JPH0923025A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPH0923025A
JPH0923025A JP20265795A JP20265795A JPH0923025A JP H0923025 A JPH0923025 A JP H0923025A JP 20265795 A JP20265795 A JP 20265795A JP 20265795 A JP20265795 A JP 20265795A JP H0923025 A JPH0923025 A JP H0923025A
Authority
JP
Japan
Prior art keywords
semiconductor
microcrystal
crystal
energy barrier
quantum dot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20265795A
Other languages
Japanese (ja)
Inventor
Mitsuru Imaizumi
充 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP20265795A priority Critical patent/JPH0923025A/en
Publication of JPH0923025A publication Critical patent/JPH0923025A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor element manufacturing method by which the characteristics of a semiconductor element having a quantum dot structure can be improved. SOLUTION: At the time of forming semiconductor microcrystals in a quantum dot structure, semiconductor crystals for forming the microcrystals and semiconductor crystals for forming an energy barrier are selected by using a organometallic chemical vapor growth method so that a lattice constant difference of 1% or more in a bulk state can be obtained between the semiconductor crystals and the V/III ratio which is one of the growing conditions of the microcrystals is adjusted to 100-200.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、受発光の感度が良好
な半導体素子の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device having good sensitivity for receiving and emitting light.

【0002】[0002]

【従来の技術】従来製造されている半導体量子ドットを
用いた半導体素子は、発光強度・受光感度が小さい、発
光半値幅・受光帯域が広いなど、十分な特性を備えるも
のが得られていない。
2. Description of the Related Art Conventionally manufactured semiconductor devices using semiconductor quantum dots have not been provided with sufficient characteristics such as small emission intensity and light receiving sensitivity, wide emission half width and light receiving band.

【0003】[0003]

【発明が解決しようとする課題】この原因は、量子ドッ
ト構造中の、半導体微結晶の密度が低く、またその大き
さの均一性が悪いためである。本発明は、上記の問題点
を解決するため、半導体量子ドット構造における、その
微結晶の密度とその大きさの均一性を向上させ、十分な
素子特性を得るための半導体量子ドット構造の製造方法
を提供するものである。
This is because the density of the semiconductor crystallites in the quantum dot structure is low and the size uniformity is poor. The present invention, in order to solve the above problems, a method of manufacturing a semiconductor quantum dot structure for improving the density of the crystallites and the uniformity of the size thereof in the semiconductor quantum dot structure and obtaining sufficient device characteristics. Is provided.

【0004】[0004]

【課題を解決するための手段】前述の問題点を解決する
ために本発明が提供する製造方法は、大きさが電子のド
ブロイ波長程度の断面寸法を持つ半導体からなる半導体
微小結晶と、ポテンシャルエネルギーがこの半導体微結
晶のポテンシャルエネルギーよりも高くエネルギー障壁
として機能する半導体にて前記半導体微結晶を囲んだ0
次元量子井戸(量子ドット)を備える半導体素子の製造
において、結晶成長には有機金属化学気相成長法(MO
CVD法)を用い、微結晶の形成には、微結晶を形成す
る半導体結晶のバルク状態での格子定数と、この微結晶
の成長の際に下地となり、かつ微結晶形成後にこれを覆
うように成長されてエネルギー障壁を形成する半導体結
晶のバルク状態での格子定数が1%以上異なる材料を用
い、格子不整合系の3次元成長を利用し、、結晶材料半
導体微結晶の結晶成長の際の条件として、III族の原
料供給モル量に対するV族の原料供給モル量の比(V/
III比)の値を100乃至200の範囲で微結晶成長
させることを特徴とする半導体素子の製造法。
In order to solve the above-mentioned problems, a manufacturing method provided by the present invention is a semiconductor microcrystal made of a semiconductor having a cross-sectional size of about the de Broglie wavelength of an electron, and a potential energy. Is higher than the potential energy of this semiconductor microcrystal and functions as an energy barrier.
In manufacturing a semiconductor device having a three-dimensional quantum well (quantum dot), metal organic chemical vapor deposition (MO) is used for crystal growth.
The CVD method) is used to form a microcrystal so that the lattice constant of the semiconductor crystal forming the microcrystal in the bulk state and the base during the growth of the microcrystal and the covering after the formation of the microcrystal are covered. By using three-dimensional growth in a lattice-mismatched system by using a material having a lattice constant that differs by 1% or more in the bulk state of a semiconductor crystal that is grown to form an energy barrier, the crystal material As a condition, a ratio (V /
A method of manufacturing a semiconductor device, characterized in that fine crystals are grown in a value of (III ratio) in the range of 100 to 200.

【0005】なお、基板としてその面方位が(100)
から〈110〉方向に2°乃至8°オフさせたものを用
いたとき、この効果は顕著になる。また、前記方法を用
いて量子ドット構造を作製する場合、微結晶を形成する
半導体結晶としてAlGa1−xAs(0≦x≦1)
を、エネルギー障壁を形成する半導体結晶としてGaA
1−y(0.25≦y≦1)を利用することが好
ましい。
The plane orientation of the substrate is (100).
Therefore, this effect becomes remarkable when the one turned off by 2 ° to 8 ° in the <110> direction is used. In the case where a quantum dot structure is manufactured by using the above method, Al x Ga 1-x As (0 ≦ x ≦ 1) is used as a semiconductor crystal for forming microcrystals.
As GaA as a semiconductor crystal forming an energy barrier
It is preferable to use s 1-y P y (0.25 ≦ y ≦ 1).

【0006】[0006]

【作用】上述の製造方法を用いることによって、量子ド
ット構造において、従来に比較して大きな微結晶の密度
と大きさの均一性を得ることができる。また、これを利
用した半導体素子においては、従来に比較して、発光強
度・受光感度が大きい、発光半値幅・受光帯域が狭いな
ど、特性の向上を計ることができる。
By using the above-described manufacturing method, it is possible to obtain a larger density of crystallites and a greater uniformity of size in the quantum dot structure than in the conventional case. Further, in a semiconductor device using this, it is possible to improve the characteristics such as higher emission intensity / light receiving sensitivity, narrow emission half width / light receiving band, and the like, as compared with the conventional ones.

【0007】[0007]

【実施例】次に図面を参照して本発明の実施例について
説明する。まず、半導体微結晶形成時の、成長条件のひ
とつであるV/III比の影響を調査した。試料の作製
は以下の方法で実施した。基板には、表面が(100)
から〈110〉方向へのオフ角度が0°乃至10°の面
方位を有する複数のn型GaP半導体基板を用いた。エ
ピタキシャル成長は、有機金属化学気相成長法(MOC
VD法)により行なった。まず、有機溶剤による洗浄と
表面のエッチングを施した、前記基板をMOCVD装置
内にセットする。これを所定の温度まで昇温し、この基
板上にGaPバッファ層、GaAs0.500.50
ベース層を順次結晶成長させて形成し、次にGaAs微
結晶を形成した。このGaAs微結晶の結晶成長のと
き、成長条件のひとつであるV/III比が30、6
0、100、200、300、400と異なる試料を作
製した。なお、GaAs微結晶の成長温度は750℃で
ある。
Next, an embodiment of the present invention will be described with reference to the drawings. First, the influence of the V / III ratio, which is one of the growth conditions during the formation of semiconductor crystallites, was investigated. The sample was manufactured by the following method. The surface of the substrate is (100)
A plurality of n-type GaP semiconductor substrates each having a plane orientation with an off angle from the to <110> direction of 0 ° to 10 ° were used. Epitaxial growth is based on metal organic chemical vapor deposition (MOC).
VD method). First, the substrate, which has been subjected to cleaning with an organic solvent and surface etching, is set in a MOCVD apparatus. This is heated to a predetermined temperature, and a GaP buffer layer, GaAs 0.50 P 0.50 is formed on this substrate.
The base layer was sequentially formed by crystal growth, and then GaAs microcrystals were formed. During the crystal growth of the GaAs microcrystals, the V / III ratio, which is one of the growth conditions, is 30, 6
Samples different from 0, 100, 200, 300 and 400 were prepared. The growth temperature of the GaAs microcrystal is 750 ° C.

【0008】このGaAs微結晶の形成に用いた方法
は、格子不整合系のエピタキシャル成長で見られる、一
般にS−Kモード成長と呼ばれる3次元成長を利用した
ものである。この実施例の場合GaAs0.50
0.50下地結晶の、バルク状態での格子定数に対し
て、GaAsのような格子不整合率を有する、つまりバ
ルク状態での格子定数の異なる結晶をエピタキシャル成
長させようとすると、成長初期には結晶は3次元的な島
状の形状となることが知られている。このまま結晶成長
を続けると、これら島状の結晶が大きくなって合体し、
2次元的な膜へと形状が変わっていく。この成長初期の
3次元的な島状結晶の形状・断面寸法とそのばらつき、
および密度は、半導体結晶の物質、格子不整合率、下地
結晶の面方位などに依存することが知られている。本発
明によれば、これに加えて半導体微結晶の形成の際の成
長条件のひとつであるV/III比によってもこれらが
変化することが明らかとなった。
The method used for forming the GaAs microcrystals utilizes the three-dimensional growth generally referred to as SK mode growth, which is observed in the lattice-mismatched epitaxial growth. In this embodiment, GaAs 0.50 P
When a crystal having a lattice mismatching ratio such as GaAs with respect to the lattice constant of the 0.50 underlying crystal in the bulk state, that is, having a different lattice constant in the bulk state is epitaxially grown, the crystal is initially grown. Is known to have a three-dimensional island shape. If crystal growth continues as it is, these island crystals will grow and coalesce,
The shape changes to a two-dimensional film. The shape and cross-sectional dimensions of the three-dimensional island crystals at the beginning of this growth and their variations,
It is known that and the density depend on the material of the semiconductor crystal, the lattice mismatch rate, the plane orientation of the base crystal, and the like. According to the present invention, in addition to this, it has been clarified that these change depending on the V / III ratio, which is one of the growth conditions when forming semiconductor microcrystals.

【0009】まず、基板のオフ角度が2°より小さい場
合、島状結晶の形状がアメーバ状になるものが一部観察
された。また、基板のオフ角度が8°より大きい場合、
近接した島状結晶が結合しているのが一部観察された。
これらは量子箱として機能しない。よって、基板のオフ
角度は2°乃至8°が好適であると判明した。第1図
は、基板のオフ角度が2°の場合の、これら半導体微結
晶の、その密度と大きさのばらつき(標準偏差値)を比
較した表である。V/III比が100乃至200で最
もばらつきが小さく、かつ密度が高くなっている。量子
ドットは、キャリアを0次元に閉じ込めた量子井戸であ
り、量子ドット中のキャリアの状態密度関数はデルタ関
数的になる。従って、例えばこれを受光素子の受光層に
用いると、量子準位で決定されるエネルギーの光以外、
つまりそれより高いエネルギーの光も低いエネルギーの
光も理想的には吸収されないため、非常に狭い波長帯域
の受光素子が実現される。しかし、実際にこれまで作製
された素子では、量子ドットの形状、断面寸法などに大
きなばらつきが存在したため、狭い波長帯域を示さなか
った。
First, when the off-angle of the substrate was smaller than 2 °, it was observed that some of the island-shaped crystals had an amoeba shape. If the off angle of the substrate is larger than 8 °,
It was partially observed that adjacent island crystals were bonded.
These do not function as quantum boxes. Therefore, it was found that the off angle of the substrate is preferably 2 ° to 8 °. FIG. 1 is a table comparing variations in the density and size (standard deviation value) of these semiconductor microcrystals when the off-angle of the substrate is 2 °. When the V / III ratio is 100 to 200, the variation is smallest and the density is high. A quantum dot is a quantum well in which carriers are confined in zero dimensions, and the density of states function of carriers in the quantum dot becomes a delta function. Therefore, for example, when this is used for the light receiving layer of the light receiving element, other than light of energy determined by the quantum level,
That is, neither light of higher energy nor light of lower energy is ideally absorbed, so that a light receiving element having a very narrow wavelength band is realized. However, in the devices actually manufactured so far, there was a large variation in the shape of the quantum dots, the cross-sectional dimension, etc., and therefore, the narrow wavelength band was not exhibited.

【0010】本発明を用い、量子ドット構造を受光層と
して用いた受光素子を作製した。第2図はその構造を示
す断面図である。この受光素子は、n型GaP(10
0)2°オフ〈110〉基板10上にn型GaPからな
るバッファ層11、n型GaAs0.600.40
らなるベース層12(厚さ3μm)、i型GaAs
0.600.40エネルギー障壁層13およびGaA
s微結晶14からなる量子ドット構造受光層15(厚さ
0.2μm)、p型GaAs0.600.40からな
るエミッタ層16(厚さ0.4μm)、p型GaPから
なるウィンドウ層17(厚さ0.5μm)、およびp電
極18、n電極19を形成した構造となっている。第3
図は、上述の受光素子の吸収波長帯域を示したものであ
る。図中(a)は半導体微結晶の成長の際、V/III
比を通常よく使用される30としたものであり、(b)
はV/III比を150としたものである。(a)に比
較して本発明による(b)では波長帯域が狭く、感度も
大きい。なお、本実施例ではGaAsP系混晶半導体を
材料として選択したが、これに関わらず例えばlnGa
AsP系など他の半導体材料を用いても本発明は実現で
きる。また、上述の実施例では受光素子を作製したが、
本発明は発光素子などの他の半導体素子においても同様
の効果がある。
Using the present invention, a light receiving element using a quantum dot structure as a light receiving layer was produced. FIG. 2 is a sectional view showing the structure. This light receiving element is an n-type GaP (10
0) 2 ° off <110> On the substrate 10, a buffer layer 11 made of n-type GaP, a base layer 12 made of n-type GaAs 0.60 P 0.40 (thickness 3 μm), i-type GaAs
0.60 P 0.40 energy barrier layer 13 and GaA
Quantum dot structure light-receiving layer 15 (thickness 0.2 μm) made of s microcrystal 14, emitter layer 16 (thickness 0.4 μm) made of p-type GaAs 0.60 P 0.40 , window layer made of p-type GaP 17 (thickness: 0.5 μm), and the p electrode 18 and the n electrode 19 are formed. Third
The figure shows the absorption wavelength band of the above-mentioned light receiving element. In the figure, (a) shows V / III during the growth of semiconductor crystallites.
The ratio is 30 which is usually used, and (b)
Has a V / III ratio of 150. Compared to (a), (b) according to the present invention has a narrow wavelength band and high sensitivity. Although the GaAsP-based mixed crystal semiconductor was selected as the material in this embodiment, regardless of this, for example, lnGa
The present invention can be realized by using other semiconductor materials such as AsP. In addition, although the light receiving element is manufactured in the above-mentioned embodiment,
The present invention has the same effect in other semiconductor devices such as light emitting devices.

【0011】[0011]

【発明の効果】このように本発明によれば、良好な特性
を備えた量子ドット構造を用いた半導体素子を製造する
ことが可能である。
As described above, according to the present invention, it is possible to manufacture a semiconductor device using a quantum dot structure having good characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の効果を示す比較表FIG. 1 is a comparison table showing the effects of the present invention.

【図2】 本発明の実施例である受光素子の構造を示す
断面図
FIG. 2 is a sectional view showing a structure of a light receiving element that is an embodiment of the present invention.

【図3】 本発明の実施例である受光素子の吸収波長帯
域と感度を示すグラフ
FIG. 3 is a graph showing the absorption wavelength band and sensitivity of a light receiving element that is an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…半導体基板、11…バッファ層、12…n型Ga
As0.600.40ベース層、13…i型GaAs
0.600.40エネルギー障壁層、14…GaAs
量子ドット、16…p型GaAs0.600.40
ミッタ層、17p型GaPウィンドウ層、18…p電
極、19…n電極。
10 ... Semiconductor substrate, 11 ... Buffer layer, 12 ... N-type Ga
As 0.60 P 0.40 Base layer, 13 ... i-type GaAs
0.60 P 0.40 energy barrier layer, 14 ... GaAs
Quantum dots, 16 ... P-type GaAs 0.60 P 0.40 emitter layer, 17p-type GaP window layer, 18 ... P electrode, 19 ... N electrode.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 大きさが電子のドブロイ波長程度の断面
寸法を持つ半導体からなる半導体微小結晶と、ポテンシ
ャルエネルギーがこの半導体微結晶のポテンシャルエネ
ルギーよりも高くエネルギー障壁として機能する半導体
にて前記半導体微結晶を囲んだ0次元量子井戸を備える
半導体素子の製造において、結晶成長には有機金属化学
気相成長法により、微結晶の形成には、微結晶を形成す
る半導体結晶のバルク状態での格子定数と、エネルギー
障壁を形成する半導体結晶のバルク状態での格子定数が
1%以上異なる材料を用いて、かつIII族の原料供給
モル量に対するV族の原料供給モル量の比の値を100
乃至200の範囲で微結晶成長させることを特徴とする
半導体素子の製造法
1. A semiconductor microcrystal made of a semiconductor having a cross-sectional dimension about the de Broglie wavelength of an electron, and a semiconductor having a potential energy higher than that of the semiconductor microcrystal and functioning as an energy barrier. In the manufacture of a semiconductor device including a 0-dimensional quantum well that surrounds a crystal, the crystal growth is performed by a metal organic chemical vapor deposition method, and the microcrystal is formed by a lattice constant in a bulk state of the semiconductor crystal that forms the microcrystal. And a material having a lattice constant different by 1% or more in the bulk state of the semiconductor crystal forming the energy barrier, and the ratio of the group V source material supply mole amount to the group III source material supply mole amount is 100.
To 200 in the range of 200 to 200,
【請求項2】 前記半導体素子の基板として、その面方
位が(100)から〈110〉方向に2°乃至8°オフ
させたものを用いた請求項1の受光素子。
2. The light receiving element according to claim 1, wherein the substrate of the semiconductor element is a substrate whose plane orientation is off by 2 ° to 8 ° in the <110> direction from (100).
【請求項3】 前記量子ドット構造の半導体結晶材料に
は、微結晶を形成する半導体結晶としてAlGa
1−xAs(0≦x≦1)を、微結晶を囲みエネルギー
障壁を形成する半導体結晶としてGaAs1−y
(0.25≦y≦1)を用いた請求項1および2の受
光素子。
3. The semiconductor crystal material of the quantum dot structure comprises Al x Ga as a semiconductor crystal forming microcrystals.
1-x As (0 ≦ x ≦ 1) is used as a semiconductor crystal that surrounds the microcrystal and forms an energy barrier, and is GaAs 1-y P.
The light-receiving element according to claim 1, wherein y (0.25 ≦ y ≦ 1) is used.
JP20265795A 1995-07-06 1995-07-06 Manufacture of semiconductor element Pending JPH0923025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20265795A JPH0923025A (en) 1995-07-06 1995-07-06 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20265795A JPH0923025A (en) 1995-07-06 1995-07-06 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPH0923025A true JPH0923025A (en) 1997-01-21

Family

ID=16460986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20265795A Pending JPH0923025A (en) 1995-07-06 1995-07-06 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPH0923025A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014143224A (en) * 2013-01-22 2014-08-07 National Institute Of Information & Communication Technology Quantum-dot high-speed photodiode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014143224A (en) * 2013-01-22 2014-08-07 National Institute Of Information & Communication Technology Quantum-dot high-speed photodiode

Similar Documents

Publication Publication Date Title
US4928154A (en) Epitaxial gallium arsenide semiconductor on silicon substrate with gallium phosphide and superlattice intermediate layers
US6235547B1 (en) Semiconductor device and method of fabricating the same
JPH02285631A (en) Method of oriented change of semiconductor composition or doping for making planar type monolithic electronic componet and its corresponding products
JPH06140346A (en) Manufacture of heteroepitaxial thin layer and of electronic device
CA1296816C (en) Process for producing a semiconductor article
US7588954B2 (en) InGaAs/GaAs lasers on silicon produced by LEPECVD and MOCVD
JPH02266514A (en) Semiconductor device in hetero structure and its manufacture
US5955742A (en) Semiconductor device formed on a substrate having an off-angle surface and a fabrication process thereof
JPH05315647A (en) Nitride semiconductor device and its manufacture
CN110993737B (en) AlGaN-based homogeneous integrated optoelectronic chip and preparation method thereof
JPH0923025A (en) Manufacture of semiconductor element
JPS6258690A (en) Light emitting element of gallium arsenide semiconductor
CA1333248C (en) Method of forming crystals
US5254211A (en) Method for forming crystals
JPH0992879A (en) Semiconductor device manufacturing method
JP3122526B2 (en) Group III-V compound semiconductor vapor deposition method and semiconductor device
JPH09148624A (en) Manufacture of semiconductor element
JP3057503B2 (en) Compound semiconductor growth method
JPH02306668A (en) Semiconductor device with quantum fine wire and manufacture thereof
JP2002324765A (en) Iron silicide film forming method, semiconductor wafer and optical semiconductor device
JP3367546B2 (en) Manufacturing method of resonant tunnel structure
JP3114827B2 (en) Field effect transistor and method of manufacturing the same
JPH0524113B2 (en)
JPH0513447A (en) Field-effect transistor and manufacture thereof
JPH01161822A (en) Element and manufacture thereof