JPH09148648A - Manufacture of piezoelectric element - Google Patents

Manufacture of piezoelectric element

Info

Publication number
JPH09148648A
JPH09148648A JP32628395A JP32628395A JPH09148648A JP H09148648 A JPH09148648 A JP H09148648A JP 32628395 A JP32628395 A JP 32628395A JP 32628395 A JP32628395 A JP 32628395A JP H09148648 A JPH09148648 A JP H09148648A
Authority
JP
Japan
Prior art keywords
substrate
piezoelectric
masking material
piezoelectric film
masking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32628395A
Other languages
Japanese (ja)
Other versions
JP3407515B2 (en
Inventor
Masayoshi Tanaka
正善 田中
Masahiko Tatsuki
雅彦 辰木
Yumi Kanbe
由美 神戸
Masahisa Isaji
雅久 伊佐治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP32628395A priority Critical patent/JP3407515B2/en
Publication of JPH09148648A publication Critical patent/JPH09148648A/en
Application granted granted Critical
Publication of JP3407515B2 publication Critical patent/JP3407515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable piezoelectric elements of high quality to be efficiently manufactured by the use of a board without cutting off a piezoelectric film and generating cracking or delamination among a piezoelectric film, an electrode, and a metal board. SOLUTION: The periphery or the periphery and all the one surface of a titanium board 1 are masked with a masking material, a piezoelectric film 3 is formed on a non-masked part of the titanium board 1, an electrode 4 is formed, and the masking material is removed, whereby a piezoelectric bimorph element and a piezoelectric unimorph element are manufactured. Furthermore, the one side or both sides of the titanium board 1 are separated into sections with a masking material, a piezoelectric film 3 and an electrode 4 are formed on each section, the masking material is removed, the titanium board 1 is divided into piezoelectric elements 6 along dividing lines, whereby a piezoelectric bimorph element and a piezoelectric unimorph element are manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は電圧の印加により伸
縮し、機械的応力により電圧を発生する圧電素子の製造
方法、特に薄型の圧電ユニモルフ素子およびバイモルフ
素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a piezoelectric element which expands and contracts when a voltage is applied and generates a voltage by mechanical stress, and more particularly to a thin piezoelectric unimorph element and a bimorph element.

【0002】[0002]

【従来の技術】圧電素子には、1枚の圧電体からなるユ
ニモルフ素子および同じ厚みの2枚の圧電体を貼り合わ
せた構造のバイモルフ素子がある。電圧を印加すると圧
電体が伸縮し、電圧が交番的に変化する場合には電圧変
化の周波数に応じた振動が得られる。このため、超音波
の発振、超音波モータや圧電ブザー等の振動子、カメラ
のシャッター等のアクチュエータ等として幅広く応用さ
れている。また、圧電体が機械的応力を受けると電圧が
発生するため、超音波の受信、応力センサ、点火器等と
しても利用される。
2. Description of the Related Art Piezoelectric elements include a unimorph element composed of one piezoelectric body and a bimorph element having a structure in which two piezoelectric bodies having the same thickness are bonded together. When a voltage is applied, the piezoelectric body expands and contracts, and when the voltage changes alternately, vibration according to the frequency of the voltage change is obtained. Therefore, it is widely applied as an oscillator of ultrasonic waves, an oscillator such as an ultrasonic motor or a piezoelectric buzzer, an actuator such as a camera shutter, and the like. Further, since a voltage is generated when the piezoelectric body receives mechanical stress, it is also used as an ultrasonic wave reception, a stress sensor, an igniter, and the like.

【0003】圧電素子は、従来、原料粉末を圧縮成形・
焼成して得た圧電体に電極を接着することにより製造さ
れている。また、0.1 mm程度までの薄い圧電素子とす
る場合には圧電体原料からなるグリーンシートに電極ペ
ーストを印刷した後、一体として焼成する方法も行なわ
れている(例えば、特開昭 61-239682号)。圧電素子の
共振周波数はその厚さに比例するため、低周波を扱うた
めにはその厚さを薄くする必要がある。素子の小型化を
図る上でも薄膜化は重要である。しかし、前記の従来法
のうち原料粉末を圧縮成型する方法では薄膜化が難しい
上、バイモルフ素子の場合には2枚の圧電体を接着剤を
用いているため素子の耐熱性に問題がある。グリーンシ
ート法でも数十μm以下の膜厚を達成するのは難しい。
また、あまり薄くした場合には強度が低下するため、一
体焼成後、これを弾性体に接着して補強する必要があ
る。この接着剤の特性によって素子の耐熱性が制限され
てしまう。
Conventionally, piezoelectric elements are produced by compression molding raw material powders.
It is manufactured by adhering electrodes to the piezoelectric body obtained by firing. Further, in the case of forming a thin piezoelectric element up to about 0.1 mm, a method of printing an electrode paste on a green sheet made of a piezoelectric material and then firing it integrally (for example, JP-A-61-239682) is also used. ). Since the resonance frequency of the piezoelectric element is proportional to its thickness, it is necessary to reduce its thickness in order to handle low frequencies. The thinning is also important for downsizing the device. However, it is difficult to form a thin film by the method of compressing and molding the raw material powder among the above-mentioned conventional methods, and in the case of a bimorph element, there is a problem in heat resistance of the element because two piezoelectric bodies are used as an adhesive. Even with the green sheet method, it is difficult to achieve a film thickness of several tens of μm or less.
Further, if it is made too thin, the strength will decrease, so it is necessary to adhere this to an elastic body and reinforce it after integrally firing. The characteristics of this adhesive limit the heat resistance of the device.

【0004】弾性体を基体とし、この上に圧電膜を水熱
合成する方法も提案されている(特開平5ー259525号)。
この方法では、図4に示すように、まず基板を硝酸鉛等
の原料を含む水溶液中に投入し、140〜160℃に保
って基板表面に結晶核を生成させる。結晶核の析出した
基板を洗浄、乾燥した後、さらにチタン源を含む水溶液
に投入し、100〜130℃に保って圧電体膜3を形成
する。さらに基板側面をメッキレジストで被覆して無電
解メッキやスパッタリング等で電極4を形成する。
A method in which an elastic body is used as a substrate and a piezoelectric film is hydrothermally synthesized on the substrate has also been proposed (JP-A-5-259525).
In this method, as shown in FIG. 4, first, the substrate is placed in an aqueous solution containing a raw material such as lead nitrate and kept at 140 to 160 ° C. to generate crystal nuclei on the surface of the substrate. After the substrate on which the crystal nuclei have been deposited is washed and dried, the substrate is further placed in an aqueous solution containing a titanium source and kept at 100 to 130 ° C. to form the piezoelectric film 3. Further, the side surface of the substrate is covered with a plating resist to form the electrode 4 by electroless plating or sputtering.

【0005】この方法によれば数μm程度の極薄い圧電
体膜を形成することができ、接着剤を使用することなく
1工程でバイモルフ素子を製造することができるが、図
4に示すように基板1の側面にも圧電体層が形成される
ので(4(a))、両電極間の完全な絶縁をとるために
側端面部分の圧電体層を機械的に切断除去する必要があ
る(4(b))。しかしながら、チタン箔と圧電体層と
の熱膨張係数あるいは伸縮率が異なるため、切断の際の
剪断応力に起因して裁断部近傍で圧電層とチタン箔との
剥離等が発生することがあり、圧電素子生産の歩留まり
率が低下する。
According to this method, an extremely thin piezoelectric film of about several μm can be formed, and a bimorph element can be manufactured in one step without using an adhesive, but as shown in FIG. Since the piezoelectric layer is also formed on the side surface of the substrate 1 (4 (a)), it is necessary to mechanically cut and remove the piezoelectric layer on the side end face portion in order to ensure complete insulation between both electrodes ( 4 (b)). However, since the titanium foil and the piezoelectric layer have different coefficients of thermal expansion or expansion and contraction, peeling between the piezoelectric layer and the titanium foil may occur near the cut portion due to shear stress during cutting, The yield rate of piezoelectric device production is reduced.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明の課題
は、弾性基板上に水熱合成法によって圧電層を形成する
圧電素子の製造方法において、電極間の絶縁を確保する
ための切断時におけるチタン基板と圧電層との間の剥離
の問題を解決し、生産効率を向上せしめることにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for manufacturing a piezoelectric element in which a piezoelectric layer is formed on an elastic substrate by a hydrothermal synthesis method, at the time of cutting for ensuring insulation between electrodes. It is to solve the problem of peeling between the titanium substrate and the piezoelectric layer and improve the production efficiency.

【0007】[0007]

【課題を解決するための手段】本発明者らは、圧電素子
の周辺端部分に相当するチタン基板部分を予めマスキン
グし、水熱合成により圧電膜を形成した後、電極を形成
し、ついで、マスキング材を除去すれば切断操作を要す
ることなく電極間の絶縁が取れること、したがって圧電
層と基板との剥離(接合性の劣化)の問題が解消される
こと、また、この方法において、基板上に複数の区画が
形成されるようにマスキングを行ない、圧電層と電極の
形成後、マスキング材を除去し、その除去部分において
各区画を切断することにより、接合性の劣化を招くこと
なく複数の圧電素子が一度に効率的に製造できることを
確認し、上記課題を解決するに至った。
The inventors of the present invention previously masked a titanium substrate portion corresponding to a peripheral end portion of a piezoelectric element, formed a piezoelectric film by hydrothermal synthesis, and then formed an electrode, and then, If the masking material is removed, the insulation between the electrodes can be taken without the need for a cutting operation, and thus the problem of peeling between the piezoelectric layer and the substrate (deterioration of the bondability) can be solved. Masking is performed so that a plurality of sections are formed on the surface, and after the piezoelectric layer and the electrode are formed, the masking material is removed, and each section is cut at the removed portion, so that a plurality of sections can be formed without deteriorating the bondability. It has been confirmed that the piezoelectric element can be efficiently manufactured at one time, and the above problems have been solved.

【0008】すなわち、本発明は以下の圧電素子製造方
法を提供する。 1)チタン基板の片面と周縁部をマスキング材で被覆
し、基板の非マスキング部に水熱合成により圧電膜を形
成し、さらに圧電膜の表面に電極を形成した後、前記マ
スキング材を除去することを特徴とする圧電ユニモルフ
素子の製造方法。 2)チタン基板周縁部をマスキング材で被覆し、基板両
面の非マスキング部に水熱合成により圧電膜を形成し、
さらに圧電膜の表面に電極を形成した後、前記マスキン
グ材を除去することを特徴とする圧電バイモルフ素子の
製造方法。 3)マスキング材によりチタン基板の片側全面を被覆
し、かつ基板の他面をマスキング材により複数個の区画
に区分し、それぞれの区画に圧電膜および電極を形成
し、マスキング材を除去した後、前記区分線に沿って裁
断することを特徴とするユニモルフ素子の製造方法。
That is, the present invention provides the following piezoelectric element manufacturing method. 1) A titanium substrate is covered on one side and a peripheral portion with a masking material, a piezoelectric film is formed on a non-masking portion of the substrate by hydrothermal synthesis, electrodes are further formed on the surface of the piezoelectric film, and then the masking material is removed. A method for manufacturing a piezoelectric unimorph element, which is characterized by the above. 2) Cover the periphery of the titanium substrate with a masking material, and form a piezoelectric film by hydrothermal synthesis on the non-masking portions on both sides of the substrate,
Furthermore, after the electrode is formed on the surface of the piezoelectric film, the masking material is removed, and a method for manufacturing a piezoelectric bimorph element. 3) After covering the entire surface of one side of the titanium substrate with a masking material, and dividing the other surface of the substrate into a plurality of compartments with the masking material, forming piezoelectric films and electrodes in each compartment, and removing the masking material, A method for manufacturing a unimorph element, which comprises cutting along the dividing line.

