JPH09148624A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPH09148624A
JPH09148624A JP33386895A JP33386895A JPH09148624A JP H09148624 A JPH09148624 A JP H09148624A JP 33386895 A JP33386895 A JP 33386895A JP 33386895 A JP33386895 A JP 33386895A JP H09148624 A JPH09148624 A JP H09148624A
Authority
JP
Japan
Prior art keywords
semiconductor
crystal
growth
microcrystals
quantum dot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33386895A
Other languages
Japanese (ja)
Inventor
Mitsuru Imaizumi
充 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP33386895A priority Critical patent/JPH09148624A/en
Publication of JPH09148624A publication Critical patent/JPH09148624A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the reproducibility of characteristics in the manufacture of a semiconductor element of a quantum dot structure. SOLUTION: When semiconductor microcrystal is formed in a quantum dot structure, different lattice constant is selected from the lattice constant in a bulk state of the semiconductor crystal which forms microcrystal and the lattice constant in bulk state of semiconductor crystal forming energy barrier. Etching pits are formed on the surface by etching the base layer crystal just before the growth of the semiconductor microcrystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体素子の製造法
および該製造法によって製造した半導体素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor element manufacturing method and a semiconductor element manufactured by the manufacturing method.

【0002】[0002]

【従来の技術】従来、前記3次元成長を用いて製造され
ている半導体量子ドットを備えた半導体素子は、発光強
度・受光感度などの特性に再現性が乏しく、安定した特
性の素子が得られないといった問題があった。
2. Description of the Related Art Conventionally, a semiconductor device provided with semiconductor quantum dots manufactured by using the above-mentioned three-dimensional growth has poor reproducibility in characteristics such as light emission intensity and light receiving sensitivity, and a device having stable characteristics can be obtained. There was a problem such as not.

【0003】[0003]

【発明が解決しようとする課題】この原因は、量子ドッ
ト中の半導体微結晶の密度が、結晶成長毎に変化してし
まうためである。本発明は、上記の問題点を解決するた
め、半導体量子ドット構造を利用した半導体素子におけ
る、その微結晶の密度を再現性よく制御して十分な素子
特性の安定性を得るための半導体量子ドット構造の製造
方法を提供するものである。
This is because the density of the semiconductor crystallites in the quantum dots changes with each crystal growth. The present invention, in order to solve the above problems, in a semiconductor device using a semiconductor quantum dot structure, a semiconductor quantum dot for controlling the density of the crystallites with good reproducibility to obtain sufficient stability of device characteristics. A method of manufacturing a structure is provided.

【0004】[0004]

【課題を解決するための手段】前述の問題点を解決する
ために本発明が提供する製造方法は、大きさが電子のド
ブロイ波長程度の断面寸法を持つ半導体からなる半導体
微小結晶と、ポテンシャルエネルギーが前記半導体微結
晶のポテンシャルエネルギーよりも高くエネルギー障壁
として機能する半導体にて前記半導体微結晶を囲んだ0
次元量子井戸(量子ドット)を備える半導体素子の製造
において、結晶成長には有機金属化学気相成長法(MO
CVD法)により、微結晶の形成には、微結晶を構成す
る半導体結晶のバルク状態での格子定数と、この微結晶
の成長の際に下地となり、かつ微結晶の成長後にこれを
覆うように成長されてエネルギー障壁を形成する半導体
結晶のバルク状態での格子定数が1%以上異なるものを
選択することで、格子不整合系の3次元成長を利用して
結晶成長させる場合において、半導体微結晶の結晶成長
の直前に、結晶表面をエッチングすることによって表面
にエッチピットを形成し、続いて半導体微結晶及びそれ
以降の結晶成長を実施することを特徴とする。
In order to solve the above-mentioned problems, a manufacturing method provided by the present invention is a semiconductor microcrystal made of a semiconductor having a cross-sectional size of about the de Broglie wavelength of an electron, and a potential energy. Is higher than the potential energy of the semiconductor microcrystal and functions as an energy barrier.
In manufacturing a semiconductor device having a three-dimensional quantum well (quantum dot), metal organic chemical vapor deposition (MO) is used for crystal growth.
In order to form the microcrystals by the CVD method, the lattice constant of the semiconductor crystals forming the microcrystals in the bulk state and the base during the growth of the microcrystals and the covering of the microcrystals after the growth of the microcrystals are required. When crystal growth is performed by utilizing three-dimensional growth of a lattice-mismatched system, semiconductor microcrystals are selected by selecting those having a lattice constant that differs by 1% or more in the bulk state of the semiconductor crystal that is grown to form an energy barrier. Immediately before the crystal growth, the crystal surface is etched to form etch pits on the surface, and subsequently semiconductor microcrystals and subsequent crystal growth are carried out.

【0005】なお、前記方法を用いて量子ドット構造を
製造する場合、微結晶を形成する半導体結晶としてAl
Ga1−xAs(0≦x≦1)を、エネルギー障壁を
形成する半導体結晶としてGaAS1−y(0.2
5≦y≦1)を利用することが好ましい。
When a quantum dot structure is manufactured by using the above method, Al is used as a semiconductor crystal forming a microcrystal.
x Ga 1-x As (0 ≦ x ≦ 1) is used as a semiconductor crystal that forms an energy barrier, and GaAS 1-y P y (0.2
It is preferable to use 5 ≦ y ≦ 1).

【0006】[0006]

【作用】上述の製造方法を用いることによって、量子ド
ット構造において、従来に比較して安定した微結晶の密
度再現性を得ることができる。また、これを利用した半
導体素子においては、従来に比較して、発光強度・受光
感度などの特性値の再現性の向上を計ることができる。
By using the above-described manufacturing method, it is possible to obtain stable density reproducibility of fine crystals in the quantum dot structure as compared with the conventional one. Further, in a semiconductor element using this, reproducibility of characteristic values such as light emission intensity and light receiving sensitivity can be improved as compared with the conventional one.

【0007】[0007]

【実施例】次に図面を参照して本発明の実施例について
説明する。まず、GaAs微結晶の密度再現性を調査し
た。試料の製造は以下の方法で実施した。基板には、面
方位が(100)面から〈110〉方向に2°オフされ
たn型GaP半導体基板を用いた。エピタキシャル成長
は、有機金属化学気相成長法(MOCVD法)により行
なった。まず、有機溶剤による洗浄と表面のエッチング
を施した、前記基板をMOCVD装置の反応炉内にセッ
トする。これを成長温度まで昇温し、この基板上にGa
Pバッファ層、GaAs0.500.50ベース層を
順次結晶成長させ、その後一旦結晶成長を中断する。こ
の基板を室温付近まで降温後、反応炉から取り出す。次
にこの基板表面を塩酸・硝酸系のエッチング液でエッチ
ングし、表面に微小なエッチピットを形成する。続いて
この基板を再度MOCVD装置の反応炉内にセットして
昇温し、GaAs微結晶を結晶成長して形成した。な
お、比較として、前記成長中断とエッチングを実施せず
に連続でGaAs微結晶まで形成した試料を作製した。
Next, an embodiment of the present invention will be described with reference to the drawings. First, the density reproducibility of GaAs microcrystals was investigated. The sample was manufactured by the following method. As the substrate, an n-type GaP semiconductor substrate whose plane orientation was off by 2 ° from the (100) plane in the <110> direction was used. The epitaxial growth was performed by a metal organic chemical vapor deposition method (MOCVD method). First, the substrate, which has been cleaned with an organic solvent and whose surface has been etched, is set in a reaction furnace of an MOCVD apparatus. This is heated to the growth temperature, and Ga is deposited on this substrate.
The P buffer layer and the GaAs 0.50 P 0.50 base layer are sequentially grown, and then the crystal growth is temporarily stopped. This substrate is cooled down to around room temperature and then taken out of the reaction furnace. Next, the surface of the substrate is etched with a hydrochloric acid / nitric acid-based etching solution to form minute etch pits on the surface. Then, this substrate was set again in the reaction furnace of the MOCVD apparatus and heated to form GaAs microcrystals by crystal growth. As a comparison, a sample was formed in which GaAs microcrystals were continuously formed without performing the growth interruption and etching.

【0008】このGaAs微結晶の形成に用いた方法
は、格子不整合系のエピタキシャル成長で見られる、一
般にS−Kモード成長と呼ばれる擬3次元成長を利用し
たものである。この実施例の場合GaAs0.50
0.50下地結晶の、バルク状態での格子定数に対し
て、GaAsのような格子不整合率を有する、つまりバ
ルク状態での格子定数の異なる結晶をエピタキシャル成
長させようとすると、成長初期には結晶は3次元的な島
状の形状となることが知られている。このまま結晶成長
を続けると、いわゆるオストワルド成長・シンタリング
効果によりこれら島状の結晶が大きくなって合体し、2
次元的な膜へと形状が変わっていく。この成長初期の3
次元的な島状結晶の形状・大きさとそのばらつき、およ
び密度は、半導体結晶の物質、格子不整合率、下地結晶
の面方位などに依存することが知られている。
The method used for forming the GaAs microcrystals utilizes a pseudo three-dimensional growth generally called SK mode growth, which is seen in the epitaxial growth of lattice mismatching system. In this embodiment, GaAs 0.50 P
When a crystal having a lattice mismatching ratio such as GaAs with respect to the lattice constant of the 0.50 underlying crystal in the bulk state, that is, having a different lattice constant in the bulk state is epitaxially grown, the crystal is initially grown. Is known to have a three-dimensional island shape. If the crystal growth is continued as it is, these island-shaped crystals become large and coalesce due to the so-called Ostwald growth / sintering effect.
The shape changes to a three-dimensional film. This early growth 3
It is known that the shape and size of a three-dimensional island crystal, its variation, and the density depend on the material of the semiconductor crystal, the lattice mismatch rate, the plane orientation of the underlying crystal, and the like.

【0009】また、この島状成長は、下地結晶上の原子
ステップや凹部等を優先的に起点にして発生することが
知られている。よって、エッチピット等の微小な凹部を
下地結晶上に形成することによって人為的に島状結晶の
発生を制御することが可能である。エッチピットは、結
晶表面に貫通している欠陥の位置において選択的にエッ
チング速度が速くなる現象によって形成される。本実施
例の場合、GaP基板とGaAsP下地結晶との間の格
子不整合に起因する結晶欠陥によってエッチピットが形
成される。よって、GaAs微結晶の密度の制御は欠陥
密度によって可能であり、また、欠陥密度はGaAsP
下地結晶の厚さやGaP基板との間の中間層の構造に依
存するため、この厚さや構造によって欠陥密度の制御が
可能である。つまり、基板から下地結晶までの構造によ
って微結晶の密度制御が可能である。
Further, it is known that this island-like growth is preferentially started from atomic steps or recesses on the underlying crystal. Therefore, it is possible to artificially control the generation of island crystals by forming minute recesses such as etch pits on the underlying crystal. Etch pits are formed by a phenomenon in which the etching rate is selectively increased at the position of a defect penetrating the crystal surface. In the case of this embodiment, an etch pit is formed by a crystal defect caused by a lattice mismatch between the GaP substrate and the GaAsP base crystal. Therefore, the density of GaAs microcrystals can be controlled by the defect density, and the defect density is GaAsP.
Since it depends on the thickness of the underlying crystal and the structure of the intermediate layer between the substrate and the GaP substrate, the defect density can be controlled by this thickness and structure. That is, the density of fine crystals can be controlled by the structure from the substrate to the base crystal.

【0010】図1 は、繰り返し5回製作した前記Ga
As半導体微結晶の密度の変化を比較した表である。同
図に見られるように、成長中断・エッチングを施さない
場合に比較し、成長中断・エッチングを施した場合の方
が、密度の再現性が良好になっている。量子ドットは、
キャリアを0次元に閉じ込めた量子井戸であり、量子ド
ット中のキャリアの状態密度関数はデルタ関数的にな
る。従って、例えばこれを受光素子の受光層に用いる
と、量子準位で決定されるエネルギーの光以外、つまり
それより高いエネルギーの光も低いエネルギーの光も理
想的には吸収されないため、非常に狭い波長帯域の受光
素子が実現される。また、例えばこれを発光素子の発光
層に用いると、量子準位で決定されるエネルギーの光以
外、つまりそれより高いエネルギーの光も低いエネルギ
ーの光も理想的には発光しないため、非常に狭い線幅の
発光素子が実現される。この量子ドット効果は、その微
結晶の密度によって特性値が変化するため、同じ微結晶
の密度を再現性よく得る方法が望まれていた。しかし、
実際にこれまで製造された、前記3次元成長を利用した
量子ドット素子では、微結晶の密度が再現性に乏しかっ
たため、均一な性能の素子を繰り返し製造することが不
可能であった。
FIG. 1 shows the Ga produced repeatedly 5 times.
9 is a table comparing changes in density of As semiconductor microcrystals. As shown in the figure, the density reproducibility is better when the growth interruption / etching is performed, as compared with the case where the growth interruption / etching is not performed. Quantum dots
It is a quantum well in which carriers are confined in zero dimensions, and the density of states function of carriers in a quantum dot becomes a delta function. Therefore, for example, when this is used for the light-receiving layer of the light-receiving element, light other than light with energy determined by the quantum level, that is, light with higher energy and light with lower energy, is ideally not absorbed, so it is extremely narrow. A light receiving element in the wavelength band is realized. Further, for example, when this is used for a light emitting layer of a light emitting element, light other than light having energy determined by a quantum level, that is, light having higher energy and light having lower energy, does not ideally emit light, and thus is extremely narrow. A light emitting device having a line width is realized. Since the characteristic value of the quantum dot effect changes depending on the density of the microcrystal, a method for obtaining the same density of the microcrystal with good reproducibility has been desired. But,
In the quantum dot device utilizing the three-dimensional growth that has been manufactured so far, it was impossible to repeatedly manufacture a device having uniform performance because the density of microcrystals was poor in reproducibility.

【0011】本発明の効果を確認するために成長中断・
エッチングを施した場合と施さない場合それぞれ10
回、量子ドット構造を受光層として有する受光素子を作
製した。図2はその構造を示す断面図である。この受光
素子は、n型GaP(100)2°オフ〈110〉基板
10上にn型GaPからなるバッファ不層11、n型G
aAs0.600.40からなるベース層12(厚さ
3μm)、i型GaAs0.600.40エネルギー
障壁層13およびGaAs微結晶14からなる量子ドッ
ト構造受光層15(厚さ0.2μm)、p型GaAs
0.600.40からなるエミッタ層16(厚さ0.
4μm)、p型GaPからなるウィンドウ層17(厚さ
0.5μm)、およびp電極18、n電極19を形成し
た構造となっている。なお、エネルギー障壁層13とし
て用いたGaAs0.600.40のバルク格子定数
と微結晶(量子ドット)14として用いたGaAsのバ
ルク格子定数の間には約1.6%の格子不整合が存在す
る。
In order to confirm the effect of the present invention, growth interruption
10 each with and without etching
A light-receiving element having a quantum dot structure as a light-receiving layer was manufactured. FIG. 2 is a sectional view showing the structure. This light receiving element comprises an n-type GaP (100) 2 ° off <110> substrate 10 and a buffer layer 11 made of n-type GaP and an n-type Gp.
a quantum dot structure light-receiving layer 15 (thickness 0) composed of a base layer 12 (thickness 3 μm) made of aAs 0.60 P 0.40 , an i-type GaAs 0.60 P 0.40 energy barrier layer 13 and GaAs microcrystals 14. .2 μm), p-type GaAs
0.60 P 0.40 emitter layer 16 (thickness 0.
4 μm), a window layer 17 (thickness 0.5 μm) made of p-type GaP, and a p-electrode 18 and an n-electrode 19 are formed. A lattice mismatch of about 1.6% between the bulk lattice constant of GaAs 0.60 P 0.40 used as the energy barrier layer 13 and the bulk lattice constant of GaAs used as the microcrystals (quantum dots) 14. Exists.

【0012】図3は、上述の受光素子にLEDの光を入
射させた時の出力電流を規格化して示したものである。
図中(a)は半導体微結晶の成長の際、成長直前にエッ
チングを実施したものであり、(b)は成長直前にエッ
チングを実施しなかったものである。(b)に比較して
本発明による(a)は再現性に優れていることを示して
いる。なお、本実施例ではGaAsP系混晶半導体を材
料として選択したが、これに関わらず例えばInGaA
sP系など他の半導体材料を用いても本発明は実現でき
る。また、上述の実施例ではエッチング液として塩酸−
硝酸系エッチング液を用いたが、他のエッチング液を用
いたり、エッチング性ガスによって反応炉中でエッチン
グしても構わない。さらに、上述の実施例では受光素子
を作製したが、本発明は発光素子などの他の半導体素子
においても同様の効果がある。
FIG. 3 shows the normalized output current when the light from the LED is incident on the above-mentioned light receiving element.
In the figure, (a) shows that the etching was performed just before the growth of the semiconductor microcrystal, and (b) shows that the etching was not performed immediately before the growth. It is shown that (a) according to the present invention has excellent reproducibility as compared with (b). Although the GaAsP-based mixed crystal semiconductor was selected as the material in this embodiment, regardless of this, for example, InGaA
The present invention can be realized by using other semiconductor materials such as sP. Further, in the above-mentioned embodiment, hydrochloric acid-
Although the nitric acid-based etching solution was used, another etching solution may be used, or etching may be performed in the reaction furnace with an etching gas. Further, although the light receiving element is manufactured in the above-mentioned embodiment, the present invention has the same effect in other semiconductor elements such as a light emitting element.

【0013】[0013]

【発明の効果】このように本発明によれば、量子ドット
構造を用いた半導体素子を、特性値の再現性よく製造す
ることが可能である。
As described above, according to the present invention, it is possible to manufacture a semiconductor element using a quantum dot structure with good reproducibility of characteristic values.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 エッチングによる再現性向上の効果を示す図FIG. 1 is a diagram showing an effect of improving reproducibility by etching.

【図2】 本発明の実施例である受光素子の構造を示す
断面図
FIG. 2 is a sectional view showing a structure of a light receiving element that is an embodiment of the present invention.

【図3】 受光素子の電流出力の再現性を示すグラフFIG. 3 is a graph showing the reproducibility of the current output of the light receiving element.

【符号の説明】[Explanation of symbols]

10…半導体基板、11…バッファ層、12…n型Ga
As0.600.40べース層、13…i型GaAs
0.600.40エネルギー障壁層、14…GaAs
量子ドット、16…p型GaAs0.600.40
ミッタ層、17p型GaPウィンドウ層、18…p電
極、19…n電極。
10 ... Semiconductor substrate, 11 ... Buffer layer, 12 ... N-type Ga
As 0.60 P 0.40 base layer, 13 ... i-type GaAs
0.60 P 0.40 energy barrier layer, 14 ... GaAs
Quantum dots, 16 ... P-type GaAs 0.60 P 0.40 emitter layer, 17p-type GaP window layer, 18 ... P electrode, 19 ... N electrode.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 大きさが電子のドブロイ波長程度の断面
寸法を持つ微結晶と、ポテンシャルエネルギーが前記半
導体微結晶のポテンシャルエネルギーよりも高くエネル
ギー障壁として機能する半導体にて前記半導体微結晶を
囲んだ0次元量子井戸(以後量子ドットと称する)を備
える半導体素子を有機金属化学気相成長法(以後MOC
VD法と称する)により製造する場合において、微結晶
の形成に際し、微結晶を形成する半導体結晶のバルク状
態での格子定数と、エネルギー障壁を形成する半導体結
晶のバルク状態での格子定数が異なるものを選択し、か
つ半導体微結晶の結晶成長直前に下地結晶表面をエッチ
ングし、表面にエッチピットを形成させ、続いて半導体
微結晶およびそれ以降の結晶を成長させることを特徴と
する半導体素子の製造法。
1. A crystallite having a cross-sectional size of about the de Broglie wavelength of an electron, and a semiconductor having a potential energy higher than that of the semiconductor crystallite and functioning as an energy barrier. A semiconductor device having a zero-dimensional quantum well (hereinafter referred to as a quantum dot) is formed by a metal organic chemical vapor deposition method (hereinafter, MOC).
In the case of manufacturing by the VD method), when the crystallites are formed, the lattice constant in the bulk state of the semiconductor crystal forming the crystallites is different from the lattice constant in the bulk state of the semiconductor crystal forming the energy barrier. And the etching of the surface of the underlying crystal immediately before the crystal growth of the semiconductor microcrystals to form an etch pit on the surface, followed by the growth of the semiconductor microcrystals and subsequent crystals. Law.
【請求項2】 前記量子ドット構造の半導体結晶材料に
は、微結晶を形成する半導体結晶としてAlGa
1−xAs(0≦x≦1)を、微結晶を囲みエネルギー
障壁を形成する半導体結晶としてGaAs1−y
(0.25≦y≦1)を用いた請求項1の半導体素
子。
2. The semiconductor crystal material of the quantum dot structure comprises Al x Ga as a semiconductor crystal forming microcrystals.
1-x As (0 ≦ x ≦ 1) is used as a semiconductor crystal that surrounds the microcrystal and forms an energy barrier, and is GaAs 1-y P.
The semiconductor device according to claim 1, wherein y (0.25 ≦ y ≦ 1) is used.
JP33386895A 1995-11-17 1995-11-17 Manufacture of semiconductor element Pending JPH09148624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33386895A JPH09148624A (en) 1995-11-17 1995-11-17 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33386895A JPH09148624A (en) 1995-11-17 1995-11-17 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPH09148624A true JPH09148624A (en) 1997-06-06

Family

ID=18270852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33386895A Pending JPH09148624A (en) 1995-11-17 1995-11-17 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPH09148624A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261027A (en) * 2001-03-02 2002-09-13 Mitsubishi Cable Ind Ltd GaN-FAMILY SEMICONDUCTOR BASE AND ITS MANUFACTURING METHOD
JP2003124128A (en) * 2001-10-12 2003-04-25 Toyoda Gosei Co Ltd Method of manufacturing iii nitride-based compound semiconductor
WO2005024952A3 (en) * 2003-09-05 2005-07-21 Univ North Carolina Quantum dot optoelectronic devices with nanoscale epitaxial overgrowth and methods of manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261027A (en) * 2001-03-02 2002-09-13 Mitsubishi Cable Ind Ltd GaN-FAMILY SEMICONDUCTOR BASE AND ITS MANUFACTURING METHOD
JP2003124128A (en) * 2001-10-12 2003-04-25 Toyoda Gosei Co Ltd Method of manufacturing iii nitride-based compound semiconductor
WO2005024952A3 (en) * 2003-09-05 2005-07-21 Univ North Carolina Quantum dot optoelectronic devices with nanoscale epitaxial overgrowth and methods of manufacture
JP2007534146A (en) * 2003-09-05 2007-11-22 ザ・ユニバーシティ・オブ・ノース・カロライナ・アット・シャーロット Quantum dot optoelectronic device epitaxially grown in nanoscale and method for manufacturing the same
US7554109B2 (en) 2003-09-05 2009-06-30 Dot Metrics Technology, Inc. Quantum dot optoelectronic devices with nanoscale epitaxial lateral overgrowth and methods of manufacture

Similar Documents

Publication Publication Date Title
US6566595B2 (en) Solar cell and process of manufacturing the same
US6797991B2 (en) Nitride semiconductor device
KR100705886B1 (en) Nitride semiconductor layer structure and a nitride semiconductor laser incorporating a portion of same
JPH02285631A (en) Method of oriented change of semiconductor composition or doping for making planar type monolithic electronic componet and its corresponding products
JP4825965B2 (en) Method for forming quantum dots
JP2001044499A (en) ZnO COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE USING SILICON SUBSTRATE AND MANUFACTURING METHOD THEREFOR
WO2005025019A1 (en) InGaAs/GaAs LASERS ON SILICON PRODUCED BY LEPECVD AND MOCVD
JPH05315647A (en) Nitride semiconductor device and its manufacture
JP3304903B2 (en) Semiconductor quantum dot device and manufacturing method thereof
JPH09148624A (en) Manufacture of semiconductor element
US5571748A (en) Methods for producing compound semiconductor devices
US5887011A (en) Semiconductor laser
EP0488632B1 (en) A method for growing a compound semiconductor and a method for producing a semiconductor laser
JPH0992879A (en) Semiconductor device manufacturing method
JPH0778581A (en) Monochromatized electron beam source and its manufacture
JPH06164057A (en) Emiconductor laser and its manufacture
KR19980045996A (en) Quantum thin wire structure of multilayer compound semiconductor and its formation method
JPH0923025A (en) Manufacture of semiconductor element
JP4701375B2 (en) Crystal growth method
KR100349662B1 (en) Current blocking structure using oxide layer and method for fabrication of quantum dot laser diode using the same
JP2000183327A (en) Formation of quantum dots, quantum dot structure formed thereby and semiconductor quantum dot laser
JP3426834B2 (en) Method for manufacturing light emitting diode array
CN113675284A (en) Broadband ultraviolet detector based on semi-polar superlattice structure and preparation method thereof
JP3131106B2 (en) Semiconductor light emitting device
JPS64834B2 (en)