JPH0914767A - Refrigerating machine - Google Patents

Refrigerating machine

Info

Publication number
JPH0914767A
JPH0914767A JP16183195A JP16183195A JPH0914767A JP H0914767 A JPH0914767 A JP H0914767A JP 16183195 A JP16183195 A JP 16183195A JP 16183195 A JP16183195 A JP 16183195A JP H0914767 A JPH0914767 A JP H0914767A
Authority
JP
Japan
Prior art keywords
compressor
temperature
refrigerant
oil
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16183195A
Other languages
Japanese (ja)
Other versions
JP3635720B2 (en
Inventor
Koichi Kita
宏一 北
Ryuzaburo Yajima
龍三郎 矢嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP16183195A priority Critical patent/JP3635720B2/en
Publication of JPH0914767A publication Critical patent/JPH0914767A/en
Application granted granted Critical
Publication of JP3635720B2 publication Critical patent/JP3635720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To achieve a two-layer separation avoidance operation alarming against insufficiency of lubrication by a method wherein the temperature of oil is compared with a saturation temperature of a refrigerant and the refrigerant and lubricating oil are determined to separate in two layers within a compressor when a difference of the oil temperature is below zero from the saturation temperature. CONSTITUTION: A comparing section 35 compares a signal indicating the temperature of oil from an oil temperature correction calculating section 33 connected to a discharge pipe temperature sensor 31 with a signal indicating a saturation temperature from a saturation temperature calculating section 34 to which the signal is outputted from an input value selecting part 32 after the signal indicating a suction pressure both during the cooling and heating operations is selected by the input value selecting part connected to a suction pressure sensor 27. As a result of the comparison, when a difference between the oil temperature and the saturation temperature is below zero, the refrigerant and lubricating oil are determined by a two-layer separation judging section 37 to separate in two layers in a compressor 25. Thus, an alarming is generated against the insufficiency of lubrication of the compressor 25 and a two- layer separation avoidance operation is performed thereby enabling preventing of wearing and burning of a sliding part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、冷媒よりも比重が小
さく、かつ、冷媒との相溶性が無い油を圧縮機の潤滑油
として用いている冷凍機に関し、詳しくは、圧縮機内で
冷媒と潤滑油とが二層に分離したことを検出することが
できる冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator that uses oil having a specific gravity smaller than that of a refrigerant and incompatibility with the refrigerant as a lubricating oil of a compressor. The present invention relates to a refrigerator that can detect that lubricating oil and two layers have separated.

【0002】[0002]

【従来の技術】従来、冷媒に対して相溶性の無い油を冷
凍機に使用する場合、図7(A)に黒い点で示したよう
に、油中に所定の冷媒分率以上の冷媒が溶解すると、油
と冷媒とが二層に別れる二層分離が発生する。そして、
このとき、(冷媒の比重)>(油の比重)であるなら
ば、下層は油濃度がきわめて低い冷媒リッチ層になる。
2. Description of the Related Art Conventionally, when an oil that is incompatible with a refrigerant is used in a refrigerator, as shown by a black dot in FIG. When dissolved, a two-layer separation occurs where the oil and refrigerant split into two layers. And
At this time, if (specific gravity of refrigerant)> (specific gravity of oil), the lower layer becomes a refrigerant rich layer having an extremely low oil concentration.

【0003】二層分離が発生する運転モードとしては、
起動(寝込み起動)や発停やデフロスなどと言った過渡的
に液バックが生じるモードがある。そして、冷凍機の圧
縮機の油溜まり部で二層分離が生じると、条件によって
は図7(B)に示すように、二層分離面Dが給油口Sを越
える。すると、給油口Sからは油が吸い込まれずに、下
層の液冷媒リッチ層Rの冷媒が給油口Sから吸い込まれ
て圧縮機Cの摺動部に供給される。すると、圧縮機Cの
潤滑不良が発生して、摺動部摩擦や焼付が生じる問題が
ある。
As an operation mode in which the two-layer separation occurs,
There are modes in which liquid back occurs transiently, such as startup (sleep activation), start / stop, and defrost. When the two-layer separation occurs in the oil sump of the compressor of the refrigerator, the two-layer separation surface D crosses the oil supply port S depending on the conditions, as shown in FIG. 7 (B). Then, the oil in the lower liquid refrigerant rich layer R is sucked in through the oil supply port S and is supplied to the sliding portion of the compressor C without oil being sucked in through the oil supply port S. Then, there is a problem that the lubrication failure of the compressor C occurs, causing friction and seizure of the sliding portion.

【0004】[0004]

【発明が解決しようとする課題】そこで、この発明の目
的は、冷媒と潤滑油とが圧縮機内で二層分離したことを
検出できる冷凍機を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a refrigerator capable of detecting that the refrigerant and the lubricating oil are separated into two layers in the compressor.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明は、冷媒よりも比重が小さく、か
つ、上記冷媒との相溶性が実質的に無い油を圧縮機5,
25の潤滑油として用いている冷凍機において、上記圧
縮機5,25内の油の温度を検出する油温検出手段15,
16,31,33と、上記圧縮機5,25内の圧力によっ
て定まる上記冷媒の飽和温度を検出する冷媒飽和温度検
出手段7,8,10,11,27,30,32,34と、上記
油温検出手段15,16,31,33が検出した油温と、
上記冷媒飽和温度検出手段7,8,10,11,27,30,
32,34が検出した上記冷媒の飽和温度とを比較し
て、上記油温と上記飽和温度との差α=(上記油温−上
記飽和温度)が零以下(α≦0)になったときに、上記冷
媒と上記潤滑油とが上記圧縮機5,25内で二層に分離
していると判断する二層分離判定手段12,18,35,
37とを備えていることを特徴としている。
In order to achieve the above-mentioned object, the invention of claim 1 uses an oil having a specific gravity smaller than that of a refrigerant and substantially incompatible with the refrigerant, in a compressor 5,
In the refrigerator used as the lubricating oil of No. 25, oil temperature detecting means 15, for detecting the temperature of the oil in the compressors 5, 25,
16, 31, 33, refrigerant saturation temperature detecting means 7, 8, 10, 11, 27, 30, 32, 34 for detecting the saturation temperature of the refrigerant determined by the pressure in the compressors 5, 25, and the oil. The oil temperature detected by the temperature detecting means 15, 16, 31, 33,
The refrigerant saturation temperature detecting means 7, 8, 10, 11, 27, 30,
When the saturation temperature of the refrigerant detected by 32 and 34 is compared and the difference α between the oil temperature and the saturation temperature α = (the oil temperature−the saturation temperature) becomes zero or less (α ≦ 0). In addition, two-layer separation determination means 12, 18, 35, for determining that the refrigerant and the lubricating oil are separated into two layers in the compressors 5, 25.
And 37 are provided.

【0006】また、請求項2の発明は、請求項1に記載
の冷凍機において、上記二層分離判定手段12,18,3
5,37は、上記圧縮機5,25の運転周波数が所定値で
あるときに、上記差αが零以下(α≦0)になったとき
に、上記冷媒と上記潤滑油とが上記圧縮機5,25内で
二層に分離していると判断し、上記圧縮機5,25の運
転周波数が上記所定値よりも大きくなったときに、この
大きくなった分だけ上記差αを増大させた値αaが、零
以下(α≦0)になったときに、上記冷媒と上記潤滑油と
が上記圧縮機5,25内で二層に分離していると判断
し、上記圧縮機5,25の運転周波数が上記所定値より
も小さくなったときに、この小さくなった分だけ上記差
αを減少させた値αaが、零以下(α≦0)になったとき
に、上記冷媒と上記潤滑油とが上記圧縮機5,25内で
二層に分離していると判断することを特徴としている。
According to a second aspect of the present invention, in the refrigerator according to the first aspect, the two-layer separation determination means 12, 18, 3 are provided.
5, 37, when the operating frequency of the compressors 5 and 25 is a predetermined value and the difference α is less than or equal to zero (α ≦ 0), the refrigerant and the lubricating oil are the compressors. When it is judged that the compressor 5 and 25 are separated into two layers and the operating frequency of the compressors 5 and 25 becomes higher than the predetermined value, the difference α is increased by the increased amount. When the value αa becomes less than or equal to zero (α ≦ 0), it is determined that the refrigerant and the lubricating oil are separated into two layers in the compressors 5,25, and the compressors 5,25 When the operating frequency becomes less than the predetermined value, when the value αa obtained by reducing the difference α by the smaller amount becomes zero or less (α ≦ 0), the refrigerant and the lubrication are It is characterized in that it is judged that oil and oil are separated into two layers in the compressors 5 and 25.