【0009】4)チタン基板の両面をマスキング材によ
り複数個の区画に、かつ両面の区画が整合するように区
分し、それぞれの区画に圧電膜および電極を形成し、マ
スキング材を除去した後、前記区分線に沿って裁断する
ことを特徴とするバイモルフ素子の製造方法。 5)マスキングしたチタン基板を硝酸塩、オキシ塩化ジ
ルコニウムおよび水酸化カリウムを含む混合水溶液中で
140〜160℃の温度に保持して基板の非マスキング
部に結晶核を生成させた後、基板を取り出し、洗浄、乾
燥し、ついで硝酸鉛、オキシ塩化ジルコニウム、四塩化
チタンおよび水酸化カリウムを含む混合水溶液中で10
0〜130℃の温度に保持してチタン酸ジルコン酸鉛の
結晶を成長させて圧電膜を形成する前記1乃至4のいず
れかに記載の製造方法。 6)レジストの塗布、露光および現像を順次行なうこと
により基板をマスキングする前記1乃至5のいずれかに
記載の製造方法。 7)パターン印刷により基板をマスキングする前記1乃
至5のいずれかに記載の製造方法。
4) Both sides of the titanium substrate are divided by a masking material into a plurality of compartments so that the two compartments are aligned with each other, a piezoelectric film and an electrode are formed in each compartment, and the masking material is removed. A method for manufacturing a bimorph element, which comprises cutting along the dividing line. 5) The masked titanium substrate was kept at a temperature of 140 to 160 ° C. in a mixed aqueous solution containing nitrate, zirconium oxychloride and potassium hydroxide to generate crystal nuclei in the unmasked portion of the substrate, and then the substrate was taken out, It is washed and dried, then 10 times in a mixed aqueous solution containing lead nitrate, zirconium oxychloride, titanium tetrachloride and potassium hydroxide.
5. The manufacturing method according to any one of 1 to 4 above, wherein a piezoelectric film is formed by growing a lead zirconate titanate crystal while maintaining the temperature at 0 to 130 ° C. 6) The manufacturing method according to any one of 1 to 5 above, wherein the substrate is masked by sequentially applying, exposing and developing a resist. 7) The manufacturing method according to any one of 1 to 5 above, wherein the substrate is masked by pattern printing.

【0010】[0010]

【発明の実施の形態】本発明の方法によれば、チタン基
板のマスキングの仕方を工夫することによって、ユニモ
ルフ素子およびバイモルフ素子のいずれをも容易に効率
よく製造することができる。図1にバイモルフ素子例の
製造工程を示す。この例では、基板1上にマスキング層
2を形成し(1(a))、次いで、非マスキング部5に
圧電膜3の形成(1(b))および電極4の形成を行な
い(1(c))、しかる後、マスキング層2を除去し
て、基板1上に圧電膜3と電極4が積層された圧電素子
6を得る(1(d))。
According to the method of the present invention, both the unimorph element and the bimorph element can be easily and efficiently manufactured by devising the way of masking the titanium substrate. FIG. 1 shows a manufacturing process of an example of a bimorph element. In this example, the masking layer 2 is formed on the substrate 1 (1 (a)), and then the piezoelectric film 3 (1 (b)) and the electrode 4 are formed on the non-masking portion 5 (1 (c)). )) Then, the masking layer 2 is removed to obtain the piezoelectric element 6 in which the piezoelectric film 3 and the electrode 4 are laminated on the substrate 1 (1 (d)).

【0011】以下、本発明の製造方法を分説する。 [基板]本発明では、圧電素子基板としてチタン基板を
使用する。チタンを基板とすることにより圧電層を薄膜
化しても必要な強度が保たれる。また、優れた特性を有
するチタン含有するPZT(チタン酸ジルコン酸鉛)圧
電材を水熱合成する際、基板のチタンと、その上に形成
されるPZTとの接合性が改善される。圧電素子として
の特性を害さないためには、500μm以下、好ましく
は100μm以下のチタン箔を用いる。
The manufacturing method of the present invention will be described below. [Substrate] In the present invention, a titanium substrate is used as the piezoelectric element substrate. By using titanium as the substrate, the required strength can be maintained even if the piezoelectric layer is thinned. Further, when hydrothermally synthesizing a titanium-containing PZT (lead zirconate titanate) piezoelectric material having excellent properties, the bondability between titanium of the substrate and PZT formed thereon is improved. In order not to impair the characteristics of the piezoelectric element, a titanium foil of 500 μm or less, preferably 100 μm or less is used.

【0012】[マスキング工程]マスキング工程では基
板表面を所定のパターンにしたがい被覆する。マスキン
グ方法としてはマスキング材を印刷法、感光性樹脂を用
いるフォトレジスト法等既知の方法により形成する。フ
ォトレジスト法が好ましい。フォトレジスト法では、ま
ず、溶剤(アセトン等)で表面を洗浄したチタン基板の
全面にフォトレジストを塗布する。フォトレジストとし
ては、圧電膜の水熱合成および電極形成の際に溶解せず
に維持されるものであればよく特に限定されない。耐ア
ルカリ性のゴム系レジスト材料、例えば、イソプレンゴ
ム成分と感光剤成分の混合系が好ましい。感光剤の例と
してはビスアジド化合物が挙げられる。これを適当な溶
媒に溶解して塗布する。
[Masking Step] In the masking step, the surface of the substrate is covered according to a predetermined pattern. As a masking method, a masking material is formed by a known method such as a printing method or a photoresist method using a photosensitive resin. The photoresist method is preferred. In the photoresist method, first, a photoresist is applied to the entire surface of a titanium substrate whose surface has been washed with a solvent (acetone or the like). The photoresist is not particularly limited as long as it can be maintained without being dissolved during hydrothermal synthesis of the piezoelectric film and electrode formation. An alkali resistant rubber-based resist material, for example, a mixed system of an isoprene rubber component and a photosensitizer component is preferable. Examples of the photosensitizer include bisazide compounds. This is dissolved in a suitable solvent and applied.

【0013】レジストの塗布法は半導体製造等で慣用さ
れている方法、例えば、ブレードを用いて塗布する方
法、基板をレジスト溶液に浸漬する方法、基板を回転さ
せつつこれにレジスト溶液を滴下するスピンコート法の
いずれでもよい。塗膜の厚さ(乾燥時)は通常数〜10
μmとする。必要に応じ100℃以下で加熱乾燥して溶
媒を除去する。基板の全面がレジストで被覆される。乾
燥後、露光を行なう。露光は、所定の場所(図1では圧
電素子の周辺部分)にレジストが残るようにパターンに
形成したフォトマスクを通して、または光ビームを走査
して行なう。ネガ型レジストであれば露光部がゲル化し
次の現像工程でも溶解することなく基板上に残る。ポジ
型レジストでは非露光部が基板上に残る。
The resist coating method is a method commonly used in semiconductor manufacturing and the like, for example, a method of coating with a blade, a method of immersing a substrate in a resist solution, and a method of spinning a substrate while spinning the resist solution onto the resist solution. Any of the coating methods may be used. The thickness of the coating film (when dried) is usually several to ten.
μm. If necessary, the solvent is removed by heating and drying at 100 ° C or lower. The entire surface of the substrate is covered with resist. After drying, exposure is performed. The exposure is performed through a photomask formed in a pattern so that the resist remains at a predetermined place (a peripheral portion of the piezoelectric element in FIG. 1) or by scanning with a light beam. In the case of a negative type resist, the exposed portion gels and remains on the substrate without being dissolved even in the next developing step. In the positive resist, the non-exposed portion remains on the substrate.

【0014】露光には通常、紫外線が用いられる。例え
ば、前述のビスアジド化合物は、紫外線照射を受けるこ
とにより窒素を脱離してナイトレンを生じ、このナイト
レンが環化ゴムの二重結合等と反応して架橋を起こす。
現像も通常の半導体製造時のマスキングに準じて行えば
よい。マスキング剤を溶解あるいは軟化させる溶剤(例
えば、n−ヘプタン、キシレン)からなる現像液に浸漬
するか、現像液を噴霧した後、イソプロピルアルコール
のような洗浄液でよく洗い乾燥する。必要に応じ150
℃以下で加熱乾燥して溶媒を除去する。このようにして
所望の部分がレジストで被覆された圧電素子製造用基板
が得られる。
Ultraviolet rays are usually used for the exposure. For example, the above-mentioned bisazide compound releases nitrogen to generate nitrene upon irradiation with ultraviolet rays, and this nitrene reacts with a double bond or the like of the cyclized rubber to cause crosslinking.
The development may be performed according to the masking used in the usual semiconductor manufacturing. It is dipped in a developing solution made of a solvent (for example, n-heptane or xylene) that dissolves or softens the masking agent, or after spraying the developing solution, it is thoroughly washed with a washing solution such as isopropyl alcohol and dried. 150 if necessary
The solvent is removed by heating and drying at a temperature of not higher than ℃. In this way, a piezoelectric element manufacturing substrate having a desired portion coated with a resist is obtained.

【0015】[圧電膜形成]本発明で好適に用いられる
圧電材料は、チタンイオン成分を含有する圧電材料であ
る。例えば、ペロブスカイト結晶構造のBaTiO3
PbTiO3 またはCaTiO3 との固溶体や、PbZ
rO3 とPbTiO3 との固溶体であるPZT等が好ま
しい。圧電膜の形成には、目的とする材料に相当する各
金属イオンの塩等を水溶液として混合し、基板上で合成
する水熱合成法が用いられる。例えば、PZT膜を形成
する場合には、次に示すように結晶核を生成させ、次い
でPZTを析出させる方法を取ることが好ましい。この
方法により効率的に均一な膜を合成することができる。
[Piezoelectric film formation] The piezoelectric material preferably used in the present invention is a piezoelectric material containing a titanium ion component. For example, a solid solution of BaTiO 3 and PbTiO 3 or CaTiO 3 having a perovskite crystal structure, or PbZ
PZT or the like, which is a solid solution of rO 3 and PbTiO 3 , is preferable. To form the piezoelectric film, a hydrothermal synthesis method is used in which salts of metal ions corresponding to the intended material are mixed as an aqueous solution and synthesized on a substrate. For example, when forming a PZT film, it is preferable to take a method of generating crystal nuclei and then precipitating PZT as shown below. By this method, a uniform film can be efficiently synthesized.

【0016】すなわち、まず、 0.1〜1.0 mol/lの
硝酸鉛(Pb(NO3 2 )、0.05〜2.0 mol/lの
オキシ塩化ジルコニウム(ZrOCl2 )および 2.5〜
8.0mol/lの水酸化カリウム(KOH)を含む混合
水溶液中に前記のマスキングを施したチタン基板を投入
し、140〜160℃の温度に12〜72時間保持して
基板の非マスキング部に結晶核を生成させる。洗浄、乾
燥の後、 0.2〜1.2 mol/lの硝酸鉛(Pb(N
3 2 )、0.05〜2.0 mol/lのオキシ塩化ジルコ
ニウム(ZrOCl2 )、 0.1〜2.0 mol/lの四塩
化チタン(TiCl4 )および 1.1〜5.0 mol/lの
水酸化カリウム(KOH)を含む混合水溶液中に基板を
投入し100〜130℃の温度で12〜96時間保持し
てPZT圧電膜を形成する。上記の方法により数〜10
μmの膜厚のPZT圧電膜が形成できる。
That is, first, 0.1 to 1.0 mol / l of lead nitrate (Pb (NO 3 ) 2 ), 0.05 to 2.0 mol / l of zirconium oxychloride (ZrOCl 2 ) and 2.5 to
The masked titanium substrate was placed in a mixed aqueous solution containing 8.0 mol / l potassium hydroxide (KOH) and kept at a temperature of 140 to 160 ° C. for 12 to 72 hours to crystallize on the unmasked portion of the substrate. Generate a nucleus. After washing and drying, 0.2 to 1.2 mol / l lead nitrate (Pb (N
O 3 ) 2 ), 0.05 to 2.0 mol / l zirconium oxychloride (ZrOCl 2 ), 0.1 to 2.0 mol / l titanium tetrachloride (TiCl 4 ) and 1.1 to 5.0 mol / l potassium hydroxide (KOH). The substrate is put into a mixed aqueous solution containing the same and kept at a temperature of 100 to 130 ° C. for 12 to 96 hours to form a PZT piezoelectric film. Several to ten by the above method
A PZT piezoelectric film having a thickness of μm can be formed.

【0017】[電極形成]電極の形成法は、レジストに
よるマスキングパターンを破壊しない方法であれば既知
のいずれの方法をも利用できる。例えば、無電解メッキ
法、スパッタリング法あるいは蒸着法等によることがで
き、特にスパッタリング法が好ましい。電極材料として
は、Ni、Pt、Au、Ag、Al等が挙げられる。膜
厚は通常数十nm〜1μm程度とする。下限値未満では
信頼性に劣り、上限値を超えると破壊されやすくなる。
[Electrode formation] As the method for forming the electrodes, any known method can be used as long as it does not destroy the masking pattern formed by the resist. For example, the electroless plating method, the sputtering method, the vapor deposition method, or the like can be used, and the sputtering method is particularly preferable. Examples of the electrode material include Ni, Pt, Au, Ag and Al. The film thickness is usually several tens of nm to 1 μm. If it is less than the lower limit, reliability is poor, and if it exceeds the upper limit, it is easily broken.

【0018】[マスキングの除去]マスキングの除去
は、電極形成した基板をマスキング材料を溶解する溶剤
(例えば、トルエン、キシレン等の芳香族系有機溶剤)
中に、必要により加温して浸漬しマスキングを溶解除去
して行なう。洗浄、乾燥を経て圧電素子片が得られる。
[Removal of Masking] The masking is removed by dissolving the masking material in the substrate on which the electrode is formed (for example, an aromatic organic solvent such as toluene or xylene).
If necessary, it is heated and immersed to dissolve and remove the masking. A piezoelectric element piece is obtained through washing and drying.

【0019】[マスキングパターン]本発明では、マス
キングパターンに従って、様々な圧電膜パターンを基板
上に有する圧電素子が得られる。例えば、本発明の方法
により、1枚の基板から電極間の絶縁が確保された1個
の圧電ユニモルフ及びバイモルフ素子のいずれをも製造
することができる。図1では、バイモルフ素子の製造工
程を示しているが、ユニモルフ素子の場合には、図2に
示すように、基板の片面全面と側面を含む周縁部をマス
キング剤2で被覆する(図2b)。基板片面の非マスキ
ング部5にPZT膜3および全面に電極4を形成した
後、マスキングを除去することによりユニモルフ素子が
得られる。いずれの場合にもマスキング材料を溶解除去
するので基板周縁部を切断除去する必要はなく、PZT
膜にひびや割れを生じたり、PZT膜と基板との接合性
を害することがない。また、PZT膜が基板の周縁には
存在せず、PZT膜の表面を電極材料で完全に覆うこと
が可能なので圧電効率が良い。
[Masking Pattern] In the present invention, piezoelectric elements having various piezoelectric film patterns on a substrate can be obtained according to the masking pattern. For example, according to the method of the present invention, both one piezoelectric unimorph element and bimorph element in which insulation between electrodes is secured can be manufactured from one substrate. Although FIG. 1 shows the manufacturing process of the bimorph element, in the case of the unimorph element, as shown in FIG. 2, the peripheral portion including the entire one surface and the side surface of the substrate is covered with the masking agent 2 (FIG. 2b). . After the PZT film 3 and the electrode 4 are formed on the entire surface of the non-masking portion 5 on one surface of the substrate, the masking is removed to obtain a unimorph element. In any case, since the masking material is dissolved and removed, it is not necessary to cut and remove the peripheral edge of the substrate.
It does not cause cracks or cracks in the film and does not impair the bondability between the PZT film and the substrate. Further, since the PZT film does not exist on the peripheral edge of the substrate and the surface of the PZT film can be completely covered with the electrode material, the piezoelectric efficiency is good.

【0020】本発明の方法によれば、1枚の基板から複
数個の圧電素子を効率的に製造することができる。この
態様としては、図3に平面図を示すように、それぞれの
素子に対応する区画を区分するように、例えば、基板1
に格子状にマスキングパターン2を形成する(3
(a))。バイモルフ素子を製造する場合には、両面の
区画が整合するようにマスキングパターン形成する。つ
いで、それぞれの区画に圧電膜3および電極4を形成す
る(3(b))。ついで、マスクパターン2を除去した
後、各区画を仕切っている区分線に沿って基板を裁断し
個々の圧電素子片を得る(3(d))。切断線上にはP
ZT膜が存在しないため、切断に際してPZT膜にひび
や割れを生じたり、PZT膜と基板との接合性を害する
ことがない。また、製造された圧電素子ではPZT膜が
基板の周縁には存在せず、PZT膜の表面を電極材料で
完全に覆うことが可能なので圧電効率が良い。
According to the method of the present invention, a plurality of piezoelectric elements can be efficiently manufactured from one substrate. In this mode, as shown in the plan view of FIG. 3, the sections corresponding to the respective elements are divided, for example, the substrate 1
Masking pattern 2 is formed in a grid pattern on (3
(A)). When manufacturing a bimorph element, a masking pattern is formed so that the sections on both sides are aligned. Next, the piezoelectric film 3 and the electrode 4 are formed in each section (3 (b)). Then, after the mask pattern 2 is removed, the substrate is cut along the dividing lines that partition each section to obtain individual piezoelectric element pieces (3 (d)). P on the cutting line
Since the ZT film does not exist, the PZT film is not cracked or cracked during cutting, and the bondability between the PZT film and the substrate is not impaired. Further, in the manufactured piezoelectric element, the PZT film does not exist on the peripheral edge of the substrate, and the surface of the PZT film can be completely covered with the electrode material, so that the piezoelectric efficiency is good.

【0021】[0021]

【実施例】実施例1 厚さ50μm(10mm×30mm)のチタン箔をアセ
トンを用いて十分に洗浄し、乾燥させた後、フォトレジ
スト液(東京応化(株)製OMR−83)に浸漬し箔表
面をレジスト液でコートした。乾燥時のレジスト膜厚は
数μm程度であった。レジスト乾燥後、中心部が光不透
過性で基板の周縁部幅1mmに対応した部分が光透過性
であるマスクを上記基板の両面に載せ、紫外線ランプで
10秒間露光し、n−ヘプタンで現像した。テフロン製
オートクレーブ容器にPb(NO3 2 (10.00mmo
l) 、ZrOCl2 ( 4.8mmol)およびKOH(13
6.8 mmol)を含む混合水溶液30mlおよび上記の
処理を行なった基板を入れ、オートクレーブ中、150
℃で48時間かけて結晶核を生成させた。
Example 1 A titanium foil having a thickness of 50 μm (10 mm × 30 mm) was thoroughly washed with acetone, dried and then immersed in a photoresist solution (OMR-83 manufactured by Tokyo Ohka Co., Ltd.). The surface of the foil was coated with a resist solution. The film thickness of the resist when dried was about several μm. After the resist was dried, a mask having a light opaque center portion and a light permeable portion corresponding to a peripheral edge width of 1 mm of the substrate was placed on both sides of the substrate, exposed with an ultraviolet lamp for 10 seconds, and developed with n-heptane. did. Pb (NO 3 ) 2 (10.00mmo in a Teflon autoclave container
l), ZrOCl 2 (4.8 mmol) and KOH (13
30 ml of a mixed aqueous solution containing 6.8 mmol) and the substrate subjected to the above treatment were put in an autoclave, and 150
Crystal nuclei were generated at 48 ° C. for 48 hours.

【0022】基板を取り出し蒸留水中で超音波洗浄で洗
浄した後、Pb(NO3 2 (9.91mmol)、ZrO
Cl2 ( 4.3mmol)およびTiCl4 ( 4.5mmo
l)およびKOH(65.6mmol)を含む混合水溶液3
0mlに投入し、再度オートクレーブ中にて水熱合成処
理を120℃、48時間行なった。水熱合成後、基板を
取り出し蒸留水にて超音波洗浄し乾燥後、その断面を金
属顕微鏡により測定したところ、チタン基板の表および
裏面それぞれに厚さ8μmのZr:Tiのモル比が5
2:48であるチタン酸ジルコニウム(PZT)結晶が
均質に析出しているのが観察された。この基板上にイオ
ンスパッタ装置を用いRFスパッタリング法にて厚さ4
0nmのPt電極を形成し、しかる後、レジスト溶解剤
(東京応化製502A)を用いてフォトレジストを溶解
除去した。このようにして製造した圧電膜の端部を固定
し他方を自由端として1Vの直流電圧を加えたところ、
自由端側で最大0.2 mmの変位が観察された。また、1
V、104Hzの交流電圧を加え振動子として1時間駆
動した後、その表面を観察したところ圧電膜と基板との
剥離やひび割れ等は観察されなかった。
After the substrate was taken out and washed in distilled water by ultrasonic cleaning, Pb (NO 3 ) 2 (9.91 mmol), ZrO 2
Cl 2 (4.3 mmol) and TiCl 4 (4.5 mmo
1) and a mixed aqueous solution containing KOH (65.6 mmol) 3
It was added to 0 ml, and hydrothermal synthesis treatment was again carried out at 120 ° C. for 48 hours in the autoclave. After the hydrothermal synthesis, the substrate was taken out, ultrasonically washed with distilled water and dried, and its cross section was measured with a metallographic microscope. As a result, it was found that the Zr: Ti molar ratio of 8 μm was 5 μm on each of the front and back surfaces of the titanium substrate.
It was observed that a zirconium titanate (PZT) crystal of 2:48 was homogeneously deposited. A thickness of 4 is formed on this substrate by an RF sputtering method using an ion sputtering device.
A 0 nm Pt electrode was formed, and then the photoresist was dissolved and removed using a resist dissolving agent (502A manufactured by Tokyo Ohka). When one end of the piezoelectric film manufactured in this way was fixed and the other end was used as a free end, a DC voltage of 1 V was applied,
A maximum displacement of 0.2 mm was observed on the free end side. Also, 1
After driving the vibrator for 1 hour by applying an AC voltage of V and 104 Hz, the surface of the vibrator was observed, and no peeling or cracking between the piezoelectric film and the substrate was observed.

【0023】実施例2 30mm×60mm、厚さ50μmのTi基板を用い、
マスキング材にて基板の片側全面、および他面について
は8mm×28mmの区画を複数個形成した。実施例1
と同様にPZT膜および電極を形成しマスキング材を除
いた後、カッターを用いて区画線に沿って裁断し複数の
ユニモルフ素子を得た。各素子の端面を拡大鏡で観察し
たところ、各素子片上において圧電膜と電極が均一に重
なり、基板と圧電膜との間の剥離は全く認められなかっ
た。また、積層部の端面はシャープな矩形状であった。
Example 2 A Ti substrate having a size of 30 mm × 60 mm and a thickness of 50 μm was used.
A plurality of sections of 8 mm × 28 mm were formed on the entire surface of one side of the substrate and the other side with a masking material. Example 1
After the PZT film and the electrodes were formed and the masking material was removed in the same manner as in, a plurality of unimorph elements were obtained by cutting along a dividing line using a cutter. When the end face of each element was observed with a magnifying glass, the piezoelectric film and the electrode were uniformly overlaid on each element piece, and no peeling between the substrate and the piezoelectric film was observed. In addition, the end face of the laminated portion had a sharp rectangular shape.

【0024】[0024]

【発明の効果】本発明の方法では、圧電膜を切断するこ
となく圧電ユニモルフおよびバイモルフ素子を製造する
ことができる。比較的固くて脆いPZT等の圧電膜に過
大な裁断力を加えずに製造できるため圧電膜と電極およ
び金属基板との間にひび割れや剥離のない高品質の圧電
素子を効率よく得ることができる。また、1枚の基板か
ら複数個の圧電ユニモルフおよびバイモルフ素子を効率
よく製造することができる。
According to the method of the present invention, piezoelectric unimorph and bimorph elements can be manufactured without cutting the piezoelectric film. Since it is possible to manufacture a relatively hard and fragile piezoelectric film such as PZT without applying excessive cutting force, it is possible to efficiently obtain a high-quality piezoelectric element that is free from cracks or peeling between the piezoelectric film and the electrodes and the metal substrate. . Moreover, a plurality of piezoelectric unimorph and bimorph elements can be efficiently manufactured from one substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の方法による圧電バイモルフ素子例の
製造工程図である。
FIG. 1 is a manufacturing process diagram of an example of a piezoelectric bimorph element according to the method of the present invention.

【図2】 本発明の方法による圧電ユニモルフ素子例の
製造工程図である。
FIG. 2 is a manufacturing process diagram of an example of a piezoelectric unimorph element according to the method of the present invention.

【図3】 本発明の方法により複数個の圧電素子を製造
する工程の説明図である。
FIG. 3 is an explanatory diagram of a process of manufacturing a plurality of piezoelectric elements by the method of the present invention.

【図4】 従来の水熱合成法による圧電素子の説明図で
ある。
FIG. 4 is an explanatory diagram of a piezoelectric element manufactured by a conventional hydrothermal synthesis method.

【符号の説明】[Explanation of symbols]

1 基板 2 レジスト 3 圧電体膜 4 電極 5 非マスキング部 6 圧電素子 1 substrate 2 resist 3 piezoelectric film 4 electrode 5 non-masking part 6 piezoelectric element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊佐治 雅久 愛知県小牧市大字北外山字哥津3600番地 東海ゴム工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahisa Isaji Komaki City, Aichi 3600 Amigazu, Kita Sotoyama, Tokai Rubber Industry Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 チタン基板の片面と周縁部をマスキング
材で被覆し、基板の非マスキング部に水熱合成により圧
電膜を形成し、さらに圧電膜の表面に電極を形成した
後、前記マスキング材を除去することを特徴とする圧電
ユニモルフ素子の製造方法。
1. A masking material covering one surface and a peripheral portion of a titanium substrate, a piezoelectric film is formed on the non-masking portion of the substrate by hydrothermal synthesis, and an electrode is further formed on the surface of the piezoelectric film. A method for manufacturing a piezoelectric unimorph element, which comprises:
【請求項2】 チタン基板周縁部をマスキング材で被覆
し、基板両面の非マスキング部に水熱合成により圧電膜
を形成し、さらに圧電膜の表面に電極を形成した後、前
記マスキング材を除去することを特徴とする圧電バイモ
ルフ素子の製造方法。
2. A masking material is applied to the periphery of a titanium substrate, a piezoelectric film is formed on the non-masking parts on both sides of the substrate by hydrothermal synthesis, electrodes are further formed on the surface of the piezoelectric film, and then the masking material is removed. A method for manufacturing a piezoelectric bimorph element, comprising:
【請求項3】 マスキング材によりチタン基板の片側全
面を被覆し、かつ基板の他面をマスキング材により複数
個の区画に区分し、それぞれの区画に圧電膜および電極
を形成し、マスキング材を除去した後、前記区分線に沿
って裁断することを特徴とする圧電ユニモルフ素子の製
造方法。
3. A titanium substrate is entirely covered on one side with a masking material, and the other surface of the substrate is divided into a plurality of compartments by a masking material. A piezoelectric film and an electrode are formed in each compartment and the masking material is removed. After that, a method for manufacturing a piezoelectric unimorph element, characterized by cutting along the dividing line.
【請求項4】 チタン基板の両面をマスキング材により
複数個の区画に、かつ両面の区画が整合するように区分
し、それぞれの区画に圧電膜および電極を形成し、マス
キング材を除去した後、前記区分線に沿って裁断するこ
とを特徴とする圧電バイモルフ素子の製造方法。
4. A titanium substrate is divided into a plurality of compartments by a masking material so that the compartments on both surfaces are aligned, a piezoelectric film and an electrode are formed in each compartment, and the masking material is removed. A method for manufacturing a piezoelectric bimorph element, which comprises cutting along the dividing line.
【請求項5】 マスキングしたチタン基板を硝酸鉛、オ
キシ塩化ジルコニウムおよび水酸化カリウムを含む混合
水溶液中で140〜160℃の温度に保持して基板の非
マスキング部に結晶核を生成させた後、基板を取り出
し、洗浄、乾燥し、ついで硝酸鉛、オキシ塩化ジルコニ
ウム、四塩化チタンおよび水酸化カリウムを含む混合水
溶液中で100〜130℃の温度に保持してチタン酸ジ
ルコン酸鉛の結晶を成長させて圧電膜を形成する請求項
1乃至4のいずれかの項に記載の製造方法。
5. The masked titanium substrate is kept at a temperature of 140 to 160 ° C. in a mixed aqueous solution containing lead nitrate, zirconium oxychloride and potassium hydroxide to generate crystal nuclei in the unmasked portion of the substrate, The substrate is taken out, washed, dried, and then kept at a temperature of 100 to 130 ° C. in a mixed aqueous solution containing lead nitrate, zirconium oxychloride, titanium tetrachloride and potassium hydroxide to grow a lead zirconate titanate crystal. The method according to any one of claims 1 to 4, wherein the piezoelectric film is formed by the method.
【請求項6】 レジストの塗布、露光および現像を順次
行なうことにより基板をマスキングする請求項1乃至5
のいずれかの項に記載の製造方法。
6. The substrate is masked by sequentially applying a resist, exposing and developing the resist.
The manufacturing method according to any one of 1.
【請求項7】 パターン印刷により基板をマスキングす
る請求項1乃至5のいずれかの項に記載の製造方法。
7. The manufacturing method according to claim 1, wherein the substrate is masked by pattern printing.
JP32628395A 1995-11-22 1995-11-22 Method for manufacturing piezoelectric element Expired - Fee Related JP3407515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32628395A JP3407515B2 (en) 1995-11-22 1995-11-22 Method for manufacturing piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32628395A JP3407515B2 (en) 1995-11-22 1995-11-22 Method for manufacturing piezoelectric element

Publications (2)

Publication Number Publication Date
JPH09148648A true JPH09148648A (en) 1997-06-06
JP3407515B2 JP3407515B2 (en) 2003-05-19

Family

ID=18186043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32628395A Expired - Fee Related JP3407515B2 (en) 1995-11-22 1995-11-22 Method for manufacturing piezoelectric element

Country Status (1)

Country Link
JP (1) JP3407515B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020937A4 (en) * 1997-07-04 2002-07-17 Tokai Rika Co Ltd Parallel plate structure provided with pzt thin-film bimorph and method of fabrication thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020937A4 (en) * 1997-07-04 2002-07-17 Tokai Rika Co Ltd Parallel plate structure provided with pzt thin-film bimorph and method of fabrication thereof

Also Published As

Publication number Publication date
JP3407515B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
US7478558B2 (en) Piezoelectric element, ink jet head, angular velocity sensor, method for manufacturing the same, and ink jet recording apparatus
US7596841B2 (en) Micro-electromechanical devices and methods of fabricating thereof
JPS61177900A (en) Piezo-electric element and its manufacture
JPH09130199A (en) Piezoelectric thin film element and its production
CN114665006A (en) D15Mode ferroelectric single crystal film piezoelectric vibration sensor and preparation method thereof
JP4820520B2 (en) Method for manufacturing piezoelectric filter having acoustic resonator in acoustic reflection layer on carrier substrate
JP3407515B2 (en) Method for manufacturing piezoelectric element
US8536665B2 (en) Fabrication of piezoelectric single crystalline thin layer on silicon wafer
KR20030040592A (en) Ultrasonic probe comprising new piezoelectric single crystal
JPH10209794A (en) Piezoelectric thin-film resonator
JPH10200369A (en) Piezoelectric thin film resonator
JP2005198117A (en) Electronic device formation structure, and manufacturing method of electronic device
JP3106627B2 (en) Piezoelectric actuator and method of manufacturing the same
JP2002151754A (en) Piezoelectric thin film element and its manufacturing method
JP2003212545A (en) Pzt film and manufacturing method for pzt film
JPS58137318A (en) Thin-film piezoelectric oscillator
JP3318418B2 (en) Manufacturing method of surface acoustic wave device
JP2020151796A (en) Method of manufacturing oscillator substrate and oscillator substrate
JPH05259525A (en) Piezoelectric element
JP2004320127A (en) Manufacturing method for thin film piezoelectric resonator, manufacturing apparatus for thin film piezoelectric resonator, thin film piezoelectric resonator and electronic component
JPH11135495A (en) Ferroelectric thin film element and its manufacture
JPH09141201A (en) Vibrator
JPH10261934A (en) Piezoelectric thin film resonator
JPS6038891B2 (en) Manufacturing method of ultra-small crystal unit
JPH11132873A (en) Piezoelectric detector and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees