the conventional sterilization treatment methods described above, and can generate residues that affect growth caused by disinfectants and disinfectants. There is no advantage. However, the electrolyzed water produced by seawater electrolysis and having sterilizing ability contains more effective chlorine than is consumed for the sterilization treatment of seawater, so it can be used as water for breeding marine organisms. A significant amount of available chlorine remains in the seawater. Nurturing like this Seawater for irrigation has a disinfecting ability even if the degree is low, and therefore it adversely affects the growth of microalgae and adversely affects the growth of microalgae. For example, it may adversely affect the growth of microalgae, which are important food for culturing marine invertebrate larvae. Therefore, it is important that the seawater for breeding that forms a good environment for marine organisms does not adversely affect the growth of microalgae and the like.
[0005] この問題に対処するため、発明者等は特開 2003— 144001号公報において、無 機塩の希薄水溶液の電解生成水により殺菌処理されてその殺菌能を中和された育 成用海水が微細藻類等の育成に悪影響を及ぼすことはなぐ海洋生物の育成に良 好な育成環境を形成するのに適していることを提案した。  [0005] In order to cope with this problem, the inventors disclosed in Japanese Patent Laid-Open No. 2003-144001, the seawater for growth which was sterilized by electrolytically generated water of a dilute aqueous solution of organic salt and neutralized its sterilizing ability. It has been proposed that it is suitable for creating a favorable growth environment for the growth of marine organisms, which does not adversely affect the growth of microalgae.
[0006] 発明者等は、この育成用海水の製造にぉ 、て、電解により殺菌処理された海水の 殺菌能を中和するには、殺菌処理された海水中に残留する有効塩素を可能な限り 少なくすること、および同海水中に残存する有効塩素を的確に除去するためには海 水を殺菌処理した後所定時間内に有効塩素を除去することが重要であることを確認 した。 上述した有効塩素の除去処理において、発明者等は、殺菌処理された海水 中には、残留する有効塩素に起因して有機ハロゲン化合物が生成され、有機ハロゲ ン化合物の生成量は時間の経過とともに増加する傾向にあること、およびトリハロメタ ン等の有機ハロゲンィ匕合物は、発癌性を指摘されている化合物であるため、その生 成量をできるだけ低く抑える必要があることを確認した。  [0006] In order to neutralize the sterilizing ability of seawater sterilized by electrolysis, the inventors can use effective chlorine remaining in the sterilized seawater. It was confirmed that it is important to remove the available chlorine within a predetermined time after sterilizing the sea water in order to reduce it as much as possible and to remove the available chlorine remaining in the sea water accurately. In the above-described effective chlorine removal treatment, the inventors have produced organic halogen compounds in the sterilized seawater due to residual effective chlorine, and the amount of organic halogen compounds produced increases with time. It has been confirmed that organic halogen compounds such as trihalomethane tend to increase and that the amount of their production must be kept as low as possible because they are compounds that have been shown to be carcinogenic.
発明の概要  Summary of the Invention
[0007] 本発明の主たる目的は、上記の知見に基づいて、育成用水中に残留する有効塩 素に起因する有機ハロゲンィ匕合物の生成を十分に抑制することできる海洋生物の育 成用水の製造方法および製造装置を提供することにある。  [0007] Based on the above findings, the main object of the present invention is to provide marine organism growth water that can sufficiently suppress the formation of organic halogen compounds resulting from effective chlorine remaining in the growth water. To provide a manufacturing method and a manufacturing apparatus.
[0008] 本発明によれば、この目的は、海水を濾過する濾過処理工程と、濾過処理された 海水を電解してその有効塩素濃度が 10mg/L以下に除菌された海水を生成する電 解処理工程と、同電解処理工程にて除菌された海水中に残留する有効塩素を 1時 間以内に除去する有効塩素の除去処理工程とからなる海洋生物の育成用水の製造 方法によって達成される。  [0008] According to the present invention, the object is to provide a filtration process for filtering seawater, and an electrolyzer for producing seawater sterilized to an effective chlorine concentration of 10 mg / L or less by electrolyzing the filtered seawater. This is achieved by a method for producing water for breeding marine organisms, comprising a solution treatment step and an effective chlorine removal treatment step for removing effective chlorine remaining in seawater sterilized in the electrolytic treatment step within one hour. The
[0009] 本発明の一実施形態にお!ヽては、海水を濾過処理する濾過処理工程と、無機塩 の希釈水溶液を電解して殺菌用水を生成する電解処理工程と、同電解処理工程に て生成された殺菌用水を濾過処理された海水に混合してその有効塩素濃度が 10m g/L以下の除菌海水を生成する除菌海水生成工程と、同除菌海水生成工程にて生 成された除菌海水中に残留する有効塩素を同除菌海水の生成後 1時間以内に除去 処理する有効塩素の除去処理工程とから成る海洋生物の育成用海水の製造方法を 適用してちょい。 [0009] According to one embodiment of the present invention, a filtration process for filtering seawater, and an inorganic salt An electrolysis process in which a dilute aqueous solution is electrolyzed to produce sterilization water, and the sterilization water produced in the electrolysis process is mixed with filtered seawater to remove an effective chlorine concentration of 10 mg / L or less. The sterilized seawater production process that produces the sterilized seawater, and the effective chlorine remaining in the sterilized seawater produced in the sterilized seawater production process is removed within 1 hour after the production of the sterilized seawater. Apply the seawater production method for marine organisms, which consists of the removal treatment process.
[0010] また、上述した海洋生物の育成用水の製造方法を実施するため、海水を濾過処理 する濾過装置と、濾過処理された海水を電解して除菌された海水を生成する電解装 置と、同電解装置にて生成された除菌海水中に残留する有効塩素を除去する有効 塩素の除去処理装置とを備えて、前記電解装置にて有効塩素濃度が 10mg/L以下 の除菌海水を生成し、生成された除菌海水に残留する有効塩素を同除菌海水の生 成後 1時間以内に前記除去処理装置にて除去するようにした海洋生物の育成用水 の製造装置を採用するのが望ましい。  [0010] Further, in order to carry out the above-described method for producing water for cultivating marine organisms, a filtration device that filters seawater, and an electrolytic device that generates sterilized seawater by electrolyzing the filtered seawater. And an effective chlorine removal treatment device that removes effective chlorine remaining in the sterilized seawater generated by the electrolyzer, and the sterilized seawater having an effective chlorine concentration of 10 mg / L or less by the electrolyzer. A device for producing water for breeding marine organisms is adopted in which effective chlorine remaining in the generated sterilized seawater is removed by the removal treatment device within 1 hour after the generation of the sterilized seawater. Is desirable.
[0011] さらに、本発明の実施にあたっては、海水を濾過処理する濾過装置と、無機塩の希 釈水溶液を電解して殺菌用水を生成する電解装置と、同電解装置にて生成された 殺菌用水を濾過処理された海水に混合して除菌海水を生成する除菌海水生成手段 と、同除菌海水生成手段によって生成された除菌海水中に残留する有効塩素を除 去する有効塩素の除去処理装置を備え、前記除菌海水生成装置にて有効塩素濃 度が 10mg/L以下の除菌海水を生成し、生成された除菌海水に残留する有効塩素 濃度を同除菌海水の生成後後 1時間以内に除去するようにした海洋生物の育成用 海水の製造装置を適用してもよい。  Furthermore, in the practice of the present invention, a filtration device for filtering seawater, an electrolytic device for electrolyzing a dilute aqueous solution of an inorganic salt to produce sterilizing water, and sterilizing water produced by the electrolytic device Sterilized seawater production means that mixes with the filtered seawater to produce sterilized seawater, and removal of effective chlorine that removes the effective chlorine remaining in the sterilized seawater produced by the sterilized seawater production means A sterilization seawater generator with an effective chlorine concentration of 10 mg / L or less, and the effective chlorine concentration remaining in the generated sterilization seawater after the generation of the sterilization seawater. You may apply seawater production equipment for the growth of marine organisms that will be removed within one hour.
[0012] 上述した本発明による海洋生物の育成用水の製造方法および製造装置において は、細菌が皆無に近い除菌された海水で、有機ハロゲンィ匕合物中の特にトリハロメタ ンの含有量が極めて少なくて、変異原生誘発性能が陰性の育成用海水を得ることが できる。この育成用海水は、海洋生物の育成に極めて優れ、この育成用用海水を使 用することにより、海洋生物の良好な育成環境を形成することができる。また、この育 成用海水は、有機ハロゲンィ匕合物の含有量が少ないことから、その使用後の廃液は 、排水すべき海洋等の海水を汚染させることもない。この育成用海水は、この点でも、 海洋生物の育成用水として極めて有用である。 [0012] In the method and apparatus for producing water for marine organism growth according to the present invention described above, the content of trihalomethane in the organohalogen compound is extremely small in sterilized seawater with almost no bacteria. Thus, it is possible to obtain breeding seawater with negative mutagenesis-inducing performance. This breeding seawater is extremely excellent for the growth of marine organisms, and by using this breeding seawater, a favorable breeding environment for marine organisms can be formed. Moreover, since the seawater for growth has a low content of organic halogen compounds, the waste liquid after use does not contaminate seawater such as the ocean to be drained. This breeding seawater is It is extremely useful as water for marine life.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]本発明に係る製造装置の一実施形態である第 1の製造装置を模式的に示す概 略構成図;  FIG. 1 is a schematic configuration diagram schematically showing a first manufacturing apparatus which is an embodiment of a manufacturing apparatus according to the present invention;
[図 2]本発明に係る製造装置の他の一実施形態である第 2の製造装置を模式的に示 す概略構成図;  FIG. 2 is a schematic configuration diagram schematically showing a second manufacturing apparatus which is another embodiment of the manufacturing apparatus according to the present invention;
[図 3]本発明に係る製造装置の他の一実施形態である第 3の製造装置を模式的に示 す概略構成図;  FIG. 3 is a schematic configuration diagram schematically showing a third manufacturing apparatus which is another embodiment of the manufacturing apparatus according to the present invention;
[図 4]本発明に係る製造装置の他の一実施形態である第 4の製造装置を模式的に示 す概略構成図;  FIG. 4 is a schematic configuration diagram schematically showing a fourth manufacturing apparatus which is another embodiment of the manufacturing apparatus according to the present invention;
[図 5]本発明に係る製造装置で採用する除去処理装置の一例である負圧式除去処 理装置を模式的に示す概略構成図;  FIG. 5 is a schematic configuration diagram schematically showing a negative pressure removal processing apparatus which is an example of a removal processing apparatus employed in the manufacturing apparatus according to the present invention;
[図 6]本発明に係る製造装置で採用する除去処理装置の他の一例である空気パブ ルリング式除去処理装置を模式的に示す概略構成図である。  FIG. 6 is a schematic configuration diagram schematically showing an air bubble ring type removal treatment apparatus which is another example of the removal treatment apparatus employed in the production apparatus according to the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 本発明は、海洋生物の育成用水の製造方法および製造装置に関する。図 1および 図 2には、無隔膜式の電解装置を採用した第 1の製造装置 10aおよび第 2の製造装 置 10bを示し、図 3および図 4には、有隔膜式の電解装置を採用した第 3の製造装置 20aおよび第 4の製造装置 20bを示して 、る。  [0014] The present invention relates to a method and apparatus for producing water for breeding marine organisms. Fig. 1 and Fig. 2 show the first manufacturing device 10a and the second manufacturing device 10b that employ a diaphragm-type electrolyzer, and Figs. 3 and 4 adopt a diaphragm-type electrolyzer. The third manufacturing apparatus 20a and the fourth manufacturing apparatus 20b are shown.
[0015] 第 1の製造装置 10aは、海水を被電解水とする無隔膜電解にて除菌された海水( 除菌海水)を得て、当該除菌海水に残留する有効塩素を除去処理するものである。 第 1の製造装置 10aは、海洋力も採取した海水を貯留する海水貯留タンク 11、海水 を濾過処理する濾過装置 12、海水を被電解水として無隔膜電解する無隔膜式の電 解装置 13、および、電解装置 13にて電解されて生成される電解生成水(除菌海水) 中に残留する有効塩素を除去処理する除去処理装置 14を備えて 、る。貯留タンク 1 1と濾過装置 12とは、第 1供給管路 15aにて互いに連結されていて、第 1供給管路 1 5aに介装されて 、る供給ポンプ 16aの駆動により、貯留タンク 11に貯留されて 、る海 水が濾過装置 12に供給されるようになって 、る。 [0016] 一方、濾過装置 12は、電解装置 13に連結する第 2供給管路 15b、除去処理装置 1 4に連結する第 3供給管路 15c、および、後述する養殖槽 Bに連結する還流管路 15d を備えている。また、電解装置 13は除去処理装置 14に連結する第 4供給管路 15eを 備え、かつ、除去処理装置 14は養殖槽 Bに連結する第 5供給管路 15fを備えている 。これらの管路で構成される水系回路においては、第 1供給管路 15aと還流管路 15d の連結部に第 1切替バルブ 16bが介装され、第 2供給管路 15bと第 3供給管路 15c の連結部に第 2切替バルブ 16cが介装されている。また、養殖槽 Bには排水管路 bを 備えていて、還流管路 15dは排水管路 bに連結されている力 この連結部に第 3切替 バルブ 16dが介装されている。 [0015] The first manufacturing apparatus 10a obtains seawater (sterilized seawater) sterilized by non-membrane electrolysis using seawater as electrolyzed water, and removes effective chlorine remaining in the sterilized seawater. Is. The first production apparatus 10a includes a seawater storage tank 11 for storing seawater collected from ocean power, a filtration apparatus 12 for filtering seawater, a diaphragm-type electrolysis apparatus 13 for performing diaphragmless electrolysis using seawater as electrolyzed water, and And a removal treatment device 14 for removing effective chlorine remaining in electrolyzed water (sanitized seawater) produced by electrolysis in the electrolysis device 13. The storage tank 11 and the filtration device 12 are connected to each other through a first supply pipe 15a, and are interposed in the first supply pipe 15a, and are driven into the storage tank 11 by driving the supply pump 16a. The stored sea water is supplied to the filtration device 12. On the other hand, the filtration device 12 includes a second supply line 15b connected to the electrolyzer 13, a third supply line 15c connected to the removal processing device 14, and a reflux tube connected to the aquaculture tank B described later. Road 15d is provided. In addition, the electrolyzer 13 includes a fourth supply line 15e connected to the removal treatment apparatus 14, and the removal treatment apparatus 14 includes a fifth supply line 15f connected to the culture tank B. In an aqueous circuit composed of these pipes, a first switching valve 16b is interposed at a connecting portion between the first supply pipe 15a and the reflux pipe 15d, and the second supply pipe 15b and the third supply pipe are connected. A second switching valve 16c is interposed at the connecting portion of 15c. The aquaculture tank B is provided with a drain pipe b, and the reflux pipe 15d is connected to the drain pipe b. A third switching valve 16d is interposed at this connecting portion.
[0017] 当該水系回路を有する第 1の製造装置 10aにおいては、供給ポンプ 16aを駆動す ることにより、貯留タンク 11内の海水 A1が、第 1供給管路 15aを通して濾過装置 12に 供給されて濾過され、濾過された海水 (濾過海水 A2)は、被電解水として第 2供給管 路 15bを通して電解装置 13に供給される。なお、濾過海水 A2は、第 2切替バルブ 1 6cを切替動作させることにより、第 3供給管路 15cを通して除去処理装置 14に選択 的に供給することができる。  [0017] In the first manufacturing apparatus 10a having the water system circuit, by driving the supply pump 16a, the seawater A1 in the storage tank 11 is supplied to the filtration device 12 through the first supply line 15a. The filtered and filtered seawater (filtered seawater A2) is supplied to the electrolyzer 13 through the second supply line 15b as electrolyzed water. The filtered seawater A2 can be selectively supplied to the removal treatment device 14 through the third supply pipe 15c by switching the second switching valve 16c.
[0018] 一方、電解装置 13に供給された濾過海水 A2は電解装置 13で無隔膜電解されて 除菌され、除菌された海水(除菌海水 A3)として、第 3供給管路 15cを通して除去処 理装置 14に供給される。除去処理装置 14に供給された除菌海水 A3は、残留する有 効塩素を除去処理される。有効塩素を除去されて実質的に有効塩素を含有しない 非塩素海水 A4は、育成用水として、第 5供給管路 15fを通して養殖槽 Bに供給される 。養殖槽 Bに供給された育成用水 A4は、海洋生物の良好な育成環境を形成する。  [0018] On the other hand, the filtered seawater A2 supplied to the electrolyzer 13 is sterilized by non-diaphragm electrolysis in the electrolyzer 13, and is removed through the third supply line 15c as sterilized seawater (sanitized seawater A3). Supplied to the processing device 14. The sterilized seawater A3 supplied to the removal treatment device 14 is subjected to removal treatment of residual effective chlorine. The non-chlorine seawater A4, which is free of effective chlorine and contains substantially no effective chlorine, is supplied to the aquaculture tank B through the fifth supply line 15f as growth water. The breeding water A4 supplied to the aquaculture tank B forms a good breeding environment for marine organisms.
[0019] なお、第 1の製造装置 10aは、基本的には、養殖終了した時点の養殖槽 B内の育 成用水 A4を廃液として、近接する海洋等に排水するものであるが、養殖終了した時 点の養殖槽 B内の育成用水 A4に挟雑物等が少ない場合には、養殖終了した時点の 養殖槽 B内の育成用水 A4を、被処理水として、還流管路 15dを通して濾過装置 12 に還流させることちできる。  [0019] Note that the first production apparatus 10a basically drains the cultivating water A4 in the aquaculture tank B at the end of the aquaculture as waste liquid to the adjacent ocean, etc. When there is little interstitial material etc. in the cultivation water A4 in the cultivation tank B at the time of the cultivation, the cultivation water A4 in the cultivation tank B at the end of the cultivation is treated as treated water and filtered through the reflux line 15d. Can be refluxed to 12.
[0020] 当該製造装置においては、有効塩素を除去処理する除去処理装置 14としては、 図 5に示す負圧式除去処理装置 C1や、図 6に示す空気パブリング式除去処理装置 C2を採用することができ、かつ、装置の簡単化のために、有効塩素を中和するチォ 硫酸ナトリウムを添加する中和式除去装置を採用することもできる。 [0020] In the manufacturing apparatus, as the removal treatment device 14 for removing effective chlorine, the negative pressure removal treatment device C1 shown in FIG. 5 or the air publishing removal treatment device shown in FIG. C2 can be employed, and a neutralization removal device for adding sodium thiosulfate for neutralizing available chlorine can be employed for simplification of the device.
[0021] 図 5に示す負圧式除去処理装置 C1は、タンク本体 31内に多孔質パイプ 32を屈折 した状態で配設してなるもので、タンク本体 31には、負圧供給管路 33が連結されて いる。負圧供給管路 33には、その途中に減圧ポンプ 33aが介装されていて、タンク 本体 31内に開口している。また、多孔質パイプ 32は、気体のみを透過する無数の微 細孔を有するもので、上流側には第 4供給管路 15e、または、第 3供給管路 15cおよ び第 4供給管路 15eに連結され、かつ、下流側には第 5供給管路 15fが連結されて いる。 A negative pressure removal treatment apparatus C1 shown in FIG. 5 is arranged in a state where a porous pipe 32 is refracted in a tank main body 31, and a negative pressure supply pipe 33 is provided in the tank main body 31. It is consolidated. The negative pressure supply pipe 33 is provided with a decompression pump 33 a in the middle thereof, and is opened in the tank body 31. The porous pipe 32 has innumerable fine pores that allow only gas to pass through. The upstream side is the fourth supply line 15e or the third supply line 15c and the fourth supply line. A fifth supply line 15f is connected to the downstream side 15e.
[0022] 力かる構成の負圧式除去処理装置 C1においては、除菌海水 A3が多孔質パイプ 3 2内に導入されて多孔質パイプ 32内を流動し、第 4供給管路 15fを通って、養殖槽 B に供給される。この間、タンク本体 31内には負圧供給管路 33を通して負圧が供給さ れて、タンク本体 31内が所定の負圧状態となっている。このため、多孔質パイプ 32 内を流動する除菌海水 A3中に含まれる揮発性成分が多孔質パイプ 32の周壁を透 過してタンク本体 31内に流出し、減圧ポンプ 33aの吸引作用で、負圧供給管路 33を 通って系外に排出される。除菌海水 A3に含まれる揮発性成分の代表例は、除菌海 水 A3に残留する有効塩素である。このため、除菌海水 A3に残留する有効塩素は、 多孔質パイプ 32内を流動する間、除菌海水 A3からほぼ除去されて、非塩素海水 A4 (育成用水)となる。  [0022] In the negative pressure removal treatment apparatus C1 having a powerful configuration, the sterilized seawater A3 is introduced into the porous pipe 32 and flows in the porous pipe 32, and passes through the fourth supply line 15f. Supplied to aquaculture tank B. During this time, negative pressure is supplied into the tank body 31 through the negative pressure supply pipe 33, and the tank body 31 is in a predetermined negative pressure state. For this reason, volatile components contained in the sterilized seawater A3 flowing in the porous pipe 32 pass through the peripheral wall of the porous pipe 32 and flow into the tank body 31, and the suction action of the decompression pump 33 a It is discharged out of the system through the negative pressure supply line 33. A typical example of volatile components contained in sanitized seawater A3 is available chlorine remaining in sanitized seawater A3. For this reason, effective chlorine remaining in the sterilized seawater A3 is almost removed from the sterilized seawater A3 while flowing in the porous pipe 32, and becomes non-chlorine seawater A4 (water for breeding).
[0023] 図 6に示す空気パブリング式除去処理装置 C2は、タンク本体 34、空気導入パイプ 35、および、排気パイプ 36を備えるもので、タンク本体 34内には、除菌海水 A3を導 入する導入パイプ 37と、タンク本体 34内で除去処理されて生成された非塩素海水 A 4を導出する導出パイプ 38が底部に臨んでいる。導入パイプ 37は、第 4供給管路 15 e、または、第 3供給管路 15cおよび第 4供給管路 15eに連結されている。また、導出 パイプ 38には第 5供給管路 15fが連結されていて、その途中には供給ポンプ 38aが 介装されている。  [0023] The air publishing removal treatment apparatus C2 shown in FIG. 6 includes a tank body 34, an air introduction pipe 35, and an exhaust pipe 36, and sterilized seawater A3 is introduced into the tank body 34. An introduction pipe 37 and a lead-out pipe 38 for leading the non-chlorine seawater A 4 generated by the removal treatment in the tank body 34 face the bottom. The introduction pipe 37 is connected to the fourth supply line 15e, or the third supply line 15c and the fourth supply line 15e. The outlet pipe 38 is connected to a fifth supply line 15f, and a supply pump 38a is interposed in the middle.
[0024] 空気導入パイプ 35は、導入管部 35a、空気噴出管部 35b、および、導入管部 35a に介装されている空気供給ポンプ 35cを備えている。空気噴出管部 35bは、多数の 空気噴出孔 35dを備えていて、タンク本体 34内の底部に沿って延びている。空気導 入パイプ 35においては、空気供給ポンプ 35cにより、空気が導入管部 35aを通して 空気噴出管部 35bに供給され、多数の空気噴出孔 35dからタンク本体 34内に噴出 される。このため、タンク本体 34内に除菌海水 A3が収容されている場合には、空気 は、多数の空気噴出孔 35dから除菌海水 A3内に、無数の気泡として噴出する。気泡 状の空気は、除菌海水 A3に残留する有効塩素と十分に接触し、有効塩素を取り込 んでタンク本体 34内の上方空間部に滞留する。滞留した有効塩素を含有する空気 は、排気パイプ 36を通して系外へ排気される。 [0024] The air introduction pipe 35 includes an introduction pipe part 35a, an air ejection pipe part 35b, and an air supply pump 35c interposed in the introduction pipe part 35a. The air ejection pipe part 35b has many An air ejection hole 35d is provided and extends along the bottom of the tank body 34. In the air introduction pipe 35, air is supplied to the air ejection pipe part 35b through the introduction pipe part 35a by the air supply pump 35c, and is ejected into the tank main body 34 from the many air ejection holes 35d. For this reason, when the sterilized seawater A3 is accommodated in the tank main body 34, the air is ejected as countless bubbles into the sterilized seawater A3 from the numerous air ejection holes 35d. The air in the bubble form makes sufficient contact with the effective chlorine remaining in the sterilized seawater A3, takes in the effective chlorine, and stays in the upper space in the tank body 34. The retained air containing effective chlorine is exhausted outside the system through the exhaust pipe 36.
[0025] 力かる構成の空気パブリング式除去処理装置 C2においては、タンク本体 34内に導 入された除菌海水 A3は、空気噴出孔 35dから噴出する無数の気泡状の空気に曝さ れ、残留する有効塩素を除去されて非塩素海水 A4となる。非塩素海水 A4は、育成 用水として、導出パイプ 38から第 5供給管路 15fを通して養殖槽 Bに供給される。  [0025] In the air publishing removal treatment apparatus C2 having a powerful structure, the sterilized seawater A3 introduced into the tank body 34 is exposed to countless bubble-like air ejected from the air ejection holes 35d, and remains. The effective chlorine is removed and becomes non-chlorine seawater A4. Non-chlorine seawater A4 is supplied as aquaculture water from the outlet pipe 38 to the aquaculture tank B through the fifth supply line 15f.
[0026] このように構成した第 1の製造装置 10aを使用すれば、本発明に係る第 1の製造方 法および第 2の製造方法を実施することができる。第 1の製造方法は、濾過海水 A2を 、第 2供給管路 15bを通して電解装置 13に供給し、同電解装置 13にて無隔膜電解 して除菌海水 A3を生成し、生成された除菌海水 A3を、第 4供給管路 15eを通して除 去処理装置 14に供給し、除菌海水 A3に残留する有効塩素を除去処理し、除去処 理して生成された非塩素海水 A4を育成用水として、第 5供給管路 15fを通して養殖 槽 Bに供給する方法である。  [0026] By using the first manufacturing apparatus 10a configured as described above, the first manufacturing method and the second manufacturing method according to the present invention can be implemented. In the first production method, the filtered seawater A2 is supplied to the electrolyzer 13 through the second supply line 15b, and the sterilized seawater A3 is generated by electroless membrane electrolysis in the electrolyzer 13 to produce the sterilized water produced. Seawater A3 is supplied to the removal treatment device 14 through the fourth supply line 15e, the effective chlorine remaining in the sterilized seawater A3 is removed, and the non-chlorine seawater A4 generated by the removal treatment is used as growth water. This is a method of supplying to the culture tank B through the fifth supply line 15f.
[0027] 第 1の製造方法においては、電解装置 13での電解条件を、電解生成水中の有効 塩素の濃度が lOmgZL以下、好ましくは 5mgZLになるように設定する。生成された 有効塩素は、濾過海水 A2の細菌類を殺菌して、濾過海水 A2を除菌海水 A3とする。 除菌海水 A3は、除去処理装置 14内にて、残留する有効塩素を除去処理されるが、 最長 1時間以内に除去処理に付すことが必要である。除去処理は、除菌海水 A3が 除去処理装置 14内に所定量供給された後、除去処理装置 14に滞留させることなく 速やかに行うことが好ましい。  In the first production method, the electrolysis conditions in electrolyzer 13 are set so that the concentration of effective chlorine in electrolyzed product water is 10 mgZL or less, preferably 5 mgZL. The generated effective chlorine sterilizes the bacteria in the filtered seawater A2, and the filtered seawater A2 becomes sanitized seawater A3. The sterilized seawater A3 is subjected to the removal treatment of residual effective chlorine in the removal treatment apparatus 14, but it is necessary to perform the removal treatment within a maximum of one hour. It is preferable that the removal treatment be performed promptly without stagnation in the removal treatment apparatus 14 after a predetermined amount of the sterilized seawater A3 is supplied into the removal treatment apparatus 14.
[0028] 本発明に係る第 2の製造方法は、濾過海水 A2を、第 2供給管路 15bを通して電解 装置 13に供給するとともに第 3供給管路 15cに導入し、同電解装置 13にて無隔膜 電解して殺菌用水 Aを生成して生成された殺菌用水 Aを第 3供給管路 15cに導入し 、殺菌用水 Aを第 3供給管路 15c内にて濾過海水 A2に混合する。これにより、第 3供 給管路 15c内にて除菌海水 A3が生成され、生成された除菌海水 A3は除去処理装 置 14に供給される。除菌海水 A3は除去処理装置 14内では、残留する有効塩素を 除去処理されて非塩素海水 A4となり、非塩素海水 A4は育成用水として、第 5供給管 路 15fを通して養殖槽 Bに供給される。 [0028] In the second production method according to the present invention, the filtered seawater A2 is supplied to the electrolyzer 13 through the second supply line 15b and introduced into the third supply line 15c. diaphragm The sterilizing water A generated by electrolysis to produce sterilizing water A is introduced into the third supply line 15c, and the sterilizing water A is mixed with the filtered seawater A2 in the third supply line 15c. As a result, sterilized seawater A3 is generated in the third supply conduit 15c, and the generated sterilized seawater A3 is supplied to the removal processing device 14. The sterilized seawater A3 is treated to remove the remaining effective chlorine in the removal processing device 14 to become non-chlorine seawater A4, and the non-chlorine seawater A4 is supplied as aquaculture water to the aquaculture tank B through the fifth supply line 15f .
[0029] 第 2の製造方法においては、電解装置 13での電解条件を、電解生成水中の有効 塩素の濃度が lOmgZLより高い例えば 200mgZLになるように設定する。生成され た有効塩素は殺菌能を有するもので、殺菌用水 Aを濾過海水 A2に混合することによ り、有効塩素濃度が lOmgZL以下の除菌海水 A3を生成する。除去処理装置 14内 での除去海水 A3中に残留する有効塩素の除去処理は、最長 1時間以内に除去処 理に付すことが必要である。除去処理は、除菌海水 A3を除去処理装置内 14に滞留 させることなく速やかに行うことが好ま 、。  [0029] In the second manufacturing method, the electrolysis conditions in the electrolyzer 13 are set so that the concentration of effective chlorine in the electrolyzed product water is higher than lOmgZL, for example, 200 mgZL. The produced effective chlorine has sterilizing ability, and sterilized seawater A3 with an effective chlorine concentration of lOmgZL or less is produced by mixing sterilizing water A with filtered seawater A2. Removal of effective chlorine remaining in the removal seawater A3 in the removal treatment device 14 must be performed within a maximum of 1 hour. It is preferable that the removal treatment is performed promptly without sterilized seawater A3 remaining in the removal treatment apparatus 14.
[0030] 図 2に示す第 2の製造装置 10bは、 NaClを主要成分とする無機塩の希薄水溶液を 被電解水とする無隔膜電解にて生成された電解生成酸性水 (殺菌用水)を濾過海水 に混合して除菌海水を生成し、当該除菌海水に残留する有効塩素を除去処理する ものである。第 2の製造装置 10bは、第 1の製造装置 10aとは、この点を除いて、共通 する構成であって、類似する製造方法を実施することができるものである。従って、第 2の製造装置 10bにおいては、第 1の製造装置 10aと共通する部品および部材につ いては、共通の符号を付して、その構造の詳細な説明を省略する。  [0030] The second production apparatus 10b shown in FIG. 2 filters electrolytically generated acidic water (sterilization water) generated by non-diaphragm electrolysis using a dilute aqueous solution of an inorganic salt mainly composed of NaCl as electrolyzed water. It is mixed with seawater to produce sterilized seawater, and effective chlorine remaining in the sterilized seawater is removed. The second manufacturing apparatus 10b has the same configuration as the first manufacturing apparatus 10a except for this point, and can perform a similar manufacturing method. Therefore, in the second manufacturing apparatus 10b, parts and members common to the first manufacturing apparatus 10a are denoted by common reference numerals, and detailed description of the structure is omitted.
[0031] 当該製造装置 10bを構成する電解装置 13は、無隔膜電解槽 13aを主体とするもの であるが、水道水を供給する供給管路 13bと、無機塩の高濃度水溶液を調製する調 製タンク 13cと、高濃度水溶液を供給管路 13bの途中に導入する導入管路 13dを備 えている。当該電解装置 13においては、供給管路 13bに、無機塩の高濃度水溶液 が導入され、供給管路 13b内で、無機塩の濃度が所定濃度に希釈された希薄水溶 液が生成される。生成された希薄水溶液は、被電解水として電解室 Rに供給されて、 電解室 Rにて電解される。  [0031] The electrolyzer 13 that constitutes the manufacturing apparatus 10b is mainly composed of a non-diaphragm electrolyzer 13a. The electrolyzer 13a is mainly composed of a supply pipe 13b that supplies tap water and a high-concentration aqueous solution of inorganic salt. A tank 13c and an introduction pipe 13d for introducing a high-concentration aqueous solution into the supply pipe 13b are provided. In the electrolyzer 13, a high concentration aqueous solution of inorganic salt is introduced into the supply line 13b, and a dilute aqueous solution in which the concentration of the inorganic salt is diluted to a predetermined concentration is generated in the supply line 13b. The produced dilute aqueous solution is supplied to the electrolysis chamber R as electrolyzed water and electrolyzed in the electrolysis chamber R.
[0032] 電解室 Rにて生成された電解生成水は殺菌用海水 Aとして、濾過装置 12に連結さ れている第 3供給管路 15cを流通する濾過海水 A2に導入されて混合される。これに より、第 3供給管路 15c内の途中で、残留する有効塩素濃度が lOmgZL以下の除 菌海水 A3が生成される。生成された除菌海水 A3は、第 3供給管路 15cを通して除去 処理装置 14に供給されて、除去処理装置 14内で、残留する有効塩素が速やかに 除去処理される。残留する有効塩素を除去された除去海水 A4は、育成用水として養 殖槽 Bに供給される。 [0032] The electrolyzed water produced in the electrolysis chamber R is connected to the filter device 12 as seawater A for sterilization. It is introduced into the filtered seawater A2 flowing through the third supply line 15c and mixed. As a result, in the middle of the third supply line 15c, sterilized seawater A3 having a residual effective chlorine concentration of lOmgZL or less is generated. The produced sterilized seawater A3 is supplied to the removal treatment device 14 through the third supply line 15c, and the remaining effective chlorine is quickly removed in the removal treatment device 14. The removed seawater A4 from which the remaining effective chlorine has been removed is supplied to the aquaculture tank B as the water for growth.
[0033] 図 3に示す第 3の製造装置 20aは、海水を被電解水とする有隔膜電解にて生成さ れた電解生成酸性水 (殺菌用海水)を濾過海水に混合して除菌海水を生成し、当該 除菌海水に残留する有効塩素を除去処理するものである。第 3の製造装置 20aは、 海洋カゝら採取した海水 A1を貯留する海水貯留タンク 21、海水 A1を濾過処理する濾 過装置 22、濾過海水 A2を被電解水として有隔膜電解する有隔膜式の電解装置 23 、および、電解装置 23にて電解されて生成される電解生成酸性水 (殺菌用水 A)と濾 過海水 A2とを混合して生成される海水(除菌海水 A3)を受け入れて、当該除菌海水 A3に残留する有効塩素を除去処理する除去処理装置 24を備えている。当該製造 装置 20aでは、電解装置 23以外の貯留タンク 21、濾過装置 22、除去処理装置 24に ついては、第 1の製造装置 10aを構成する貯留タンク 11、濾過装置 12、除去処理装 置 14と同じものを採用している。  [0033] The third production apparatus 20a shown in FIG. 3 mixes electrolytically generated acidic water (sterilization seawater) generated by diaphragm membrane electrolysis using seawater as electrolyzed water, and mixes it with filtered seawater. The effective chlorine remaining in the sterilized seawater is removed. The third production equipment 20a consists of a seawater storage tank 21 for storing seawater A1 collected from the ocean, a filtration device 22 for filtering the seawater A1, and a diaphragm type for electrolyzing the diaphragm using the filtered seawater A2 as electrolyzed water. And the seawater (sterilized seawater A3) produced by mixing the electrolyzed acidic water (sterilization water A) produced by electrolysis with the electrolyzer 23 and the filtered seawater A2 And a removal treatment device 24 for removing effective chlorine remaining in the sterilized seawater A3. In the production apparatus 20a, the storage tank 21, filtration apparatus 22, and removal treatment apparatus 24 other than the electrolysis apparatus 23 are the same as the storage tank 11, filtration apparatus 12, and removal treatment apparatus 14 that constitute the first production apparatus 10a. The thing is adopted.
[0034] 当該製造装置 20aにおいては、貯留タンク 21と濾過装置 22とは、第 1供給管路 25 aにて互いに連結されて 、て、第 1供給管路 25aに介装されて 、る供給ポンプ 26aの 駆動により、貯留タンク 21に貯留されている海水 A1を濾過装置 22に供給するように なっている。一方、濾過装置 22は、電解装置 23に連結する第 2供給管路 25b、除去 処理装置 24に連結する第 3供給管路 25c、および、養殖槽 Bに連結する還流管路 2 5dを備えている。電解装置 23は、電解槽 23a内に形成されている陽極側電解室 R1 に連通する第 1流出管路 25eと、陰極側電解室 R2に連通する第 2流出管路 25fを備 えている。第 1流出管路 25eは第 3供給管路 25cに連結し、かつ、第 2流出管路 25f は図示しない貯留タンクに連結している。除去処理装置 24は、養殖槽 Bに連結する 第 5供給管路 25gを備えて 、る。  [0034] In the manufacturing apparatus 20a, the storage tank 21 and the filtration apparatus 22 are connected to each other through the first supply pipe 25a, and are interposed in the first supply pipe 25a. The seawater A1 stored in the storage tank 21 is supplied to the filtration device 22 by driving the pump 26a. On the other hand, the filtration device 22 includes a second supply line 25b connected to the electrolyzer 23, a third supply line 25c connected to the removal treatment device 24, and a reflux line 25d connected to the culture tank B. Yes. The electrolyzer 23 includes a first outflow pipe 25e that communicates with the anode-side electrolysis chamber R1 formed in the electrolytic cell 23a, and a second outflow pipe 25f that communicates with the cathode-side electrolysis chamber R2. The first outflow pipe 25e is connected to the third supply pipe 25c, and the second outflow pipe 25f is connected to a storage tank (not shown). The removal processing device 24 includes a fifth supply line 25g connected to the aquaculture tank B.
[0035] これらの管路で構成される水系回路においては、第 1供給管路 25aと還流管路 25d の連結部に第 1切替バルブ 26bが介装され、また、養殖槽 Bに設けた排水管路 bと還 流管路 25dとの連結部に第 2切替バルブ 26cが介装されている。当該水系回路を有 する当該製造装置 20aにおいては、供給ポンプ 26aを駆動することにより、貯留タン ク 21内の海水 A1が、第 1供給管路 25aを通して濾過装置 22に供給されて濾過され 、濾過された海水 (濾過海水 A2)は、被電解水として第 2供給管路 25bを通して電解 装置 23の各電解室 Rl, R2に供給されるとともに、第 3供給管路 25cを通して除去処 理装置 24に供給される。 [0035] In an aqueous circuit composed of these pipes, a first supply pipe 25a and a reflux pipe 25d The first switching valve 26b is interposed at the connecting portion, and the second switching valve 26c is interposed at the connecting portion between the drain pipe b and the return pipe 25d provided in the culture tank B. In the manufacturing apparatus 20a having the water system circuit, by driving the supply pump 26a, the seawater A1 in the storage tank 21 is supplied to the filtration apparatus 22 through the first supply pipe 25a, filtered, and filtered. The seawater (filtered seawater A2) is supplied as electrolyzed water to the electrolysis chambers Rl and R2 of the electrolyzer 23 through the second supply pipe 25b and to the removal treatment device 24 through the third supply pipe 25c. Supplied.
[0036] 電解装置 23に供給された濾過海水 A2は、電解装置 23で有隔膜電解されて、陽 極側電解室 R1では電解生成酸性水が生成され、陰極側電解室 R2では電解生成ァ ルカリ性水が生成される。電解生成酸性水は、殺菌用海水 Aとして第 3供給管路 25c に導入され、第 3供給管路 25c内で濾過海水 A2と混合して除菌海水 A3を生成し、 除去処理装置 24に供給される。また、電解生成アルカリ性水は、第 2流出管路 25fを 通して図示しない貯留タンクに供給され、各種の装置、設備、および、その他の洗浄 用水等として使用される。  [0036] The filtered seawater A2 supplied to the electrolyzer 23 is subjected to diaphragm membrane electrolysis in the electrolyzer 23, and electrolyzed acidic water is produced in the anode electrolysis chamber R1, and electrolysis alkaline is produced in the cathode electrolysis chamber R2. Sexual water is produced. The electrolytically generated acidic water is introduced into the third supply line 25c as seawater A for sterilization, mixed with the filtered seawater A2 in the third supply line 25c to generate sterilized seawater A3, and is supplied to the removal treatment device 24. Is done. The electrolytically generated alkaline water is supplied to a storage tank (not shown) through the second outflow pipe 25f and used as various devices, equipment, and other cleaning water.
[0037] 除去処理装置 24内では、供給された除菌海水 A3に残留する有効塩素が除去処 理される。有効塩素を除去されて実質的に有効塩素を含有しない非塩素海水 A4は 、育成用水として、第 5供給管路 25gを通して養殖槽 Bに供給される。養殖槽 Bに供 給された育成用水 A4は、海洋生物の良好な育成環境を形成する。  [0037] In the removal treatment apparatus 24, effective chlorine remaining in the supplied sterilized seawater A3 is removed. Non-chlorine seawater A4 from which effective chlorine has been removed and which does not substantially contain effective chlorine is supplied as aquaculture water to aquaculture tank B through 25 g of the fifth supply line. The breeding water A4 supplied to the aquaculture tank B forms a good breeding environment for marine organisms.
[0038] 当該製造装置 20aは、第 1,第 2の製造装置 10a, 10bと同様、基本的には、養殖 終了した時点の養殖槽 B内の育成用水 A4を廃液として、近接する海洋等に排水す るものである力 養殖終了した時点の養殖槽 B内の育成用水 A4に挟雑物等が少な い場合には、養殖終了した時点の養殖槽 B内の育成用水 A4を、被処理水として、還 流管路 25dを通して濾過装置 22に還流させて再使用するようにすることもできる。  [0038] Similar to the first and second manufacturing apparatuses 10a and 10b, the manufacturing apparatus 20a basically uses the water for cultivation A4 in the aquaculture tank B at the time of completion of the cultivation as a waste liquid to the adjacent ocean or the like. Force to drain Drainage water A4 in the cultivation tank B at the end of the aquaculture When there are few foreign substances in the cultivation water A4 in the cultivation tank B, the cultivation water A4 in the aquaculture tank B at the end of the cultivation is As such, it can be recirculated to the filtration device 22 through the return pipe 25d and reused.
[0039] 当該製造装置 20aを使用して実施される製造方法においては、電解装置 23での 電解条件を、電解生成酸性水中の有効塩素の濃度が lOmgZLより高い例えば 30 mgZL程度になるように設定する。生成された有効塩素は殺菌能を有するもので、 生成される除菌海水 A3に残留する有効塩素濃度が lOmgZL以下になるようにする 。除菌海水 A3の除去処理装置 24内での除去処理は、除菌海水 A3を長時間滞留さ せることなぐ速やかに行うようにする。 [0039] In the manufacturing method implemented using the manufacturing apparatus 20a, the electrolysis conditions in the electrolysis apparatus 23 are set so that the concentration of effective chlorine in the acid water generated by electrolysis is higher than lOmgZL, for example, about 30 mgZL. To do. The produced effective chlorine has sterilizing ability, and the effective chlorine concentration remaining in the produced sterilized seawater A3 should be less than lOmgZL. Disinfection seawater A3 removal treatment equipment 24 Try to do it quickly.
[0040] 図 4に示す第 4の製造装置 20bは、 NaClを主要成分とする無機塩の希薄水溶液を 被電解水とする有隔膜電解にて生成された電解生成酸性水 (殺菌用水 A)を濾過海 水 A2に混合して除菌海水 A3を生成し、除菌海水 A3に残留する有効塩素を除去処 理するものである。第 4の製造装置 20bは、第 3の製造装置 20aとは、この点を除いて 共通する構成であって、類似する製造方法を実施することができるものである。従つ て、第 4の製造装置 20bにおいては、第 3の製造装置 20aと共通する部品および部 材については、共通の符号を付して、その構造の詳細な説明を省略する。  [0040] A fourth production apparatus 20b shown in FIG. 4 uses electrolytically generated acidic water (sterilization water A) generated by diaphragm membrane electrolysis using a dilute aqueous solution of an inorganic salt mainly composed of NaCl as electrolyzed water. This is mixed with filtered seawater A2 to produce sterilized seawater A3, and the effective chlorine remaining in sterilized seawater A3 is removed. The fourth manufacturing apparatus 20b has the same configuration as the third manufacturing apparatus 20a except for this point, and can perform a similar manufacturing method. Therefore, in the fourth manufacturing apparatus 20b, parts and parts common to the third manufacturing apparatus 20a are denoted by common reference numerals, and detailed description of the structure is omitted.
[0041] 当該製造装置 20bを構成する電解装置 23は、有隔膜電解槽 23aを主体とするもの であるが、水道水を供給する供給管路 23bと、無機塩の高濃度水溶液を調製する調 製タンク 23cと、高濃度水溶液を供給管路 23bの途中に導入する導入管路 23dを備 えている。当該電解装置 23においては、供給管路 23bに高濃度水溶液が導入され 、供給管路 23b内で、無機塩の濃度が所定濃度に希釈された希薄水溶液が生成さ れる。生成された希薄水溶液は、被電解水として各電解室 Rl, R2に供給されて、各 電解室 Rl, R2にて電解される。  [0041] The electrolyzer 23 that constitutes the manufacturing apparatus 20b is mainly composed of a diaphragm electrolyzer 23a. The electrolyzer 23a mainly includes a supply pipe 23b that supplies tap water and a high-concentration aqueous solution of inorganic salt. A tank 23c and an introduction line 23d for introducing a high concentration aqueous solution into the supply line 23b are provided. In the electrolyzer 23, a high-concentration aqueous solution is introduced into the supply line 23b, and a dilute aqueous solution in which the concentration of the inorganic salt is diluted to a predetermined concentration is generated in the supply line 23b. The produced dilute aqueous solution is supplied to each electrolysis chamber Rl, R2 as electrolyzed water and electrolyzed in each electrolysis chamber Rl, R2.
[0042] 陽極側電解室 R1に生成された電解生成酸性水は、殺菌用海水 Aとして、第 3供給 管路 25cを流通する濾過海水 A2に導入されて混合される。これにより、第 3供給管路 25c内の途中で、残留する有効塩素濃度が lOmgZL以下の除菌海水 A3が生成さ れる。生成された除菌海水 A3は、第 3供給管路 25cを通して除去処理装置 24に供 給されて、除去処理装置 24内で、残留する有効塩素が速やかに除去処理される。 残留する有効塩素を除去して生成された非塩素海水 A4は、育成用水として養殖槽 Bに供給される。  [0042] The electrolytically generated acidic water generated in the anode electrolysis chamber R1 is introduced and mixed as sterilized seawater A into the filtered seawater A2 flowing through the third supply pipe 25c. Thereby, sterilized seawater A3 having a residual effective chlorine concentration of lOmgZL or less is generated in the middle of the third supply line 25c. The generated sterilized seawater A3 is supplied to the removal treatment device 24 through the third supply line 25c, and the remaining effective chlorine is quickly removed in the removal treatment device 24. Non-chlorine seawater A4 produced by removing residual available chlorine is supplied to aquaculture tank B as breeding water.
実施例  Example
[0043] (実験 1):本実験では、本発明に係る製造方法で製造した除菌海水 A3について、 除菌海水 A3に残留する有効塩素濃度と除菌海水 A3に含まれる有機化合物との反 応の経時的挙動を確認する実験を試みた。本実験では、本発明に係る製造装置で 製造した中間物である除菌海水 A3として、残留する有効塩素が 0. 2mgZLの除菌 海水 (供試水 1)、残留する有効塩素が 2. OmgZLの除菌海水 (供試水 2)、残留す る有効塩素が 5. OmgZLの除菌海水 (供試水 3)、残留する有効塩素が lOmgZL の除菌海水 (供試水 4)、残留する有効塩素が 27. 2mgZLの除菌海水 (供試水 5) を生成し、これらの除菌海水 A3を放置した場合の有機ハロゲン化物の生成量を経時 的に測定した。各供試水について得られた結果を、表 1〜表 5に示す。 [0043] (Experiment 1): In this experiment, for the sterilized seawater A3 produced by the production method according to the present invention, the reaction between the effective chlorine concentration remaining in the sterilized seawater A3 and the organic compounds contained in the sterilized seawater A3. An experiment was conducted to confirm the behavior of the response over time. In this experiment, as the sterilized seawater A3, which is an intermediate produced by the production apparatus according to the present invention, the remaining effective chlorine is 0.2 mgZL of sterilized seawater (test water 1), and the remaining effective chlorine is 2. OmgZL. Sterilized seawater (sample water 2), residual Effective chlorine is 5.OmgZL sanitized seawater (test water 3), residual effective chlorine is lOmgZL sanitized seawater (test water 4), residual effective chlorine is 27.2 mgZL sanitized seawater (test water) Water 5) was produced, and the amount of organic halide produced when these sterilized seawater A3 was allowed to stand was measured over time. The results obtained for each test water are shown in Table 1 to Table 5.
[0044] [表 1] 除菌海水中での有機ハロゲン化物の生成量の経時的変化 [0044] [Table 1] Changes in the amount of organic halide produced in sterilized seawater over time
Figure imgf000013_0001
Figure imgf000013_0001
(注) 供試水 0 :濾過海水で有効塩素濃度 0の海水  (Note) Test water 0: Seawater with zero effective chlorine concentration in filtered seawater
供試水 1 :残留する有効塩素濃度 Q , 2mg/Lの除菌海水  Test water 1: sterilized seawater with residual effective chlorine concentration Q of 2 mg / L
直後, lhr , 6hr:除菌海水を生成直後, 1時間後, 6時間後  Immediately after, lhr, 6hr: Immediately after generation of sterilized seawater, 1 hour, 6 hours later
[0045] [表 2] [0045] [Table 2]
除菌海水中での有機ハロゲン化物の生成量の絰時的変化 Temporal changes in the amount of organic halide produced in sanitized seawater
Figure imgf000014_0001
Figure imgf000014_0001
(注) 供試水 0 :濾過海水で有効塩素濃度 0の海水  (Note) Test water 0: Seawater with zero effective chlorine concentration in filtered seawater
供試水 2 :残留する有効塩素濃度 2 . (kg/Lの除菌海水 直後, lhr, 6hr:除菌海水を生成直後, 1時間後, 6時 Test water 2: Residual effective chlorine concentration 2. (immediately after kg / L of sterilized seawater, lhr, 6hr: immediately after sterilized seawater is generated, 1 hour later, 6:00
除菌海水中での有機ハロゲン化物の生成量の経時的変化 Temporal change in the amount of organic halide produced in sanitized seawater
Figure imgf000015_0001
Figure imgf000015_0001
(注) 供試水 0 :濾過海水で有効塩素濃度 0の海水  (Note) Test water 0: Seawater with zero effective chlorine concentration in filtered seawater
供試水 3 :残留する有効塩素濃度 5 . Qmg/Lの除菌海水 直後, lhr , 6hr:除菌海水を生成直後, 1時間後, 6時間後 Test water 3: Residual effective chlorine concentration 5. Immediately after sterilized seawater with Qmg / L, lhr, 6hr: Immediately after producing sterilized seawater, 1 hour, 6 hours later
除菌海水中での有機ハロゲン化物の生成量の経時的変化 Temporal change in the amount of organic halide produced in sanitized seawater
Figure imgf000016_0001
Figure imgf000016_0001
(注) 供試氷 0 :濾過海水で有効塩素濃度 0の海水  (Note) Test ice 0: Seawater with zero effective chlorine concentration in filtered seawater
供試水 4 :残留する有効塩素濃度 I Qmg/Lの除菌海水 直後, lhr , 6hr:除菌海水を生成直後, 1時間後, 6時 Test water 4: Immediately after sterilized seawater with residual effective chlorine concentration I Qmg / L, lhr, 6hr: Immediately after producing sterilized seawater, 1 hour later, 6:00
除菌海水中での有機ハロゲン化物の生成量の経時的変化 Temporal change in the amount of organic halide produced in sanitized seawater
Figure imgf000017_0001
Figure imgf000017_0001
(注) 供試水 0 :濾過海水で有効塩素濃度 0の海水  (Note) Test water 0: Seawater with zero effective chlorine concentration in filtered seawater
供試水 4 :残留する有効塩素濃度 27.2mg/Lの除菌海水  Test water 4: sterilized seawater with residual effective chlorine concentration of 27.2 mg / L
直後, lhr, 6hr:除菌海水を生成直後, 1時間後, 6時間後  Immediately, lhr, 6hr: Immediately after generation of sterilized seawater, 1 hour, 6 hours later
[0049] 各表を参照すると、特に注目すべき化合物に、トリハロメタンの一種であるブロモホル ムである。ブロモホルムは、除菌海水 A3中に残留する有効塩素成分である次亜塩素 酸と、海水中に潜在的に含まれている臭素とに由来するもので、発癌性の物質として 疑われている化学物質である。除菌海水 A3中でのブロモホルムの生成量は、除菌 海水 A3の放置時間に比例して著しく増加する。このため、除菌海水 A3中におけるブ ロモホルムの生成量を低減するには、除菌海水 A3中に残留する有効塩素を可及的 速やかに除去することが肝要である。 [0049] Referring to each table, a particularly notable compound is bromoform, a kind of trihalomethane. Bromoform is derived from hypochlorous acid, which is an effective chlorine component remaining in sterilized seawater A3, and bromine that is potentially contained in seawater, and is a chemical that is suspected as a carcinogenic substance. It is a substance. The amount of bromoform produced in the sterilized seawater A3 increases significantly in proportion to the standing time of the sterilized seawater A3. Therefore, in order to reduce the amount of bromoform produced in the sterilized seawater A3, it is important to remove the effective chlorine remaining in the sterilized seawater A3 as quickly as possible.
表 1のデータでは、ブロモホルムの生成量を低減させる一つの目安として、放置時間 1時間を示唆している。従って、除菌海水 A3中でのブロモホルムの生成量を大幅に 低減させるには、除菌海水 A3に残留する有効塩素の除去処理は、除菌海水 A3の 生成時力 最長 1時間以内とすることが肝要であり、好ましくは、除去海水 A3を生成 した後には、これを放置することなく速やかに除去処理を行うようにする。  The data in Table 1 suggests an incubation time of 1 hour as a measure for reducing the amount of bromoform produced. Therefore, in order to significantly reduce the amount of bromoform produced in the sterilized seawater A3, the effective chlorine remaining in the sterilized seawater A3 should be removed within a maximum of 1 hour. It is important to remove the seawater A3 immediately after it has been generated without leaving it.
[0050] (実験 2):本実験では、除菌海水 A3中の残留する有効塩素を除去処理してなる育 成用水 A4についての安全性を確認するために、 2種類の育成用水 A3を使用した変 異原性試験 (Ames試験)を試みた。 Ames試験は、多くの化学物質を含有する複雑な 組成の環境試料中から、変異原物質や発癌性物質等の遺伝子毒性を検出する手段 であって、広く用いられている変異原性試験である。本実験では、変異原性試験に 供する育成用水 A4としては、残留する有効塩素が 0. 3mgZLの除去海水 A3を除 去処理に付してなる育成用水 (供試水 6)、および、残留する有効塩素が 3. Omg/L の除去海水 A3を除去処理に付してなる育成用水 (供試水 7)を採用した。また、当該 変異原性試験では、プレインキュベーション法を採用した。 [0050] (Experiment 2): In this experiment, growth was achieved by removing residual effective chlorine from the sterilized seawater A3. In order to confirm the safety of raw water A4, a mutagenicity test (Ames test) using two types of water for breeding A3 was attempted. The Ames test is a widely used mutagenicity test that is a means of detecting genotoxicity of mutagens and carcinogens in environmental samples of complex composition containing many chemical substances. . In this experiment, as the growth water A4 used for the mutagenicity test, the growth water (test water 6) obtained by subjecting the removed seawater A3 with 0.3 mgZL of residual effective chlorine to the removal treatment and residual The water used for the cultivation (test water 7), which was obtained by subjecting the removed seawater A3 with effective chlorine of 3. Omg / L to the removal treatment, was adopted. In the mutagenicity test, the preincubation method was adopted.
[0051] 先ず、滅菌試験管に被試験液である供試水を 62. 5〜: LOOO μ L分注し、代謝活性 化法を行う場合には、 S9mixを 0. 5mLカ卩え、陽性対照のみ、直接法の場合に 0. 1 Mナトリウム—リン酸緩衝液を 0. 5mLカ卩え、前培養したテスト菌株懸濁液を 100 L 加える。次いで、力かる試験管を振とう培養恒温槽により 37°Cで 20分間振とう(56往 復 Zmin)しながら、プレインキュペートする。プレインキュベート後、 50°Cに調整したト ップアガーをカ卩える。なお、直接法の場合には、トツプアガーをカ卩える前に、 0. 1Mナ トリウム—リン酸緩衝液を 0. 5mLカ卩える。なお、コントロールの海水および陽性対照 物質については濾過滅菌する。また、テスト菌株としては、ネズミチフス菌(Salmonella typhimurium) TA98株および TA100株を採用した。  [0051] First, when 62.5 ~: LOOO μL of test water, which is the test solution, is dispensed into a sterile test tube and metabolic activation is performed, 0.5 mL of S9mix is added and positive. For the control only, in the case of the direct method, add 0.5 mL of 0.1 M sodium-phosphate buffer, and add 100 L of the precultured test strain suspension. Next, preincubate the vigorous test tube while shaking for 20 minutes at 37 ° C in a shaking culture bath (56 min Zmin). After pre-incubation, cover the top agar adjusted to 50 ° C. In the case of the direct method, add 0.5 mL of 0.1 M sodium phosphate buffer before preparing the top agar. Control seawater and positive control substances should be sterilized by filtration. As test strains, Salmonella typhimurium TA98 strain and TA100 strain were employed.
[0052] [表 6] トツプアガーの組成  [0052] [Table 6] Topagar composition
Figure imgf000018_0001
Figure imgf000018_0001
[0053] トツプアガーは、表 6に示す組成の 3種類のトツプアガー A, B, Cを採用し、被試験 液の添カ卩量が 62. 5〜250 の場合にはトップァガー八を2111]^加ぇ、被試験液の 添カ卩量が 500 Lの場合にはトツプアガー Bを 1. 5mL加え、被試験液の添加量が 1 000 Lの場合にはトツプアガー Cを lmLカ卩える。この状態で、試験管内で、泡が生 じな ヽように注意しつつ混合し、試験管内容物をプレート上の最小グルコース寒天培 養地に注ぎ、これをすばやく一様に広げる。その後、プレートを上下反転し、 37°Cで 48時間培養する。培養終了後には、プレート上の復帰突然変異により生じたコロニ 一数を数える。得られた結果を表 7および表 8に示す。 [0053] The top agar employs three types of top agar A, B, C with the composition shown in Table 6 and tested. Add 2111] ^ top agar 8 when the amount of liquid added is 62.5-250, and add 1.5 mL of top agar B when the amount of liquid added is 500 L. If the addition amount is 1 000 L, add TopAgar C in 1 mL. In this state, mix carefully in the test tube so that bubbles do not form, pour the test tube contents onto the minimum glucose agar culture on the plate and spread it quickly and evenly. Then invert the plate and incubate at 37 ° C for 48 hours. At the end of the culture, count the number of colonies caused by back mutations on the plate. The results obtained are shown in Table 7 and Table 8.
[0054] 一般的には、被試験物質の復帰変異コロニー数が陽性対照の 2倍以上に増加し、 用量依存性が認められる場合に、変異原性が陽性と判定される。本試験条件では、 突然変異誘発能は認められない。  [0054] Generally, the mutagenicity is determined to be positive when the number of revertant colonies of the test substance increases more than twice that of the positive control and a dose dependency is observed. Under this test condition, mutagenic ability is not observed.
[0055] [表 7] [0055] [Table 7]
Ame s試験結果 Ame s test results
Figure imgf000020_0001
Figure imgf000020_0001
(注) 育成用水:残留する有効塩素が 0.3mg/Lの除菌海水を原水とする育成 用水  (Note) Breeding water: Breeding water made from sterilized seawater with 0.3 mg / L of available residual chlorine as raw water
S9Mix(-):代謝活性化系  S9Mix (-): Metabolic activation system
S9Mix(-):代謝活性化をしない系 (直接法)  S9Mix (-): System without metabolic activation (direct method)
TA98: Salmonella typhimurium TA98株  TA98: Salmonella typhimurium TA98 strain
TA100: Salmonella typhimurium TA100株 Am e s試験結果 TA100: Salmonella typhimurium TA100 strain Am es test results
Figure imgf000021_0001
Figure imgf000021_0001
(注) 育成用水:残留する有効塩素が 0.3mg/Lの除菌海水を原水とする育成 用水  (Note) Breeding water: Breeding water made from sterilized seawater with 0.3 mg / L of available residual chlorine as raw water
S9Mix(+) :代謝活性化系  S9Mix (+): Metabolic activation system
S9Mix(-) :代謝活性化をしない系 (直接法)  S9Mix (-): System without metabolic activation (direct method)
TA98: Salmonella typhi皿 rium TA98株  TA98: Salmonella typhi dish rium TA98 strain
TA100: Salmonella ty hi murium TA100株  TA100: Salmonella ty hi murium TA100 strain

Claims

請求の範囲 The scope of the claims
[1] 海水を濾過する濾過処理工程と、濾過処理された海水を電解してその有効塩素濃 度が 10mg/L以下に除菌された海水を生成する電解処理工程と、同電解処理工程 にて除菌された海水中に残留する有効塩素を 1時間以内に除去する有効塩素の除 去処理工程とからなる海洋生物の育成用水の製造方法。  [1] A filtration process for filtering seawater, an electrolysis process for electrolyzing the filtered seawater to produce sterilized seawater whose effective chlorine concentration is 10 mg / L or less, and the same electrolysis process A method for producing water for breeding marine organisms, comprising an effective chlorine removal treatment process that removes effective chlorine remaining in the sterilized seawater within 1 hour.
[2] 海水を濾過処理する濾過処理工程と、無機塩の希釈水溶液を電解して殺菌用水 を生成する電解処理工程と、同電解処理工程にて生成された殺菌用水を濾過処理 された海水に混合してその有効塩素濃度が 10mg/L以下の除菌海水を生成する除 菌海水生成工程と、同除菌海水生成工程にて生成された除菌海水中に残留する有 効塩素を同除菌海水の生成後 1時間以内に除去処理する有効塩素の除去処理ェ 程とから成る海洋生物の育成用海水の製造方法。  [2] A filtration process for filtering seawater, an electrolysis process for electrolyzing a dilute aqueous solution of inorganic salt to produce sterilization water, and sterilization water generated in the same electrolysis process into the filtered seawater The sterilized seawater generation process that produces mixed sterilized seawater with an effective chlorine concentration of 10 mg / L or less and the effective chlorine remaining in the sterilized seawater generated in the sterilized seawater generated process A method for producing seawater for breeding marine organisms, comprising a process for removing effective chlorine that is removed within 1 hour after the production of fungal seawater.
[3] 海水を濾過処理する濾過装置と、濾過処理された海水を電解して除菌された海水 を生成する電解装置と、同電解装置にて生成された除菌海水中に残留する有効塩 素を除去する有効塩素の除去処理装置とを備えて、前記電解装置にて有効塩素濃 度が 10mg/L以下の除菌海水を生成し、生成された除菌海水に残留する有効塩素 を同除菌海水の生成後 1時間以内に前記除去装置にて除去するようにした海洋生 物の育成用水の製造装置。  [3] A filtration device that filters seawater, an electrolysis device that produces sterilized seawater by electrolyzing the filtered seawater, and an effective salt remaining in the sterilized seawater produced by the electrolysis device And an effective chlorine removal treatment device for removing elemental water, and the electrolyzer generates sterilized seawater having an effective chlorine concentration of 10 mg / L or less, and the effective chlorine remaining in the generated sterilized seawater is the same. An apparatus for producing water for cultivating marine organisms, which is removed by the removal apparatus within one hour after the generation of sanitized seawater.
[4] 海水を濾過処理する濾過装置と、無機塩の希釈水溶液を電解して殺菌用水を生 成する電解装置と、同電解装置にて生成された殺菌用水を濾過処理された海水に 混合して除菌海水を生成する除菌海水生成手段と、同除菌海水生成手段によって 生成された除菌海水中に残留する有効塩素を除去する有効塩素の除去処理装置を 備え、前記除菌海水生成装置にて有効塩素濃度が 10mg/L以下の除菌海水を生 成し、生成された除菌海水に残留する有効塩素濃度を同除菌海水の生成後後 1時 間以内に除去するようにした海洋生物の育成用海水の製造装置。  [4] A filtration device for filtering seawater, an electrolysis device for electrolyzing a diluted aqueous solution of inorganic salt to produce sterilization water, and sterilization water generated by the electrolysis device are mixed with the filtered seawater. And sterilized seawater generating means for generating sterilized seawater, and an effective chlorine removal treatment device for removing effective chlorine remaining in the sterilized seawater generated by the sterilized seawater generated means. The device produces sterilized seawater with an effective chlorine concentration of 10 mg / L or less, and removes the effective chlorine concentration remaining in the generated sterilized seawater within one hour after the generation of the sterilized seawater. Seawater production equipment for growing marine organisms.
PCT/JP2006/303853 2005-03-02 2006-03-01 Process for producing water for growth of marine organism and production apparatus WO2006093183A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005058063A JP2006238769A (en) 2005-03-02 2005-03-02 Method for producing water for growing marine organism and apparatus for the same
JP2005-058063 2005-03-02

Publications (1)

Publication Number Publication Date
WO2006093183A1 true WO2006093183A1 (en) 2006-09-08

Family

ID=36941212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303853 WO2006093183A1 (en) 2005-03-02 2006-03-01 Process for producing water for growth of marine organism and production apparatus

Country Status (2)

Country Link
JP (1) JP2006238769A (en)
WO (1) WO2006093183A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102550476A (en) * 2012-03-07 2012-07-11 安徽华鹰水族用品有限公司 Water purification system for aquiculture
CN104542433A (en) * 2015-01-11 2015-04-29 淄博蜀东有机玻璃有限公司 Three-tube double-suction base filtration system for original-ecology removal of fish tank dirt
CN105613388A (en) * 2016-03-09 2016-06-01 中国科学院南海海洋研究所 Method for cleaning crassostrea hongkongensis by aid of electrolyzed water
WO2019125175A1 (en) * 2017-12-20 2019-06-27 Sølvpilen As Fish farm and method for operation
GR1010060B (en) * 2020-09-02 2021-08-13 Αθανασιος Δημητριου Ζησοπουλος Fishery water recirculation platform for life cycle assessment optimization and insurance risk recalculation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4846298B2 (en) * 2005-08-09 2011-12-28 ホシザキ電機株式会社 Seawater disinfection method
JP5545841B2 (en) * 2009-05-26 2014-07-09 株式会社オメガ Wastewater treatment mechanism
WO2022249487A1 (en) * 2021-05-28 2022-12-01 中国電力株式会社 Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility
WO2022249488A1 (en) * 2021-05-28 2022-12-01 中国電力株式会社 Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1119648A (en) * 1997-07-02 1999-01-26 Kyoei Aqua Tec Kk Sterilizing device
JPH11253958A (en) * 1998-03-10 1999-09-21 Ebara Jitsugyo Co Ltd Apparatus and method for electrolytic sterilization
JP2003144001A (en) * 2001-11-08 2003-05-20 Hoshizaki Electric Co Ltd Raising water for marine organism, method and apparatus for producing raising water
JP2003274796A (en) * 2002-03-26 2003-09-30 Rikujo Yoshoku Kogaku Kenkyusho:Kk Closed circulation type fish farming system
JP2004160349A (en) * 2002-11-12 2004-06-10 Matsushita Electric Works Ltd Water cleaning apparatus for fish and shellfish
JP2005245329A (en) * 2004-03-04 2005-09-15 Rikujo Yoshoku Kogaku Kenkyusho:Kk Closed circulating culture system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1098978A (en) * 1996-09-30 1998-04-21 O D I:Kk Water tank device for enjoyment provided with bypass function
JP2004195415A (en) * 2002-12-20 2004-07-15 Asahi Organic Chem Ind Co Ltd Method for treating water of circulating system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1119648A (en) * 1997-07-02 1999-01-26 Kyoei Aqua Tec Kk Sterilizing device
JPH11253958A (en) * 1998-03-10 1999-09-21 Ebara Jitsugyo Co Ltd Apparatus and method for electrolytic sterilization
JP2003144001A (en) * 2001-11-08 2003-05-20 Hoshizaki Electric Co Ltd Raising water for marine organism, method and apparatus for producing raising water
JP2003274796A (en) * 2002-03-26 2003-09-30 Rikujo Yoshoku Kogaku Kenkyusho:Kk Closed circulation type fish farming system
JP2004160349A (en) * 2002-11-12 2004-06-10 Matsushita Electric Works Ltd Water cleaning apparatus for fish and shellfish
JP2005245329A (en) * 2004-03-04 2005-09-15 Rikujo Yoshoku Kogaku Kenkyusho:Kk Closed circulating culture system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102550476A (en) * 2012-03-07 2012-07-11 安徽华鹰水族用品有限公司 Water purification system for aquiculture
CN104542433A (en) * 2015-01-11 2015-04-29 淄博蜀东有机玻璃有限公司 Three-tube double-suction base filtration system for original-ecology removal of fish tank dirt
CN105613388A (en) * 2016-03-09 2016-06-01 中国科学院南海海洋研究所 Method for cleaning crassostrea hongkongensis by aid of electrolyzed water
CN105613388B (en) * 2016-03-09 2019-08-16 中国科学院南海海洋研究所 A method of utilizing electrolysis Water warfare Hong Kong oyster
WO2019125175A1 (en) * 2017-12-20 2019-06-27 Sølvpilen As Fish farm and method for operation
US11751543B2 (en) 2017-12-20 2023-09-12 Sølvpilen As Fish farm and method for operation
GR1010060B (en) * 2020-09-02 2021-08-13 Αθανασιος Δημητριου Ζησοπουλος Fishery water recirculation platform for life cycle assessment optimization and insurance risk recalculation

Also Published As

Publication number Publication date
JP2006238769A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
WO2006093183A1 (en) Process for producing water for growth of marine organism and production apparatus
CN101331087B (en) Electrolytic sterilizing apparatus for ship ballast water
CN105555131B (en) Continuous-flow type aqua sterilisa method for cultivation of fish and continuous-flow type aqua sterilisa fish cultivating system
JP2008068239A (en) Sterilization method and sterilization apparatus
JP4359284B2 (en) Method and apparatus for cleaning and sterilizing endoscope camera equipment
US7713403B2 (en) Water treatment method and apparatus
JP4776293B2 (en) Marine fish farming method
JP2007209859A (en) Wastewater treatment method and wastewater treatment equipment of medical purpose cleaning and sterilizing device
JP2011217785A (en) Apparatus and method for sterilization washing process
JP6210383B2 (en) Ballast water treatment method and ballast water treatment apparatus used therefor
JP2003144001A (en) Raising water for marine organism, method and apparatus for producing raising water
JP2009195862A (en) Method and apparatus for treating electrolytic water
KR101055417B1 (en) Process and treatment system for water for aquatic products
JP3840250B2 (en) Closed circulation culture system and pH adjusting device
KR100753183B1 (en) Electrolytic ion water generator and method thereof
JP4846298B2 (en) Seawater disinfection method
KR100602058B1 (en) Electrolysis and electro-coagulation treatment apparatus of wastewater
CN220714492U (en) Water treatment disinfection device for hemodialysis
JP2005313098A (en) Marine organism raising water and its producing method
JP2009241040A (en) Method and apparatus for regenerating membrane for manufacturing ballast water
JP2009241042A (en) Method and apparatus for refreshing membrane for preparing ballast water
JP2008119644A (en) Treatment method for ballast water
KR101457026B1 (en) The electrolysis system for the removal of slimes
JP3671293B2 (en) Method and apparatus for sterilizing seaweed
JP2007202508A (en) Preservation water for fish and shellfish, method for preserving fish and shellfish, and device for generating electrolytic water used in the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06714971

Country of ref document: EP

Kind code of ref document: A1