【0007】また、請求項3の発明は、冷媒よりも比重
が小さく、かつ、上記冷媒との相溶性が実質的に無い非
相溶油を圧縮機の潤滑油として用いている冷凍機におい
て、外気温度を検出する外気温度センサ57と、圧縮機
55がオン状態からオフ状態になる発停回数をカウント
する発停回路58と、上記外気温度センサ57からの外
気温度を表す信号Soutと、上記発停回路58からの発
停回数を表す信号Snとが入力され、圧縮機55の発停
の回数が、外気温度によって決まっている所定の判定回
数に達したときに、上記圧縮機内の冷媒と潤滑油とが二
層に分離していて、この分離面が圧縮機内の給油口を越
える直前であると判断する二層分離判定手段60を備え
ていることを特徴としている。
Further, the invention of claim 3 is a refrigerator using a non-compatible oil having a specific gravity smaller than that of the refrigerant and substantially incompatible with the refrigerant as a lubricating oil of the compressor, An outside air temperature sensor 57 that detects the outside air temperature, a start / stop circuit 58 that counts the number of times of starting and stopping the compressor 55 from an on state to an off state, a signal Sout indicating the outside air temperature from the outside air temperature sensor 57, and the above A signal Sn representing the number of times of starting and stopping from the starting and stopping circuit 58 is input, and when the number of times of starting and stopping of the compressor 55 reaches a predetermined number of times of determination determined by the outside air temperature, the refrigerant in the compressor The lubricating oil is separated into two layers, and a two-layer separation determination means 60 for determining that this separation surface is just before passing the oil supply port in the compressor is provided.

【0008】[0008]

【作用】図8に示すように、圧縮機内の所定の圧力下に
おいて、冷媒と油との溶解域では油温(より正確には油
と冷媒との混合液の温度)は、冷媒の飽和温度よりも高
い。一方、冷媒と油との二層分離域では油温は、冷媒の
飽和温度にほぼ等しくなる。請求項1の発明は、この図
8に示した性質を応用したものである。
As shown in FIG. 8, under a predetermined pressure in the compressor, the oil temperature (more accurately, the temperature of the mixed liquid of the oil and the refrigerant) is the saturation temperature of the refrigerant in the melting region of the refrigerant and the oil. Higher than. On the other hand, in the two-layer separation region of the refrigerant and the oil, the oil temperature becomes almost equal to the saturation temperature of the refrigerant. The invention of claim 1 is an application of the property shown in FIG.

【0009】すなわち、請求項1の発明の冷凍機は、二
層分離判定手段12,18,35,37が、油温検出手段
15,16,31,33が検出した油温と、上記冷媒飽和
温度検出手段7,8,10,11,27,30,32,34が
検出した冷媒の飽和温度とを比較する。そして、上記判
定手段12,18,35,37は、上記油温と上記飽和温
度との差α=(上記油温−上記飽和温度)が零以下(α≦
0)になったときに、上記冷媒と上記潤滑油とが上記圧
縮機5,25内で二層に分離していると判断する。
That is, in the refrigerator according to the first aspect of the invention, the two-layer separation determining means 12, 18, 35, 37 detects the oil temperature detected by the oil temperature detecting means 15, 16, 31, 33, and the refrigerant saturation. The saturation temperature of the refrigerant detected by the temperature detecting means 7, 8, 10, 11, 27, 30, 32, 34 is compared. The determination means 12, 18, 35, 37 determines that the difference α between the oil temperature and the saturation temperature α = (the oil temperature−the saturation temperature) is less than or equal to zero (α ≦
When it becomes 0), it is judged that the refrigerant and the lubricating oil are separated into two layers in the compressors 5 and 25.

【0010】したがって、上記判定手段12,18,3
5,37が上記二層分離していると判断したときに圧縮
機5,25の潤滑不足を警報して、二層分離回避運転を
行うようにすれば、摺動部の摩耗や焼き付きを未然に防
止することができる。
Therefore, the judging means 12, 18, 3
If it is determined that the 5 and 37 are separated into the two layers, the insufficient lubrication of the compressors 5 and 25 is warned, and the two-layer separation avoidance operation is performed. Can be prevented.

【0011】また、請求項2の発明の冷凍機では、上記
二層分離判定手段12,18,35,37は、上記圧縮機
5,25の運転周波数が所定値であるときに、上記差α
が零以下(α≦0)になったときに、上記冷媒と上記潤滑
油とが上記圧縮機5,25内で二層に分離していると判
断する。また、上記判定手段12,18,35,37は、
上記圧縮機5,25の運転周波数が上記所定値よりも大
きくなったときに、この大きくなった分だけ上記差αを
増大させた値αaが、零以下(α≦0)になったときに、
上記冷媒と上記潤滑油とが上記圧縮機5,25内で二層
に分離していると判断する。また、上記判定手段12,
18,35,37は、上記圧縮機5,25の運転周波数が
上記所定値よりも小さくなったときに、この小さくなっ
た分だけ上記差αを減少させた値αaが、零以下(α≦
0)になったときに、上記冷媒と上記潤滑油とが上記圧
縮機5,25内で二層に分離していると判断する。
Further, in the refrigerator of the second aspect of the present invention, the two-layer separation determination means 12, 18, 35, 37 are arranged so that when the operating frequency of the compressors 5, 25 is a predetermined value, the difference α
Is less than or equal to zero (α ≦ 0), it is determined that the refrigerant and the lubricating oil are separated into two layers in the compressors 5 and 25. Further, the judging means 12, 18, 35, 37 are
When the operating frequency of the compressors 5, 25 becomes larger than the predetermined value and the value αa obtained by increasing the difference α by the larger amount becomes zero or less (α ≦ 0). ,
It is determined that the refrigerant and the lubricating oil are separated into two layers in the compressors 5 and 25. In addition, the determination means 12,
18, 35, 37, when the operating frequency of the compressor 5, 25 becomes smaller than the predetermined value, the value αa obtained by reducing the difference α by the smaller amount is not more than zero (α ≦
When it becomes 0), it is judged that the refrigerant and the lubricating oil are separated into two layers in the compressors 5 and 25.

【0012】圧縮機5,25の運転周波数が増加したと
きには、差αが同じ値であっても二層分離し難くなる一
方、圧縮機5,25の運転周波数が減少したときには、
差αが同じ値であっても二層分離し易くなる。したがっ
て、請求項2の発明のように、圧縮機5,25の運転周
波数が所定の値に対して増減したときに、判定手段1
2,18,35,37が判定基準値である値αを増減させ
ることによって、圧縮機5,25内の二層分離判断をよ
り正確に行うことができる。
When the operating frequencies of the compressors 5 and 25 increase, it becomes difficult to separate the two layers even if the difference α has the same value. On the other hand, when the operating frequencies of the compressors 5 and 25 decrease,
Even if the difference α has the same value, the two layers are easily separated. Therefore, when the operating frequencies of the compressors 5 and 25 increase or decrease with respect to a predetermined value, the determining means 1
By increasing or decreasing the value α, which is the reference value of 2, 18, 35, and 37, the two-layer separation determination in the compressors 5 and 25 can be performed more accurately.

【0013】ところで、起動時に圧縮機がオンとオフと
を繰り返して発停を行っているときに、オンのたびに冷
媒液が圧縮機に戻ってきて、圧縮機に冷媒が溜まって行
く。そして、圧縮機に溜まった冷媒が所定量に達すると
冷媒と油とが二層に分離する二層分離が発生する。請求
項3の発明は、この発停回数と二層分離発生との相関関
係を利用して二層分離を検出するものである。
By the way, when the compressor is repeatedly turned on and off at start-up and starts, the refrigerant liquid returns to the compressor every time it is turned on, and the refrigerant accumulates in the compressor. Then, when the refrigerant accumulated in the compressor reaches a predetermined amount, two-layer separation occurs in which the refrigerant and the oil are separated into two layers. According to the third aspect of the invention, the two-layer separation is detected by utilizing the correlation between the number of times of starting and stopping and the occurrence of the two-layer separation.

【0014】即ち、請求項3の発明は、二層分離判定手
段60は、圧縮機55がオン状態からオフ状態になる発
停の回数が、外気温度によって決まっている所定の判定
回数に達したときに、上記圧縮機55内の冷媒と潤滑油
とが二層に分離していて、この分離面が圧縮機55内の
給油口を越える直前であると判断する。
That is, according to the third aspect of the invention, in the two-layer separation determination means 60, the number of times of starting and stopping the compressor 55 from the ON state to the OFF state has reached a predetermined determination number determined by the outside air temperature. At this time, it is judged that the refrigerant and the lubricating oil in the compressor 55 are separated into two layers, and this separation surface is just before passing the oil supply port in the compressor 55.

【0015】したがって、上記判定手段60が上記二層
分離面が給油口を越える直前であると判断したときに、
潤滑不足の警報を発し、二層分離回避運転を行うように
すれば、摺動部の摩耗や焼き付きを未然に防止すること
ができる。
Therefore, when the judging means 60 judges that the two-layer separation surface is just before passing over the filler port,
By issuing an alarm of insufficient lubrication and performing a two-layer separation avoidance operation, it is possible to prevent wear and seizure of the sliding portion.

【0016】[0016]

【実施例】以下、この発明を図示の実施例により詳細に
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

【0017】〔第1実施例〕図1に、この発明の第1実
施例としての空気調和機の構成を示す。この空気調和機
は、それぞれ冷媒管路で接続されている室内熱交換器1
と室外熱交換器2と絞り膨張部3と四路切替弁4と圧縮
機5とアキュムレータ6とを備えている。この空気調和
機は、この空気調和機で使用している冷媒よりも比重が
小さくて、かつ、上記冷媒との相溶性が無い油を潤滑油
として使用している。
[First Embodiment] FIG. 1 shows the configuration of an air conditioner according to a first embodiment of the present invention. This air conditioner has an indoor heat exchanger 1 which is connected by a refrigerant line.
An outdoor heat exchanger 2, a throttle expansion part 3, a four-way switching valve 4, a compressor 5, and an accumulator 6 are provided. This air conditioner uses oil having a specific gravity smaller than that of the refrigerant used in the air conditioner and having no compatibility with the refrigerant as a lubricating oil.

【0018】上記室内熱交換器1には第1の温度センサ
7が取り付けられている。また、上記室外熱交換器2に
は第2の温度センサ8が取り付けられている。この第
1,第2の温度センサ7,8が入力値選択部10に接続さ
れている。そして、この入力値選択部10は配管圧損補
正計算部11に接続されている。また、この計算部11
は、比較部12に接続されている。
A first temperature sensor 7 is attached to the indoor heat exchanger 1. A second temperature sensor 8 is attached to the outdoor heat exchanger 2. The first and second temperature sensors 7 and 8 are connected to the input value selection unit 10. The input value selection unit 10 is connected to the pipe pressure loss correction calculation unit 11. Also, this calculation unit 11
Are connected to the comparison unit 12.

【0019】一方、上記圧縮機5からの吐出配管13に
は第3の温度センサ15が接続されており、この第3の
温度センサ15は油温補正計算部16に接続されてい
る。そして、この計算部16は上記比較部12に接続さ
れている。
On the other hand, a third temperature sensor 15 is connected to the discharge pipe 13 from the compressor 5, and the third temperature sensor 15 is connected to an oil temperature correction calculation section 16. The calculation unit 16 is connected to the comparison unit 12.

【0020】比較部12は、周波数補正部17に接続さ
れており、周波数補正部17は二層分離判定部18に接
続されている。
The comparison unit 12 is connected to the frequency correction unit 17, and the frequency correction unit 17 is connected to the two-layer separation determination unit 18.

【0021】上記構成の空気調和機が、上記第1,第2,
第3の温度センサ7,8,15が検出した温度に基づい
て、圧縮機5内での冷媒と潤滑油との二層分離を判定す
る動作を説明する。
The air conditioner having the above-mentioned structure is provided with the above-mentioned first, second, and
The operation of determining the two-layer separation of the refrigerant and the lubricating oil in the compressor 5 based on the temperatures detected by the third temperature sensors 7, 8, 15 will be described.

【0022】まず、入力値選択部10は、第1の温度セ
ンサ7から室内熱交換器1の温度T1を表す信号S1を
受け、第2の温度センサ8から室外熱交換器2の温度T
2を表す信号S2を受ける。そして、この入力値選択部
10は、図1下に示すように、圧縮機5が高圧ドーム型
である場合には、冷房時に室外熱交換器2の温度T2を
表す信号S2を選択して出力する一方暖房時に室内熱交
換器1の温度T1を表す信号S1を選択して出力する。
また、選択部10は、圧縮機5が低圧ドーム型である場
合には、冷房時に室内熱交換器1の温度T1を表す信号
S1を選択して出力する一方暖房時には室外熱交換器2
の温度T2を表す信号S2を選択して出力する。
First, the input value selection unit 10 receives the signal S1 representing the temperature T1 of the indoor heat exchanger 1 from the first temperature sensor 7, and receives the temperature T of the outdoor heat exchanger 2 from the second temperature sensor 8.
A signal S2 representing 2 is received. Then, as shown in the lower part of FIG. 1, when the compressor 5 is a high-pressure dome type, the input value selection unit 10 selects and outputs the signal S2 representing the temperature T2 of the outdoor heat exchanger 2 during cooling. On the other hand, during heating, the signal S1 representing the temperature T1 of the indoor heat exchanger 1 is selected and output.
Further, when the compressor 5 is a low-pressure dome type, the selection unit 10 selects and outputs the signal S1 indicating the temperature T1 of the indoor heat exchanger 1 during cooling, while the outdoor heat exchanger 2 during heating.
The signal S2 representing the temperature T2 of is selected and output.

【0023】そして、上記圧縮機5が高圧ドーム型であ
る場合であって、かつ、冷房時には、配管圧損補正計算
部11は、室外熱交換器2の温度(凝縮温度)T2に、吐
出配管13から室外熱交換器2(凝縮器)までの圧損を温
度に換算した圧損換算温度ΔTpcを加算して、加算値
(T2+ΔTpc)を計算する。そして、この加算値(T2
+ΔTpc)を圧縮機5のドーム内圧力Pcに換算し、この
換算したドーム内圧力Pcから上記ドーム内の冷媒の飽
和温度Tsを算出する。
When the compressor 5 is of the high-pressure dome type, and during cooling, the pipe pressure loss correction calculation unit 11 sets the temperature (condensation temperature) T2 of the outdoor heat exchanger 2 to the discharge pipe 13 To the outdoor heat exchanger 2 (condenser) is added to the pressure loss conversion temperature ΔTpc
Calculate (T2 + ΔTpc). Then, this added value (T2
+ ΔTpc) is converted into the dome internal pressure Pc of the compressor 5, and the saturated temperature Ts of the refrigerant in the dome is calculated from the converted dome internal pressure Pc.

【0024】また、上記圧縮機5が高圧ドーム型であっ
て、かつ、暖房時には、配管圧損補正計算部11は、室
内熱交換器1の温度(凝縮温度)T1に、吐出配管13か
ら室内熱交換器1(凝縮器)までの圧損を温度に換算した
圧損換算温度ΔTphを加算して、加算値(T1+ΔTph)
を計算する。そして、この加算値(T2+ΔTph)を圧縮
機5のドーム内圧力Phに換算し、この換算したドーム
内圧力Phから上記ドーム内の冷媒の飽和温度Tsを算
出する。
When the compressor 5 is a high-pressure dome type, and during heating, the pipe pressure loss correction calculation unit 11 sets the temperature (condensation temperature) T1 of the indoor heat exchanger 1 to the indoor heat from the discharge pipe 13. The pressure loss conversion temperature ΔTph obtained by converting the pressure loss up to the exchanger 1 (condenser) into temperature is added, and the added value (T1 + ΔTph)
Is calculated. Then, the added value (T2 + ΔTph) is converted into the dome internal pressure Ph of the compressor 5, and the saturated temperature Ts of the refrigerant in the dome is calculated from the converted dome internal pressure Ph.

【0025】また、上記圧縮機5が低圧ドーム型である
場合であって、かつ、冷房時には、配管圧損補正計算部
11は、室内熱交換器1から吸入配管までの圧損を温度
に換算した圧損換算温度ΔTpcを、室内熱交換器1の温
度(蒸発温度)T1から減算して、減算値(T1−ΔTpc)
を計算する。そして、この減算値(T1−ΔTpc)を圧縮機
5のドーム内圧力Pcに換算し、この換算したドーム内
圧力Pcから上記ドーム内の冷媒の飽和温度Tsを算出
する。
Further, when the compressor 5 is a low pressure dome type, and during cooling, the pipe pressure loss correction calculation unit 11 converts the pressure loss from the indoor heat exchanger 1 into the suction pipe into a temperature loss. The converted temperature ΔTpc is subtracted from the temperature (evaporation temperature) T1 of the indoor heat exchanger 1 to obtain a subtracted value (T1-ΔTpc)
Is calculated. Then, the subtracted value (T1−ΔTpc) is converted into the dome internal pressure Pc of the compressor 5, and the saturated temperature Ts of the refrigerant in the dome is calculated from the converted dome internal pressure Pc.

【0026】また、上記圧縮機5が低圧ドーム型である
場合であって、かつ、暖房時には、配管圧損補正計算部
11は、室外熱交換器1から吸入配管までの圧損を温度
に換算した圧損換算温度ΔTphを、室外熱交換器2の温
度(蒸発温度)T2から減算して、減算値(T2−ΔTph)
を計算する。そして、この減算値(T2−ΔTph)を圧縮
機5のドーム内圧力Phに換算し、この換算したドーム
内圧力Phから上記ドーム内の冷媒の飽和温度Tsを算
出する。
Further, when the compressor 5 is of the low-pressure dome type and at the time of heating, the pipe pressure loss correction calculation unit 11 converts the pressure loss from the outdoor heat exchanger 1 to the suction pipe into a pressure loss. The converted temperature ΔTph is subtracted from the temperature (evaporation temperature) T2 of the outdoor heat exchanger 2 to obtain a subtracted value (T2-ΔTph)
Is calculated. Then, the subtracted value (T2-ΔTph) is converted into the dome internal pressure Ph of the compressor 5, and the saturated temperature Ts of the refrigerant in the dome is calculated from the converted dome internal pressure Ph.

【0027】一方、上記油温補正計算部16は、吐出管
温度センサ15が出力した信号S3を受けて、この信号
S3が表す吐出管の温度T3を補正して、圧縮機5内の
油の温度Toを計算する。
On the other hand, the oil temperature correction calculation unit 16 receives the signal S3 output from the discharge pipe temperature sensor 15, corrects the discharge pipe temperature T3 represented by the signal S3, and determines the oil in the compressor 5 Calculate the temperature To.

【0028】次に、比較部12は、上記配管圧損補正計
算部11から飽和温度Tsを表す信号を受け、かつ、上
記油温補正計算部16から上記油の温度Toを表す信号
を受ける。すると、比較部12は、上記飽和温度Tsと
上記油の温度Toとを比較して、油の温度Toから飽和
温度Tsを差し引いて、差α=(油温To)−(飽和温
度Ts)を算出する。
Next, the comparison unit 12 receives a signal indicating the saturation temperature Ts from the pipe pressure loss correction calculation unit 11 and a signal indicating the oil temperature To from the oil temperature correction calculation unit 16. Then, the comparison unit 12 compares the saturation temperature Ts with the oil temperature To and subtracts the saturation temperature Ts from the oil temperature To to obtain a difference α = (oil temperature To) − (saturation temperature Ts). calculate.

【0029】次に、周波数補正部17は、上記圧縮機5
の駆動周波数を表す信号を受けて、この駆動周波数に応
じて、上記差αに補正値Δを加算して、補正した差αa
=(α+Δ)を算出する。この補正値Δと上記駆動周波
数との関係は正比例であり、図4(B)に示すように、上
記駆動周波数が60Hzであるときに0℃である。この
ような、周波数補正を行う理由は、駆動周波数が所定周
波数(60Hz)よりも低いと圧縮機5のボトムまで撹拌
効果が得られず発熱量も小さいので、(油温To)−(飽
和温度Ts)=αが0以上であってもボトムでは二層分
離していることがあり、逆に周波数が所定周波数よりも
高いと撹拌効果が大きいから、α≦0であっても溶解域
となる可能性があるからである。この周波数補正によっ
て、二層分離の有無をより正確に把握することができ
る。ここまでの信号処理過程を図4(A)に簡略化して
示す。
Next, the frequency correction unit 17 is operated by the compressor 5
Receiving a signal representing the driving frequency of the signal, and adding the correction value Δ to the difference α in accordance with the driving frequency to obtain the corrected difference αa.
= (Α + Δ) is calculated. The relationship between the correction value Δ and the driving frequency is directly proportional, and is 0 ° C. when the driving frequency is 60 Hz, as shown in FIG. 4 (B). The reason for performing such frequency correction is that if the drive frequency is lower than the predetermined frequency (60 Hz), the stirring effect cannot be obtained up to the bottom of the compressor 5 and the amount of heat generation is small, so (oil temperature To)-(saturation temperature Even if Ts) = α is 0 or more, two layers may be separated at the bottom, and conversely, if the frequency is higher than a predetermined frequency, the stirring effect is large. Because there is a possibility. By this frequency correction, the presence or absence of the two-layer separation can be grasped more accurately. The signal processing process up to this point is simplified and shown in FIG.

【0030】次に、二層分離判定部18は、周波数補正
部17から上記補正差αaを表す信号を受けて、この補
正差αaが零以下(αa≦0)になったときに、上記冷媒と
上記潤滑油とが上記圧縮機5内で二層に分離していると
判断して、二層分離していることを表す信号を出力す
る。一方、上記二層分離判定部18は、上記補正値αa
が零を越えている(αa>0)ときには、上記冷媒と潤滑
油とが圧縮機5内で二層分離していないと判断して、二
層分離していないことを表す信号を出力する。
Next, the two-layer separation determination section 18 receives the signal indicating the correction difference αa from the frequency correction section 17, and when the correction difference αa becomes less than or equal to zero (αa ≦ 0), the refrigerant is determined. It is determined that the lubricating oil and the lubricating oil are separated into two layers in the compressor 5, and a signal indicating that the two layers are separated is output. On the other hand, the two-layer separation determination unit 18 determines the correction value αa.
Is greater than zero (αa> 0), it is determined that the refrigerant and the lubricating oil are not separated into two layers in the compressor 5, and a signal indicating that they are not separated into two layers is output.

【0031】この二層分離判定部18が、二層分離して
いることを表す信号を出力したときに、圧縮機5の潤滑
不足警報を発して二層分離回避運転を行うようにすれ
ば、二層分離に起因する圧縮機の摺動部の摩擦や焼付を
未然に防止することができる。
If the two-layer separation determination section 18 outputs a signal indicating that two layers are separated, a warning of insufficient lubrication of the compressor 5 is issued to perform the two-layer separation avoidance operation. It is possible to prevent friction and seizure of the sliding portion of the compressor due to the separation of the two layers.

【0032】〔第2実施例〕つぎに、図2に第2実施例
としての空気調和機の構成を示す。この第2実施例は、
それぞれ冷媒管路で接続されている室内熱交換器21と
室外熱交換器22と絞り膨張部23と四路切替弁24と
圧縮機25とアキュムレータ26とを備えている。この
空気調和機は、この空気調和機で使用している冷媒より
も比重が小さくて、しかも上記冷媒との相溶性が無い油
を潤滑油として使用している。
Second Embodiment Next, FIG. 2 shows the configuration of an air conditioner as a second embodiment. In this second embodiment,
An indoor heat exchanger 21, an outdoor heat exchanger 22, a throttle expansion unit 23, a four-way switching valve 24, a compressor 25, and an accumulator 26, which are connected by a refrigerant pipe, respectively. This air conditioner uses, as a lubricating oil, oil having a specific gravity smaller than that of the refrigerant used in the air conditioner and having no compatibility with the refrigerant.

【0033】アキュムレータ26への吸入管には吸入圧
力センサ27が取り付けられている。また、吐出管28
には吐出圧力センサ30と吐出管温度センサ31が取り
付けられている。また、この第2実施例は、上記吸入圧
力センサ27と吐出圧力センサ30とに接続されている
入力値選択部32と、吐出管温度センサ31に接続され
ている油温補正計算部33を備えている。
A suction pressure sensor 27 is attached to a suction pipe to the accumulator 26. In addition, the discharge pipe 28
A discharge pressure sensor 30 and a discharge pipe temperature sensor 31 are attached to the. The second embodiment also includes an input value selection unit 32 connected to the suction pressure sensor 27 and the discharge pressure sensor 30, and an oil temperature correction calculation unit 33 connected to the discharge pipe temperature sensor 31. ing.

【0034】上記入力値選択部32は飽和温度計算部3
4に接続されており、この飽和温度計算部34は比較部
35に接続されている。一方、上記油温補正計算部33
は比較部35に接続されている。上記比較部35は周波
数補正部36に接続されており、周波数補正部36は二
層分離判定部37に接続されている。
The input value selection unit 32 is the saturation temperature calculation unit 3
4 and the saturation temperature calculation unit 34 is connected to the comparison unit 35. On the other hand, the oil temperature correction calculator 33
Is connected to the comparison unit 35. The comparison unit 35 is connected to the frequency correction unit 36, and the frequency correction unit 36 is connected to the two-layer separation determination unit 37.

【0035】上記構成の空気調和機が、上記吸入圧力セ
ンサ27と吐出圧力センサ30と吐出管温度センサ31
からの信号に基づいて、圧縮機25内での二層分離を判
定する動作を説明する。
The air conditioner having the above-described structure is provided with the suction pressure sensor 27, the discharge pressure sensor 30, and the discharge pipe temperature sensor 31.
The operation of determining the two-layer separation in the compressor 25 on the basis of the signal from will be described.

【0036】まず、上記入力値選択部32は、吸入圧力
センサ27から吸入管での吸入圧力Psを表す信号Ss
を受け、吐出圧力センサ30から吐出管での吐出圧力P
dを表す信号Sdを受ける。そして、図2下に示すよう
に、圧縮機25が高圧ドーム型である場合には、この入
力値選択部32は、冷房時,暖房時共に吐出圧力Pdを
表す信号Sdを選択して、この信号Sdを飽和温度計算
部34に出力する。一方、圧縮機25が低圧ドーム型で
ある場合には、入力値選択部32は、冷房時,暖房時共
に吸入圧力Psを表す信号Ssを選択して、この信号S
sを飽和温度計算部34に出力する。
First, the input value selection unit 32 outputs the signal Ss representing the suction pressure Ps in the suction pipe from the suction pressure sensor 27.
In response to the discharge pressure P from the discharge pressure sensor 30
A signal Sd representing d is received. Then, as shown in the lower part of FIG. 2, when the compressor 25 is a high-pressure dome type, the input value selection unit 32 selects the signal Sd representing the discharge pressure Pd during both cooling and heating, and The signal Sd is output to the saturation temperature calculation unit 34. On the other hand, when the compressor 25 is a low-pressure dome type, the input value selection unit 32 selects the signal Ss representing the suction pressure Ps during both cooling and heating, and the signal Ss is selected.
s is output to the saturation temperature calculation unit 34.

【0037】次に、飽和温度計算部34は、吐出圧力P
dを表す信号Sdを受けたときには、吐出圧力用の飽和
温度換算式を使用して上記吐出圧力Pdから圧縮機25
での冷媒の飽和温度Tsを算出する。また、飽和温度計
算部34は、吸入圧力Psを表す信号Ssを受けたとき
には、吸入圧力用の飽和温度換算式を使用して上記吸入
圧力Psから圧縮機25での冷媒の飽和温度Tsを算出
する。
Next, the saturation temperature calculation unit 34 determines the discharge pressure P
When a signal Sd representing d is received, a saturation temperature conversion formula for the discharge pressure is used to change the discharge pressure Pd from the compressor 25.
The saturation temperature Ts of the refrigerant at is calculated. When receiving the signal Ss representing the suction pressure Ps, the saturation temperature calculation unit 34 calculates the saturation temperature Ts of the refrigerant in the compressor 25 from the suction pressure Ps using the saturation temperature conversion formula for the suction pressure. To do.

【0038】一方、上記油温補正計算部33は、吐出管
温度センサ31が出力した信号Stを受けて、この信号
Stが表す吐出管の温度Tdを補正して、圧縮機25内
の油の温度Toを計算する。
On the other hand, the oil temperature correction calculation unit 33 receives the signal St output from the discharge pipe temperature sensor 31, corrects the discharge pipe temperature Td represented by the signal St, and corrects the oil in the compressor 25. Calculate the temperature To.

【0039】次に、比較部35は、上記飽和温度計算部
34からの飽和温度Tsを表す信号と、油温補正計算部
33からの油温Toを表す信号とを受けて、飽和温度T
sと油温Toとを比較して、油の温度Toから飽和温度
Tsを差し引いて、差α=(油温To)−(飽和温度Ts)
を算出する。
Next, the comparison section 35 receives the signal representing the saturation temperature Ts from the saturation temperature calculation section 34 and the signal representing the oil temperature To from the oil temperature correction calculation section 33, and receives the saturation temperature T.
s is compared with the oil temperature To, the saturation temperature Ts is subtracted from the oil temperature To, and the difference α = (oil temperature To) − (saturation temperature Ts)
Is calculated.

【0040】次に、周波数補正部36は、圧縮機25の
駆動周波数を表す信号を受けて、この駆動周波数に応じ
て、上記差αに補正値Δを加算して、補正した差αa=
(α+Δ)を算出する。この補正値Δと上記駆動周波数と
の関係は正比例であり、図4(B)に示すように、上記駆
動周波数が60Hzであるときに0℃である。ここまで
の信号処理過程を図4(A)に簡略化して示す。
Next, the frequency correction unit 36 receives the signal representing the drive frequency of the compressor 25, adds the correction value Δ to the difference α according to the drive frequency, and corrects the difference αa =
Calculate (α + Δ). The relationship between the correction value Δ and the driving frequency is directly proportional, and is 0 ° C. when the driving frequency is 60 Hz, as shown in FIG. 4 (B). The signal processing process up to this point is simplified and shown in FIG.

【0041】次に、二層判定部38は、周波数補正部3
6から上記補正差αaを表す信号を受けて、この補正差
αaが零以下(αa≦0)になったときに、上記冷媒と潤
滑油とが圧縮機25内で二層に分離していると判断し
て、二層分離していることを表す信号を出力する。一
方、上記二層分離判定部37は、上記補正値αaが零を
越えている(αa>0)ときには、上記冷媒と潤滑油とが
圧縮機25内で二層分離していないことを表す信号を出
力する。
Next, the two-layer judging section 38 is used by the frequency correcting section 3
When the signal representing the correction difference αa is received from 6 and the correction difference αa becomes zero or less (αa ≦ 0), the refrigerant and the lubricating oil are separated into two layers in the compressor 25. Then, a signal indicating that the two layers are separated is output. On the other hand, when the correction value αa exceeds zero (αa> 0), the two-layer separation determination unit 37 indicates that the refrigerant and the lubricating oil are not separated into two layers in the compressor 25. Is output.

【0042】上記二層分離判定部37が、二層分離して
いることを表す信号を出力したときに、潤滑不足警報を
発して、二層分離回避運転を行うようにすれば、液冷媒
潤滑による摺動部摩擦や焼付を未然に防止することがで
きる。
When the two-layer separation determination section 37 outputs a signal indicating that two layers are separated, a lubrication shortage alarm is issued to perform the two-layer separation avoidance operation. It is possible to prevent friction and seizure of the sliding part due to.

【0043】〔第3実施例〕つぎに、図3に第3実施例
としての空気調和機の構成を示す。この空気調和機は、
それぞれ冷媒管路で接続されている室内熱交換器51と
室外熱交換器52と絞り膨張部53と四路切替弁54と
圧縮機55とアキュムレータ56とを備えている。この
空気調和機は、この空気調和機で使用している冷媒より
も比重が小さく、かつ、上記冷媒との相溶性が無い油を
潤滑油として用いている。
[Third Embodiment] Next, FIG. 3 shows the configuration of an air conditioner as a third embodiment. This air conditioner
An indoor heat exchanger 51, an outdoor heat exchanger 52, a throttle expansion section 53, a four-way switching valve 54, a compressor 55, and an accumulator 56, which are connected to each other through refrigerant lines, are provided. This air conditioner uses oil having a specific gravity smaller than that of the refrigerant used in the air conditioner and having no compatibility with the refrigerant as a lubricating oil.

【0044】また、この空気調和機は、外気温度を検出
する外気温センサ57を備えている。また、この空気調
和機は、発停回路58と二層分離検出回路60を備えて
いる。この二層分離検出回路60には、外気温センサ5
7からの外気温度Toutを表す信号Soutと、上記発停回
路58からの発停時間tssを表す信号Sssと発停回数n
を表す信号Snが入力されるようになっている。
The air conditioner also has an outside air temperature sensor 57 for detecting the outside air temperature. The air conditioner also includes a start / stop circuit 58 and a two-layer separation detection circuit 60. The two-layer separation detection circuit 60 includes an outside air temperature sensor 5
7, the signal Sout indicating the outside air temperature Tout, the signal Sss indicating the start / stop time tss from the start / stop circuit 58, and the start / stop count n.
A signal Sn indicating is input.

【0045】上記発停回路58は、圧縮機55が5分間
以上連続運転してから停止した場合には、このオンオフ
動作は発停としてカウントしない。また、発停回路58
は、圧縮機55が10分以上連続運転した場合には、発
停回数のカウント数を零に戻して、新たなカウントを開
始する。その理由は、10分以上連続運転した状態で
は、冷媒が圧縮機55から吐出されてしまっているから
である。
The start / stop circuit 58 does not count the on / off operation as start / stop when the compressor 55 is stopped after being continuously operated for 5 minutes or more. In addition, the start / stop circuit 58
When the compressor 55 is continuously operated for 10 minutes or more, the count number of the start / stop count is returned to zero and a new count is started. The reason for this is that the refrigerant has been discharged from the compressor 55 in the state of continuous operation for 10 minutes or more.

【0046】上記二層分離検出回路60は、図5に示す
ように、圧縮機55の発停回数nが外気温度toutによ
って決まっている判定回数Njを越えたときに、圧縮機
55内の冷媒と潤滑油とが二層に分離していて、この分
離面が圧縮機55内の給油口を越えていると判断する。
As shown in FIG. 5, the two-layer separation detection circuit 60 is arranged so that when the number of times n the compressor 55 is started and stopped exceeds the number of times Nj determined by the outside air temperature tout, the refrigerant in the compressor 55 is cooled. And the lubricating oil are separated into two layers, and it is judged that this separated surface exceeds the oil supply port in the compressor 55.

【0047】上記構成の空気調和機の二層分離検出回路
60は、外気温センサ57からの信号Soutを受けて外
気温度Toutを検出する。そして、この二層分離検出回
路60は、発停回路58からの信号SssとSnとを受け
て、圧縮機55がオン状態からオフ状態になる発停の回
数nが外気温度toutによって決まっている所定の判定
回数Njに達したときに、圧縮機55内の冷媒と潤滑油
とが二層に分離していて、この分離面が圧縮機55内の
給油口を越える直前であると判断する。
The two-layer separation detection circuit 60 of the air conditioner having the above-mentioned configuration receives the signal Sout from the outside air temperature sensor 57 and detects the outside air temperature Tout. Then, the two-layer separation detection circuit 60 receives the signals Sss and Sn from the start / stop circuit 58, and the number n of start / stop of turning the compressor 55 from the ON state to the OFF state is determined by the outside air temperature tout. When the predetermined number of times of judgment Nj is reached, it is judged that the refrigerant and the lubricating oil in the compressor 55 are separated into two layers, and this separation surface is just before passing over the oil supply port in the compressor 55.

【0048】具体的に外気温が−2℃であるときには、
発停回路58は、図6に示すように、圧縮機55がオン
オフする発停パターンに応じて発停回数nをカウントす
る。そして、この発停回数nが1,2…と増加して行く
にしたがって、給油口での油の濃度(wt%)が低下する。
そして、発停回数nが3回になると、上記二層分離検出
回路60は、発停回路58から発停回数n=3であるこ
とを表す信号Snを受けて、圧縮機55内の冷媒と潤滑
油とが二層に分離していて、この分離面が圧縮機55内
の給油口を越える直前であると判断する。この判断をし
たときに、二層分離検出回路60が潤滑不足警報信号を
出力して、二層分離回避運転を行うようにすれば、潤滑
不良による圧縮機の摺動部摩擦や焼付を未然に防止する
ことができる。
Specifically, when the outside air temperature is −2 ° C.,
As shown in FIG. 6, the start / stop circuit 58 counts the start / stop count n according to the start / stop pattern in which the compressor 55 is turned on / off. Then, as the number of times of starting / stopping n increases to 1, 2, ..., The oil concentration (wt%) at the filler port decreases.
Then, when the number of times of starting and stopping n reaches 3, the two-layer separation detection circuit 60 receives the signal Sn indicating that the number of times of starting and stopping n = 3 from the starting and stopping circuit 58, and the refrigerant in the compressor 55 It is judged that the lubricating oil is separated into two layers, and this separated surface is just before passing the oil supply port in the compressor 55. When this determination is made, if the two-layer separation detection circuit 60 outputs a lubrication shortage alarm signal to perform the two-layer separation avoidance operation, the sliding portion friction and seizure of the compressor due to poor lubrication can be prevented. Can be prevented.

【0049】[0049]

【発明の効果】以上より明らかなように、請求項1の発
明の冷凍機は、二層分離判定手段が、油温検出手段が検
出した油温と、冷媒飽和温度検出手段が検出した冷媒の
飽和温度とを比較する。そして、上記判別手段は、上記
油温と上記飽和温度との差α=(上記油温−上記飽和温
度)が零以下(α≦0)になったときに、上記冷媒と上記
潤滑油とが上記圧縮機内で二層に分離していると判断す
る。
As is apparent from the above, in the refrigerator of the first aspect of the invention, the two-layer separation determination means detects the oil temperature detected by the oil temperature detection means and the refrigerant detected by the refrigerant saturation temperature detection means. Compare with saturation temperature. When the difference α between the oil temperature and the saturation temperature α = (oil temperature−saturation temperature) becomes less than or equal to zero (α ≦ 0), the determination means determines that the refrigerant and the lubricating oil are It is determined that the compressor is separated into two layers.

【0050】したがって、この発明によれば、圧縮機内
での二層分離の有無を判定することができる。また、上
記判別手段が上記二層分離していると判断したときに圧
縮機の潤滑不足を警報して、二層分離回避運転を行うよ
うにすれば、摺動部の摩耗や焼き付きを未然に防止する
ことができる。
Therefore, according to the present invention, the presence / absence of the two-layer separation in the compressor can be determined. Further, when the determination means determines that the two layers are separated, the insufficient lubrication of the compressor is warned, and the two-layer separation avoidance operation is performed, so that wear and seizure of the sliding portion can be prevented. Can be prevented.

【0051】また、請求項2の発明の冷凍機では、上記
二層分離判定手段は、上記圧縮機の運転周波数が所定値
であるときに、上記差αが零以下(α≦0)になったとき
に、上記冷媒と上記潤滑油とが上記圧縮機内で二層に分
離していると判断する。また、上記判定手段は、上記圧
縮機の運転周波数が上記所定値よりも大きくなったとき
に、この大きくなった分だけ上記差αを増大させた値
が、零以下(α≦0)になったときに、上記冷媒と上記潤
滑油とが上記圧縮機内で二層に分離していると判断す
る。また、上記判定手段は、上記圧縮機の運転周波数が
上記所定値よりも小さくなったときに、この小さくなっ
た分だけ上記差αを減少させた値が、零以下(α≦0)に
なったときに、上記冷媒と上記潤滑油とが上記圧縮機内
で二層に分離していると判断する。
Further, in the refrigerator according to the second aspect of the present invention, the two-layer separation determination means causes the difference α to be zero or less (α ≦ 0) when the operating frequency of the compressor is a predetermined value. Then, it is determined that the refrigerant and the lubricating oil are separated into two layers in the compressor. Further, when the operating frequency of the compressor becomes higher than the predetermined value, the determining means increases the difference α by an amount corresponding to the higher value, and the value becomes zero or less (α ≦ 0). Then, it is determined that the refrigerant and the lubricating oil are separated into two layers in the compressor. Further, when the operating frequency of the compressor becomes lower than the predetermined value, the determining means reduces the difference α by a value corresponding to the decrease, and the value becomes zero or less (α ≦ 0). Then, it is determined that the refrigerant and the lubricating oil are separated into two layers in the compressor.

【0052】圧縮機の運転周波数が増加したときには、
差αが同じ値であっても二層分離し難くなる一方、圧縮
機の運転周波数が減少したときには、差αが同じ値であ
っても二層分離し易くなる。従って、請求項2の発明の
ように、圧縮機の運転周波数が所定の値に対して増減し
たときに、判定手段が判定基準値である値αを増減させ
ることによって、圧縮機内の二層分離判断をより正確に
行うことができる。
When the operating frequency of the compressor increases,
Even if the difference α has the same value, it becomes difficult to separate the two layers, while when the operating frequency of the compressor decreases, even if the difference α has the same value, the two layers easily separate. Therefore, when the operating frequency of the compressor is increased or decreased with respect to a predetermined value, the determination means increases or decreases the determination reference value α, so that the two-layer separation in the compressor is performed. The judgment can be made more accurately.

【0053】また、請求項3の発明は、二層分離判定手
段は、圧縮機がオン状態からオフ状態になる発停の回数
が、外気温度によって決まっている所定の判定回数に達
したときに、上記圧縮機内の冷媒と潤滑油とが二層に分
離していて、この分離面が圧縮機内の給油口を越える直
前であると判断する。
According to a third aspect of the present invention, the two-layer separation determination means is configured so that, when the number of times of starting and stopping the compressor from the on state to the off state reaches a predetermined number of determinations determined by the outside air temperature. It is judged that the refrigerant and the lubricating oil in the compressor are separated into two layers, and this separation surface is just before passing the oil supply port in the compressor.

【0054】従って、この発明によれば、圧縮機内での
二層分離の有無を判別することができる。また、上記判
定手段が上記二層分離面が給油口を越える直前であると
判断したときに、潤滑不足の警報を発し、二層分離回避
運転を行うようにすれば、摺動部の摩耗や焼き付きを未
然に防止することができる。
Therefore, according to the present invention, the presence / absence of the two-layer separation in the compressor can be determined. Further, when the determination means determines that the two-layer separation surface is just before passing over the oil supply port, an alarm of insufficient lubrication is issued, and the two-layer separation avoidance operation is performed. It is possible to prevent burn-in.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の冷凍機の第1実施例としての空気
調和機の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of an air conditioner as a first embodiment of a refrigerator of the present invention.

【図2】 この発明の第2実施例としての空気調和機の
構成を示すブロック図である。
FIG. 2 is a block diagram showing a configuration of an air conditioner as a second embodiment of the present invention.

【図3】 この発明の第3実施例としての空気調和機の
構成を示すブロック図である。
FIG. 3 is a block diagram showing a configuration of an air conditioner as a third embodiment of the present invention.

【図4】 図4(A)はこの発明の信号処理の流れを示す
図であり、図4(B)は周波数補正特性図である。
FIG. 4A is a diagram showing a flow of signal processing of the present invention, and FIG. 4B is a frequency correction characteristic diagram.

【図5】 この発明の第3実施例において、外気温が高
くなるほど二層分離面が給油口を越えるまでの発停回数
が多くなることを示す図である。
FIG. 5 is a diagram showing that, in a third embodiment of the present invention, the number of times of starting and stopping increases until the two-layer separation surface passes over the fuel filler port as the outside air temperature rises.

【図6】 外気温が−2℃のときに、圧縮機の発停にし
たがって給油口の油濃度が徐々に低下して二層分離が発
生する様子を示すタイムチャートである。
FIG. 6 is a time chart showing how the oil concentration in the oil supply port gradually decreases and two-layer separation occurs as the compressor starts and stops when the outside air temperature is −2 ° C.

【図7】 図7(A)は温度と冷媒分率に対する二層分離
域を示す二層分離線図であり、図7(B)は圧縮機内での
二層分離状態を示す模式図である。
FIG. 7 (A) is a two-layer separation diagram showing the two-layer separation region with respect to temperature and refrigerant fraction, and FIG. 7 (B) is a schematic diagram showing the two-layer separation state in the compressor. .

【図8】 圧縮機内での冷媒の飽和温度を破線で示し、
油の温度を実線で示した溶解度線図である。
FIG. 8 shows the saturation temperature of the refrigerant in the compressor with a broken line,
It is a solubility diagram which showed the temperature of oil by the solid line.

【符号の説明】[Explanation of symbols]

1,21,51…室内熱交換器、2,22,52…室外熱交
換器、3,23,53…絞り膨張部、4,24,54…四路
切替弁、5,25,55…圧縮機、6,26,56…アキュ
ムレータ、7…第1の温度センサ、8…第2の温度セン
サ、10,32…入力値選択部、11…配管圧損補正計
算部、12,35…比較部、13…吐出配管、15…第
3の温度センサ、16,33…油温補正計算部、17,3
6…周波数補正部、18,37…二層分離判定部、27
…吸入圧力センサ、30…吐出圧力センサ、31…吐出
管温度センサ、34…飽和温度計算部、57…外気温セ
ンサ、58…発停回路、60…二層分離検出回路。
1,21,51 ... Indoor heat exchanger, 2,22,52 ... Outdoor heat exchanger, 3,23,53 ... Throttle expansion part, 4,24,54 ... Four way switching valve, 5,25,55 ... Compression Machine, 6, 26, 56 ... Accumulator, 7 ... First temperature sensor, 8 ... Second temperature sensor, 10, 32 ... Input value selection unit, 11 ... Pipe pressure loss correction calculation unit, 12, 35 ... Comparison unit, 13 ... Discharge pipe, 15 ... Third temperature sensor, 16, 33 ... Oil temperature correction calculation section, 17, 3
6 ... Frequency correction unit, 18, 37 ... Two-layer separation determination unit, 27
... suction pressure sensor, 30 ... discharge pressure sensor, 31 ... discharge pipe temperature sensor, 34 ... saturation temperature calculation unit, 57 ... outside air temperature sensor, 58 ... start / stop circuit, 60 ... two-layer separation detection circuit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷媒よりも比重が小さく、かつ、上記冷
媒との相溶性が実質的に無い油を圧縮機(5,25)の潤
滑油として用いている冷凍機において、 上記圧縮機(5,25)内の油の温度を検出する油温検出
手段(15,16,31,33)と、 上記圧縮機(5,25)内の圧力によって定まる上記冷媒
の飽和温度を検出する冷媒飽和温度検出手段(7,8,1
0,11,27,30,32,34)と、 上記油温検出手段(15,16,31,33)が検出した油
温と、上記冷媒飽和温度検出手段(7,8,10,11,2
7,30,32,34)が検出した上記冷媒の飽和温度とを
比較して、上記油温と上記飽和温度との差α=(上記油
温−上記飽和温度)が零以下(α≦0)になったときに、
上記冷媒と上記潤滑油とが上記圧縮機(5,25)内で二
層に分離していると判断する二層分離判定手段(12,1
8,35,37)とを備えていることを特徴とする冷凍
機。
1. A refrigerator using oil, which has a specific gravity smaller than that of a refrigerant and is substantially incompatible with the refrigerant, as a lubricating oil for the compressor (5, 25). , 25) oil temperature detection means (15, 16, 31, 33) for detecting the temperature of the oil, and a refrigerant saturation temperature for detecting the saturation temperature of the refrigerant determined by the pressure in the compressor (5, 25). Detection means (7,8,1
0, 11, 27, 30, 32, 34), the oil temperature detected by the oil temperature detection means (15, 16, 31, 33), and the refrigerant saturation temperature detection means (7, 8, 10, 11, Two
7, 30, 32, 34) is compared with the saturation temperature of the refrigerant, and the difference α = (oil temperature−saturation temperature) between the oil temperature and the saturation temperature is zero or less (α ≦ 0). ),
Two-layer separation determination means (12, 1) for determining that the refrigerant and the lubricating oil are separated into two layers in the compressor (5, 25).
8, 35, 37) and a refrigerator.
【請求項2】 請求項1に記載の冷凍機において、 上記二層分離判定手段(12,18,35,37)は、 上記圧縮機(5,25)の運転周波数が所定値であるとき
に、上記差αが零以下(α≦0)になったときに、上記冷
媒と上記潤滑油とが上記圧縮機(5,25)内で二層に分
離していると判断し、 上記圧縮機(5,25)の運転周波数が上記所定値よりも
大きくなったときに、この大きくなった分だけ上記差α
を増大させた値(αa)が、零以下(α≦0)になったとき
に、上記冷媒と上記潤滑油とが上記圧縮機(5,25)内
で二層に分離していると判断し、 上記圧縮機(5,25)の運転周波数が上記所定値よりも
小さくなったときに、この小さくなった分だけ上記差α
を減少させた値(αa)が、零以下(α≦0)になったと
きに、上記冷媒と上記潤滑油とが上記圧縮機(5,25)
内で二層に分離していると判断することを特徴とする冷
凍機。
2. The refrigerator according to claim 1, wherein the two-layer separation determination means (12, 18, 35, 37) is used when the operating frequency of the compressor (5, 25) is a predetermined value. When the difference α becomes less than or equal to zero (α ≦ 0), it is determined that the refrigerant and the lubricating oil are separated into two layers in the compressor (5, 25), When the operating frequency of (525) becomes larger than the above-mentioned predetermined value, the difference α becomes
When the increased value (αa) becomes zero or less (α ≦ 0), it is determined that the refrigerant and the lubricating oil are separated into two layers in the compressor (525). However, when the operating frequency of the compressor (5, 25) becomes lower than the predetermined value, the difference α becomes
When the reduced value (αa) becomes less than or equal to zero (α ≦ 0), the refrigerant and the lubricating oil are separated from each other by the compressor (5, 25).
A refrigerator characterized in that it is judged to be separated into two layers inside.
【請求項3】 冷媒よりも比重が小さく、かつ、上記冷
媒との相溶性が実質的に無い非相溶油を圧縮機の潤滑油
として用いている冷凍機において、 外気温度を検出する外気温度センサ(57)と、 圧縮機(55)がオン状態からオフ状態になる発停回数を
カウントする発停回路(58)と、 上記外気温度センサ(57)からの外気温度を表す信号
(Sout)と、上記発停回路(58)からの発停回数を表す
信号(Sn)とが入力され、圧縮機(55)の発停の回数
が、外気温度によって決まっている所定の判定回数に達
したときに、上記圧縮機内の冷媒と潤滑油とが二層に分
離していて、この分離面が圧縮機内の給油口を越える直
前であると判断する二層分離判定手段(60)を備えてい
ることを特徴とする冷凍機。
3. An outside air temperature for detecting an outside air temperature in a refrigerator using a non-compatible oil having a specific gravity smaller than that of the refrigerant and having substantially no compatibility with the refrigerant as a lubricating oil of a compressor. A sensor (57), a start / stop circuit (58) for counting the number of start / stop times when the compressor (55) is turned from an on state to an off state, and a signal indicating the outside air temperature from the outside air temperature sensor (57).
(Sout) and a signal (Sn) indicating the number of times of starting and stopping from the starting and stopping circuit (58) are input, and the number of times of starting and stopping the compressor (55) is determined by the outside air temperature. Is reached, the refrigerant and lubricating oil in the compressor are separated into two layers, and the two-layer separation determination means (60) for determining that this separation surface is just before passing over the oil supply port in the compressor. A refrigerator characterized by being provided.
JP16183195A 1995-06-28 1995-06-28 refrigerator Expired - Fee Related JP3635720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16183195A JP3635720B2 (en) 1995-06-28 1995-06-28 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16183195A JP3635720B2 (en) 1995-06-28 1995-06-28 refrigerator

Publications (2)

Publication Number Publication Date
JPH0914767A true JPH0914767A (en) 1997-01-17
JP3635720B2 JP3635720B2 (en) 2005-04-06

Family

ID=15742756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16183195A Expired - Fee Related JP3635720B2 (en) 1995-06-28 1995-06-28 refrigerator

Country Status (1)

Country Link
JP (1) JP3635720B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029489A1 (en) * 1999-10-18 2001-04-26 Daikin Industries, Ltd. Refrigerating device
JP2016211774A (en) * 2015-05-07 2016-12-15 ダイキン工業株式会社 Freezer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029489A1 (en) * 1999-10-18 2001-04-26 Daikin Industries, Ltd. Refrigerating device
EP1225400A1 (en) * 1999-10-18 2002-07-24 Daikin Industries, Ltd. Refrigerating device
US6581397B1 (en) 1999-10-18 2003-06-24 Daikin Industries, Ltd. Refrigerating device
EP1225400A4 (en) * 1999-10-18 2006-01-25 Daikin Ind Ltd Refrigerating device
EP1762794A1 (en) * 1999-10-18 2007-03-14 Daikin Industries, Ltd. Refrigerating device
CN100449224C (en) * 1999-10-18 2009-01-07 大金工业株式会社 Freezing equipment
JP2016211774A (en) * 2015-05-07 2016-12-15 ダイキン工業株式会社 Freezer

Also Published As

Publication number Publication date
JP3635720B2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
US20050204756A1 (en) Monitoring refrigerant charge
US9291379B2 (en) Air conditioner
JP2002503329A (en) Method and apparatus for starting cooling chiller
JP2003097443A (en) Compressor and refrigeration unit
CN104833022B (en) A kind of low control method for cooling down inflow temperature and starting of air-conditioner set
US20060073047A1 (en) Method for estimating drive torque of variable displacement compressor and system for controlling drive source rotation speed
US11732939B2 (en) Detection apparatus and method for refrigerant leakage of air source heat pump system
JP3942680B2 (en) Air conditioner
CN111981719B (en) Refrigerating unit compression refrigeration cycle control method and device and refrigerating unit
JPH0914767A (en) Refrigerating machine
JPWO2017199391A1 (en) Refrigeration equipment
JPH06137725A (en) Refrigerant leakage detection method for refrigeration device
JP2008145071A (en) Refrigeration cycle apparatus
JP2001124388A (en) Air-conditioning device
JPH0921569A (en) Refrigerator
JPH01167556A (en) Refrigerator
JPH07294073A (en) Refrigeration device
JPH0278874A (en) Shortage of refrigerant judging device for refrigerating cycle
JPH01305267A (en) Refrigerator
JPH0618076A (en) Controller for operation of air conditioner
JP2687727B2 (en) Compressor protection device for refrigeration equipment
JP2518430B2 (en) Air conditioner
CN116928857A (en) Electronic expansion valve control method and device, computer equipment and air conditioner
KR100487384B1 (en) Method for Controling compressor of air conditioner having two capacity
JPH10300247A (en) Refrigerating cycle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees