JPH09146030A - Optical scanner - Google Patents

Optical scanner

Info

Publication number
JPH09146030A
JPH09146030A JP30172795A JP30172795A JPH09146030A JP H09146030 A JPH09146030 A JP H09146030A JP 30172795 A JP30172795 A JP 30172795A JP 30172795 A JP30172795 A JP 30172795A JP H09146030 A JPH09146030 A JP H09146030A
Authority
JP
Japan
Prior art keywords
scanning
imaging lens
sub
scanning direction
scanned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30172795A
Other languages
Japanese (ja)
Other versions
JP3943155B2 (en
Inventor
Kiyuu Takada
球 高田
Nozomi Inoue
望 井上
高志 ▲濱▼
Takashi Hama
Yujiro Nomura
雄二郎 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP30172795A priority Critical patent/JP3943155B2/en
Publication of JPH09146030A publication Critical patent/JPH09146030A/en
Application granted granted Critical
Publication of JP3943155B2 publication Critical patent/JP3943155B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To correct the positional deviation of scanning lines by curving a second image forming lens toward the end parts thereof in the longitudinal direction from the center thereof in the longitudinal direction so that it gets away from a surface to be scanned. SOLUTION: Plural beams are emitted from a semiconductor laser array 1 and the images thereof are formed near the reflection surface 6 of a rotary polygon mirror 5 being a deflector in a sub-scanning direction. Besides, they are reflected on the reflection surface 6 and deflected in accordance with the rotation of the mirror 5. The deflected beams receive a converging action by a first image forming lens 7 and the second image forming lens 8 and form plural beam spots on the surface to be scanned 9. Then, the lens 8 is curved toward the end parts from the center in the longitudinal direction so as to be kept at a distance from the surface 9. Since optical magnification in the sub-scanning direction between the reflection surface 6 and the surface 9 is uniformized in an effective scanning area, the plural scanning lines are made to be the straight lines without being curved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レーザビームプリ
ンタ等に用いられ、複数のビームで被走査面を走査する
光走査装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical scanning device which is used in a laser beam printer or the like and which scans a surface to be scanned with a plurality of beams.

【0002】[0002]

【従来の技術】従来より、レーザビームプリンタ等に
は、複数のビームで被走査面を走査する光走査装置が用
いられているが、複数のビームのうち、走査中心を走査
するときに、結像光学系の光軸から副走査方向に離れた
位置を通過するビーム、すなわち、結像光学系の光軸か
ら副走査方向にオフセットした球欠面を走査するビーム
が、被走査面上に形成する走査線が湾曲してしまうとい
う問題があった。
2. Description of the Related Art Conventionally, an optical scanning device for scanning a surface to be scanned with a plurality of beams has been used in a laser beam printer or the like. A beam passing through a position distant from the optical axis of the image optical system in the sub-scanning direction, that is, a beam scanning a spherical surface offset from the optical axis of the imaging optical system in the sub-scanning direction is formed on the surface to be scanned. There is a problem in that the scanning line for scanning is curved.

【0003】この問題を解決するために、特開昭60−
21031号公報のように、レーザ光源と回転多面鏡と
の間に超音波光偏向器を設ければ、ブラグ回折角を調整
することにより走査線湾曲を補正することができる。
In order to solve this problem, JP-A-60-
If an ultrasonic light deflector is provided between the laser light source and the rotating polygon mirror as in Japanese Patent No. 21031, the scanning line curve can be corrected by adjusting the Bragg diffraction angle.

【0004】あるいは、特開平2−54211号公報の
ように、発光部から被走査面までの間の光学系の横倍率
の絶対値を2以下とすることにより、走査線湾曲を少な
くすることができる。
Alternatively, as in Japanese Patent Laid-Open No. 2-54211, by setting the absolute value of the lateral magnification of the optical system from the light emitting portion to the surface to be scanned to 2 or less, the scan line curve can be reduced. it can.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開昭
60−21031号公報の超音波光偏向器は、高価、複
雑かつ大型であり、駆動回路も複雑であるという問題点
を有する。
However, the ultrasonic optical deflector disclosed in Japanese Unexamined Patent Publication No. 60-21031 has problems that it is expensive, complicated and large in size, and the driving circuit is also complicated.

【0006】また、特開平2−54211号公報による
と、横倍率が2倍以下と極めて低いため、半導体レーザ
の光出力の大部分は、「けられ」により失われ、被走査
面まで到達するのはごく一部となり、光出力に関する光
学系の効率が非常に低い。そのため、半導体レーザの光
出力では不十分となり、実用的ではないという問題点を
有する。また、横倍率の縮小に比例して、走査線の湾曲
量を少なくするだけであり、走査線湾曲を完全に補正す
ることはできず、根本的に解決するものではない。
Further, according to Japanese Patent Application Laid-Open No. 2-54211, since the lateral magnification is as low as 2 times or less, most of the light output of the semiconductor laser is lost due to "vignetting" and reaches the surface to be scanned. Is very small, and the efficiency of the optical system for light output is very low. Therefore, the optical output of the semiconductor laser is insufficient, which is not practical. Further, the curve amount of the scanning line is simply reduced in proportion to the reduction of the lateral magnification, and the scanning line curve cannot be completely corrected, which is not a fundamental solution.

【0007】そこで本発明はこのような問題点を解決す
るもので、走査線湾曲がなく光出力の利用効率が高い実
用的な光走査装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves such a problem, and an object of the present invention is to provide a practical optical scanning device which has no scanning line curvature and has high light output utilization efficiency.

【0008】[0008]

【課題を解決するための手段】本発明の光走査装置は、
複数の発光部から複数の光ビームを発生する光源と、光
ビームを偏向する偏向器と、偏向器により偏向された光
ビームを被走査面上に結像する結像光学系とを有し、結
像光学系は第1結像レンズと第2結像レンズとにより構
成される光走査装置であって、第2結像レンズは、長手
方向中心から長手方向端部に向かって、被走査面から遠
ざかるように湾曲していることを特徴とする。
An optical scanning device according to the present invention comprises:
A light source for generating a plurality of light beams from a plurality of light emitting parts, a deflector for deflecting the light beams, and an imaging optical system for forming an image of the light beams deflected by the deflector on a surface to be scanned, The image forming optical system is an optical scanning device including a first image forming lens and a second image forming lens, and the second image forming lens is a surface to be scanned from a longitudinal center toward a longitudinal end. It is characterized by being curved away from.

【0009】さらに、本発明の光走査装置は、上記の構
成に加え、以下のいずれかの構成をとることを特徴とす
る。
Further, the optical scanning device of the present invention is characterized by having any one of the following configurations in addition to the above configuration.

【0010】1)第2結像レンズは、偏向器側の面が鞍
形トーリック面である。 2)鞍形トーリック面の主走査断面は、非球面形状であ
る。 3)第2結像レンズは、被走査面側の面が非円柱面であ
る。 4)第2結像レンズは、主走査方向の屈折力が走査中心
で負、走査端で正である。 5)第2結像レンズは、樹脂で形成されている。
1) The surface of the second imaging lens on the deflector side is a saddle-shaped toric surface. 2) The main scanning cross section of the saddle-shaped toric surface has an aspherical shape. 3) The surface of the second imaging lens on the scanned surface side is a non-cylindrical surface. 4) The refractive power of the second imaging lens in the main scanning direction is negative at the scanning center and positive at the scanning end. 5) The second imaging lens is made of resin.

【0011】[0011]

【発明の実施の形態】以下図面に基づき本発明を詳細に
説明する。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail below with reference to the drawings.

【0012】図1は本発明を実施する形態である光走査
装置を示したものである。まず最初に、光学系の光軸上
の任意の点において、その点での光軸と偏向器の回転軸
とに垂直な方向を主走査方向と定義し、また、光軸と主
走査方向とに垂直な方向を副走査方向と定義する。さら
に光軸を含み主走査方向に平行な面を主走査断面、光軸
を含み副走査方向に平行な面を副走査断面と定義する。
FIG. 1 shows an optical scanning device which is an embodiment of the present invention. First, at any point on the optical axis of the optical system, the direction perpendicular to the optical axis at that point and the rotation axis of the deflector is defined as the main scanning direction, and the optical axis and the main scanning direction are defined as The direction perpendicular to is defined as the sub-scanning direction. Further, a surface including the optical axis and parallel to the main scanning direction is defined as a main scanning cross section, and a surface including the optical axis and parallel to the sub scanning direction is defined as a sub scanning cross section.

【0013】光源である半導体レーザアレイ1より複数
のビームが射出される。射出されたビームは発散してい
るビームであり、コリメータレンズ2によって平行なビ
ームに変換される。平行なビームはアパーチャ3により
絞り込まれる。絞り込まれたビームは、副走査方向にの
み屈折力を有するシリンドリカルレンズ4により、副走
査方向にのみ集束作用を受ける。さらに、ビームは偏向
器である回転多面鏡5の反射面6の近傍で、副走査方向
において結像し、反射面6で反射され、なおかつ、回転
多面鏡5の回転に伴って偏向される。偏向されたビーム
は第1結像レンズ7、第2結像レンズ8で集束作用を受
け、被走査面9上に複数のビームスポットを形成する。
A plurality of beams are emitted from the semiconductor laser array 1 which is a light source. The emitted beam is a diverging beam and is converted into a parallel beam by the collimator lens 2. The parallel beam is focused by the aperture 3. The narrowed beam is focused only in the sub-scanning direction by the cylindrical lens 4 having a refractive power only in the sub-scanning direction. Further, the beam forms an image in the sub-scanning direction in the vicinity of the reflecting surface 6 of the rotary polygon mirror 5 which is a deflector, is reflected by the reflecting surface 6, and is deflected as the rotary polygon mirror 5 rotates. The deflected beam is focused by the first imaging lens 7 and the second imaging lens 8 to form a plurality of beam spots on the surface 9 to be scanned.

【0014】次に、結像光学系の構成と機能について説
明する。図2(a)は結像光学系の主走査断面図、図2
(b)は副走査断面図である。第1結像レンズ7は単レ
ンズであり、主走査方向に正の屈折力を有し、副走査方
向には屈折力を有さない。第2結像レンズ8も単レンズ
で、入射面、射出面ともに主走査断面は非球面形状とな
っており、主走査方向の屈折力は、走査中心で負、走査
端で正となっているが、それらの屈折力はいずれも弱
い。副走査方向には正の強い屈折力を有する。
Next, the structure and function of the image forming optical system will be described. 2A is a main scanning sectional view of the imaging optical system, FIG.
(B) is a sub-scanning sectional view. The first imaging lens 7 is a single lens, has a positive refracting power in the main scanning direction, and has no refracting power in the sub-scanning direction. The second imaging lens 8 is also a single lens, and the main scanning section has an aspherical shape on both the incident surface and the exit surface, and the refracting power in the main scanning direction is negative at the scanning center and positive at the scanning end. However, their refractive powers are weak. It has a strong positive refractive power in the sub-scanning direction.

【0015】第2結像レンズ8の入射面は、主走査断面
の曲線を、回転軸10を中心に回転させることにより形
成される面である。主走査断面は凹であり、回転軸10
は第2結像レンズ8よりも被走査面9側にあるため、副
走査断面は凸となる。このような形状の面を、鞍形トー
リック面と称する。第2結像レンズ8の射出面は、主走
査断面が凸の非球面形状、副走査断面が直線であり、こ
のような形状の面を非円柱面と称する。
The incident surface of the second imaging lens 8 is a surface formed by rotating the curve of the main scanning section about the rotation axis 10. The main scanning section is concave, and the rotary shaft 10
Is closer to the surface 9 to be scanned than the second imaging lens 8, and therefore the sub-scan section is convex. The surface having such a shape is referred to as a saddle-shaped toric surface. The exit surface of the second imaging lens 8 has an aspherical shape with a convex main scanning section and a straight line with a sub-scanning section, and such a surface is called a non-cylindrical surface.

【0016】ビーム11は、主走査方向では反射面6上
で平行となっており、主に第1結像レンズ7の屈折力に
より被走査面9に結像する。一方、副走査方向では、ビ
ーム11は反射面6上に結像しており、第2結像レンズ
8の屈折力により被走査面9に結像する。副走査方向に
おいては、反射面6と被走査面9とが光学的に共役関係
となっており、回転多面鏡5の反射面6の面倒れを補正
する機能を有している。
The beam 11 is parallel on the reflecting surface 6 in the main scanning direction, and is focused on the surface 9 to be scanned mainly by the refractive power of the first imaging lens 7. On the other hand, in the sub-scanning direction, the beam 11 is imaged on the reflecting surface 6 and is imaged on the surface 9 to be scanned by the refracting power of the second imaging lens 8. In the sub-scanning direction, the reflecting surface 6 and the surface to be scanned 9 are in an optically conjugate relationship, and have a function of correcting surface tilt of the reflecting surface 6 of the rotary polygon mirror 5.

【0017】第2結像レンズ8は、長手方向中心から長
手方向端部に向かって、被走査面9から遠ざかるように
湾曲している。そのため、反射面6と被走査面9との間
の副走査方向の光学倍率が、有効走査領域において均一
となり、複数の走査線が湾曲せずに直線となる。このこ
とについて次に説明する。
The second imaging lens 8 is curved so as to move away from the surface 9 to be scanned from the center in the longitudinal direction toward the end in the longitudinal direction. Therefore, the optical magnification in the sub-scanning direction between the reflecting surface 6 and the surface 9 to be scanned becomes uniform in the effective scanning area, and the plurality of scanning lines are straight lines without being curved. This will be described below.

【0018】まず、比較のために、従来の光走査装置に
おける結像光学系の主走査断面図を図3に示す。従来技
術の第2結像レンズ108の形状は直線状である。図3
には、光軸上を通過するビーム112と光軸外を通過す
るビーム113を示している。ビーム113は、第1結
像レンズ107の正の屈折力を受けて屈折されるが、主
走査方向の屈折力が小さい第2結像レンズ108ではほ
とんど屈折されない。光軸上のビーム112に沿って、
反射面106から第1結像レンズ107までの距離を
D、第1結像レンズ107から第2結像レンズ108ま
での距離をE、第2結像レンズ108から被走査面10
9までの距離をFとする。また、ビーム113に沿っ
て、反射面106から第1結像レンズ107までの距離
をd、第1結像レンズ107から第2結像レンズ108
までの距離をe、第2結像レンズ108から被走査面1
09までの距離をfとする。反射面106と被走査面1
09との間では、第2結像レンズ108のみが副走査方
向の屈折力を有しているため、反射面106と被走査面
109との間の副走査方向の光学倍率は、それぞれのビ
ーム上における第2結像レンズ108の位置に依存す
る。すなわち、ビーム112に対する副走査方向の光学
倍率は、F/(D+E)であり、ビーム113に対する
副走査方向の光学倍率は、f/(d+e)である。
First, for comparison, a main scanning sectional view of an image forming optical system in a conventional optical scanning device is shown in FIG. The shape of the second imaging lens 108 of the related art is linear. FIG.
In the figure, a beam 112 passing on the optical axis and a beam 113 passing outside the optical axis are shown. The beam 113 receives the positive refracting power of the first imaging lens 107 and is refracted, but is hardly refracted by the second imaging lens 108 having a small refracting power in the main scanning direction. Along the beam 112 on the optical axis,
The distance from the reflecting surface 106 to the first imaging lens 107 is D, the distance from the first imaging lens 107 to the second imaging lens 108 is E, and the second imaging lens 108 to the surface to be scanned 10.
Let F be the distance to 9. Further, the distance from the reflecting surface 106 to the first imaging lens 107 along the beam 113 is d, and the first imaging lens 107 to the second imaging lens 108.
To the scanning surface 1 from the second imaging lens 108
The distance to 09 is f. Reflecting surface 106 and scanned surface 1
09, since only the second imaging lens 108 has the refractive power in the sub-scanning direction, the optical magnification in the sub-scanning direction between the reflecting surface 106 and the surface to be scanned 109 is the same for each beam. It depends on the position of the second imaging lens 108 above. That is, the optical magnification of the beam 112 in the sub-scanning direction is F / (D + E), and the optical magnification of the beam 113 in the sub-scanning direction is f / (d + e).

【0019】ここで、光軸外のビーム113は、第2結
像レンズ108でほとんど屈折されないため、Eとeと
の比と、Fとfとの比はほとんど同じである。ところ
が、第1結像レンズ107では、正の屈折力を受けて屈
折されるため、Dとdの比はそれらよりも小さくなり、
光軸外での光学倍率f/(d+e)は、光軸上での光学
倍率F/(D+E)よりも小さくなる。このことから、
副走査方向の光学倍率は、走査中心から走査端に向かっ
て小さくなることがわかる。このような副走査方向の光
学倍率の変動により、図4に示すように、複数のビーム
のうち、結像光学系の光軸を含む面を走査するビームに
より、被走査面109に形成される走査線122は、直
線となるが、走査中心を走査するときに、結像光学系の
光軸から副走査方向に離れた位置を通過するビーム、す
なわち、結像光学系の光軸から副走査方向にオフセット
した球欠面を走査するビームにより形成される走査線1
23は湾曲してしまう。
Since the off-optical beam 113 is hardly refracted by the second imaging lens 108, the ratio of E to e and the ratio of F to f are almost the same. However, since the first imaging lens 107 receives positive refracting power and is refracted, the ratio of D and d becomes smaller than those,
The optical magnification f / (d + e) off the optical axis is smaller than the optical magnification F / (D + E) on the optical axis. From this,
It can be seen that the optical magnification in the sub-scanning direction decreases from the scanning center toward the scanning end. Due to such a change in the optical magnification in the sub-scanning direction, as shown in FIG. 4, among the plurality of beams, a beam that scans a surface including the optical axis of the imaging optical system is formed on the surface to be scanned 109. The scanning line 122 is a straight line, but when scanning the scanning center, a beam that passes through a position distant from the optical axis of the imaging optical system in the sub-scanning direction, that is, the sub-scanning from the optical axis of the imaging optical system. Scan line 1 formed by a beam that scans a spherical surface that is offset in the direction
23 will bend.

【0020】図5は本形態の結像光学系の主走査断面を
示した図である。第2結像レンズ8は、主走査方向の屈
折力が小さいため、主走査方向に屈折力を持たないレン
ズとして模式的に描いてある。図5には光軸上を通過す
るビーム12と、光軸外を通過するビーム13をも示し
ている。本形態では、第2結像レンズ8が、長手方向中
心から長手方向端部に向かって、被走査面9から遠ざか
るように湾曲している。そのため、光軸外のビーム13
において、図3のような、第2結像レンズ108が湾曲
していない場合に比べて、第1結像レンズ7から第2結
像レンズ8までの距離eは短く、第2結像レンズ8から
被走査面9までの距離fは長くなり、副走査方向の光学
倍率f/(d+e)は大きくなる。このことを利用し
て、第2結像レンズ8の湾曲量を適当な値に設定すれ
ば、反射面6と被走査面9との間の副走査方向の光学倍
率を、有効走査領域において均一にすることができ、複
数の走査線すべてを直線にすることができる。
FIG. 5 is a diagram showing a main scanning section of the imaging optical system of this embodiment. Since the second imaging lens 8 has a small refracting power in the main scanning direction, it is schematically drawn as a lens having no refracting power in the main scanning direction. FIG. 5 also shows a beam 12 passing on the optical axis and a beam 13 passing outside the optical axis. In the present embodiment, the second imaging lens 8 is curved so as to move away from the surface 9 to be scanned from the longitudinal center toward the longitudinal end. Therefore, the beam 13 off the optical axis
3, the distance e from the first imaging lens 7 to the second imaging lens 8 is shorter than that in the case where the second imaging lens 108 is not curved as shown in FIG. The distance f from the scanning surface 9 to the surface 9 to be scanned increases, and the optical magnification f / (d + e) in the sub-scanning direction increases. By utilizing this fact, if the bending amount of the second imaging lens 8 is set to an appropriate value, the optical magnification in the sub-scanning direction between the reflecting surface 6 and the surface 9 to be scanned is made uniform in the effective scanning area. And all of the plurality of scan lines can be straight.

【0021】結像光学系の収差補正の原理を、図2に基
づいて説明する。主走査方向の像面湾曲は主に第1結像
レンズ7で補正されている。fθ特性の補正は、第1結
像レンズ7では不充分である。そこで、第2結像レンズ
8の主走査方向の屈折力を、走査中心において負、走査
端において正とし、走査中心で走査速度を速く、走査端
で走査速度を遅くするようにして、第2結像レンズ8で
もfθ特性を補正している。
The principle of aberration correction of the image forming optical system will be described with reference to FIG. The field curvature in the main scanning direction is mainly corrected by the first imaging lens 7. The correction of the fθ characteristic is insufficient with the first imaging lens 7. Therefore, the refracting power of the second imaging lens 8 in the main scanning direction is set to be negative at the scanning center and positive at the scanning end so that the scanning speed is high at the scanning center and slow at the scanning end. The imaging lens 8 also corrects the fθ characteristic.

【0022】副走査方向の像面湾曲は、第2結像レンズ
8の入射面で補正している。先述したように、第2結像
レンズ8の入射面は、主走査断面の曲線を、回転軸10
を中心に回転させることにより形成される鞍形トーリッ
ク面であり、第2結像レンズ8が湾曲しているため、副
走査方向の曲率半径は走査中心から走査端に向かって大
きくなっており、副走査方向の焦点距離は走査中心から
走査端に向かって長くなっている。一方、走査中心から
走査端に向かうにつれて、第2結像レンズ8に入射する
ビームは斜めに入射することになり、ビームが正面から
入射する場合に比べて、副走査方向の焦点距離は短くな
る。また、走査中心から走査端に向かうにつれて、ビー
ムと光軸とのなす角が大きくなり、ビームに沿った第2
結像レンズ8と被走査面9との距離は長くなる。本形態
では、第2結像レンズ8の入射面を鞍形トーリック面と
することにより、これらの三つの条件を互いに相殺し、
副走査方向の像面湾曲を補正することができる。また、
鞍形トーリック面の副走査方向の曲率半径は、主走査断
面形状に依存するため、本形態のように、鞍形トーリッ
ク面の主走査断面を非球面形状とすることにより、副走
査方向の曲率半径を有効走査領域で任意に設定すること
ができ、副走査方向の像面湾曲を特に良好に補正するこ
とができる。
The field curvature in the sub-scanning direction is corrected by the entrance surface of the second imaging lens 8. As described above, the incident surface of the second imaging lens 8 has the curve of the main scanning cross section as the rotation axis 10
Is a saddle-shaped toric surface formed by rotating about the center, and since the second imaging lens 8 is curved, the radius of curvature in the sub-scanning direction increases from the scanning center toward the scanning end, The focal length in the sub-scanning direction is longer from the scanning center toward the scanning end. On the other hand, the beam entering the second imaging lens 8 enters obliquely from the scanning center toward the scanning end, and the focal length in the sub-scanning direction becomes shorter than in the case where the beam enters from the front. .. Further, the angle between the beam and the optical axis increases from the scanning center toward the scanning end, and the second angle along the beam increases.
The distance between the imaging lens 8 and the scanned surface 9 becomes long. In the present embodiment, by making the incident surface of the second imaging lens 8 a saddle-shaped toric surface, these three conditions cancel each other out,
It is possible to correct the field curvature in the sub-scanning direction. Also,
Since the radius of curvature of the saddle-shaped toric surface in the sub-scanning direction depends on the main-scanning cross-sectional shape, the curvature of the saddle-shaped toric surface in the sub-scanning direction can be changed by making the main-scanning cross-section of the saddle-shaped toric surface an aspherical shape. The radius can be arbitrarily set in the effective scanning area, and the field curvature in the sub-scanning direction can be corrected particularly well.

【0023】第2結像レンズ8の入射面で副走査方向の
像面湾曲が補正されるので、射出面の副走査方向の屈折
力は無くても構わない。そのため、本形態では、射出面
の副走査断面を直線としている。ただし、主走査方向で
は、fθ特性を補正するため、主走査断面形状は非球面
形状である。従って、射出面は非円柱面となっている。
fθ特性を補正するためには、面の屈折力によって走査
速度を変化させねばならず、本形態では、球面からの変
位を示す非球面変位量を、鞍形トーリック面に比べて非
円柱面でより大きくすることにより、良好なfθ特性を
実現している。
Since the field curvature in the sub-scanning direction is corrected on the entrance surface of the second imaging lens 8, the refracting power of the exit surface in the sub-scanning direction may be eliminated. Therefore, in this embodiment, the sub-scanning cross section of the exit surface is a straight line. However, in the main scanning direction, since the fθ characteristic is corrected, the main scanning sectional shape is an aspherical shape. Therefore, the exit surface is a non-cylindrical surface.
In order to correct the fθ characteristic, it is necessary to change the scanning speed by the refracting power of the surface. In this embodiment, the aspherical surface displacement amount indicating the displacement from the spherical surface is determined by the non-cylindrical surface as compared with the saddle type toric surface. By making it larger, good fθ characteristics are realized.

【0024】鞍形トーリック面は、曲線を回転軸10を
中心に回転することにより形成される面であり、加工す
る際には、回転運動だけで加工することができるため、
製造が容易である。また、非円柱面は、副走査断面が直
線であるため、やはり加工および製造が容易である。
The saddle-shaped toric surface is a surface formed by rotating a curved line around the rotating shaft 10. Since the saddle-shaped toric surface can be processed only by rotary motion,
Easy to manufacture. Further, since the non-cylindrical surface has a straight line in the sub-scanning section, it can be easily processed and manufactured.

【0025】ただし、第2結像レンズ8の面の構成は、
この限りではない。入射面や射出面を、球面、シリンド
リカル面、トーリック面で構成しても構わなく、また、
主走査方向と副走査方向の曲率半径がレンズの有効領域
で任意に変化するような非球面でも構わない。各収差が
補正されるようにそれらを組み合わせればよい。いずれ
にしても、第2結像レンズ8が、長手方向中心から長手
方向端部に向かって、被走査面9から遠ざかるように湾
曲していれば、副走査方向の光学倍率が有効走査領域に
おいて均一となり、複数の走査線が直線となる効果を有
する。
However, the structure of the surface of the second imaging lens 8 is as follows.
This is not the case. The entrance surface and the exit surface may be configured by a spherical surface, a cylindrical surface, or a toric surface.
It may be an aspherical surface in which the radius of curvature in the main scanning direction and the radius of curvature in the sub scanning direction change arbitrarily in the effective area of the lens. They may be combined so that each aberration is corrected. In any case, if the second imaging lens 8 is curved from the center in the longitudinal direction toward the end in the longitudinal direction and away from the surface 9 to be scanned, the optical magnification in the sub-scanning direction is in the effective scanning area. It has the effect of becoming uniform and making a plurality of scanning lines linear.

【0026】本形態において、第2結像レンズ8は樹脂
で形成されている。非球面を有するレンズをガラスで製
造すると、コストが高くつくため実用的ではないが、樹
脂で成型すると容易に大量生産をすることができ、コス
トも低くすることができる。
In the present embodiment, the second imaging lens 8 is made of resin. It is not practical to manufacture a lens having an aspherical surface from glass because the cost is high, but molding with a resin allows easy mass production and lower cost.

【0027】本形態では、第2結像レンズ8を湾曲させ
ることにより、副走査方向の光学倍率を均一にすること
と、副走査方向の像面湾曲を補正することとを行なって
いる。ただし、副走査方向の光学倍率を完全に均一にす
るための、第2結像レンズ8の湾曲量と、副走査方向の
像面湾曲を完全に補正するための、第2結像レンズ8の
湾曲量とは、必ずしも一致しない。それらが一致しない
場合には、走査線の位置ずれを重視するならば、光学倍
率を均一にするように湾曲量を決めればよく、また、ビ
ームスポットの形状や大きさの均一性を重視するなら
ば、像面湾曲を補正するように湾曲量を決めればよい。
なお、副走査方向の光学倍率を完全に均一にするため、
あるいは、副走査方向の像面湾曲を完全に補正するため
の、第2結像レンズ8の湾曲量は、第1結像レンズ7や
第2結像レンズ8の位置に依存する。
In this embodiment, by curving the second imaging lens 8, the optical magnification in the sub-scanning direction is made uniform and the field curvature in the sub-scanning direction is corrected. However, the amount of curvature of the second imaging lens 8 for completely equalizing the optical magnification in the sub-scanning direction and the amount of curvature of the second imaging lens 8 for completely correcting the field curvature in the sub-scanning direction. The amount of bending does not always match. If they do not match, if the positional deviation of the scanning lines is important, then the amount of curvature may be determined so that the optical magnification is uniform, and if the uniformity of the shape and size of the beam spot is important. For example, the amount of curvature may be determined so as to correct the field curvature.
In order to make the optical magnification in the sub-scanning direction completely uniform,
Alternatively, the amount of curvature of the second imaging lens 8 for completely correcting the field curvature in the sub-scanning direction depends on the positions of the first imaging lens 7 and the second imaging lens 8.

【0028】なお、本形態では、偏向器が回転多面鏡で
ある場合について説明を行なってきたが、その他に、回
転単面鏡、回転2面鏡、あるいは、回転軸を中心に正弦
振動を行なうガルバノミラー等についても容易に実現可
能であり、同様の効果が得られる。
In this embodiment, the case where the deflector is a rotary polygon mirror has been described, but in addition to this, a sine vibration is performed about a rotary single-sided mirror, a rotary two-sided mirror, or a rotation axis. A galvanometer mirror or the like can be easily realized, and the same effect can be obtained.

【0029】また、本形態では、第1結像レンズが単レ
ンズである場合について記したが、複数枚のレンズで構
成しても、本発明の効果は同様に得られる。そのように
すれば、収差補正はさらに良好となる。
In the present embodiment, the case where the first imaging lens is a single lens has been described, but the effect of the present invention can be obtained in the same manner even if the first imaging lens is composed of a plurality of lenses. By doing so, aberration correction becomes even better.

【0030】以上述べたように、本発明はレーザビーム
プリンタに用いると特に有効であるが、デジタル複写
機、ファクシミリ、レーザ走査ディスプレイ等の画像形
成装置や、スキャナ等の画像入力装置、あるいは光学マ
ーク読み取り用レーザ走査装置、表面検査用レーザ走査
装置等にも適用することができる。
As described above, the present invention is particularly effective when used in a laser beam printer, but it is an image forming apparatus such as a digital copying machine, a facsimile, a laser scanning display, an image input apparatus such as a scanner, or an optical mark. It can also be applied to a laser scanning device for reading, a laser scanning device for surface inspection, and the like.

【0031】[0031]

【実施例】本形態の代表的な実施例の光学諸元を表1に
示す。ただし、1走査の走査開始から走査終了までの回
転多面鏡の回転角を2ωとする。半導体レーザアレイの
発光点をS1、コリメータレンズの入射面、射出面をそ
れぞれS2、S3、シリンドリカルレンズの入射面、射出
面をそれぞれS4、S5、回転多面鏡の反射面をS6、第
1結像レンズの入射面、射出面をそれぞれS7、S8、第
2結像レンズの入射面、射出面をそれぞれS9、S10
する。各光学諸元の記号については、第i面Siの曲率
半径をri、第i面から次の面までの軸上面間隔をdi
し、コリメータレンズ、シリンドリカルレンズ、第1結
像レンズ、第2結像レンズの屈折率をそれぞれn2
4、n7、n9とする。また、アナモフィックなレンズ
面では、副走査方向、主走査方向の曲率半径をそれぞれ
ix、riyとし、非球面の曲率半径については、光軸上
の値を示す。
[Examples] Table 1 shows optical specifications of typical examples of the present embodiment. However, the rotation angle of the rotary polygon mirror from the start of one scan to the end of the scan is 2ω. The emission point of the semiconductor laser array is S 1 , the entrance and exit surfaces of the collimator lens are S 2 and S 3 , the entrance and exit surfaces of the cylindrical lens are S 4 and S 5 , respectively, and the reflection surface of the rotating polygon mirror is S 1. 6. Let S 7 and S 8 be the entrance and exit surfaces of the first imaging lens, and let S 9 and S 10 be the entrance and exit surfaces of the second imaging lens, respectively. Regarding the symbols of the respective optical specifications, the radius of curvature of the i- th surface S i is r i , the axial upper surface distance from the i-th surface to the next surface is d i , and the collimator lens, the cylindrical lens, the first imaging lens, The refractive index of the second imaging lens is n 2 , respectively.
Let n 4 , n 7 , and n 9 . On the anamorphic lens surface, the radii of curvature in the sub-scanning direction and the main-scanning direction are r ix and r iy , respectively, and the radius of curvature of the aspherical surface indicates a value on the optical axis.

【0032】[0032]

【表1】 [Table 1]

【0033】第2結像レンズの主走査断面は非球面形状
であり、
The main scanning section of the second imaging lens has an aspherical shape,

【0034】[0034]

【数1】 (Equation 1)

【0035】で表わす。ただし、座標は、レンズ面が光
軸と交わる点を原点とし、光軸方向にz軸、主走査方向
にy軸をとっている。Ki、Aiは非球面係数である。こ
れらの係数の値を表2に示す。
It is represented by. However, the coordinates have the origin at the point where the lens surface intersects the optical axis, the z axis in the optical axis direction, and the y axis in the main scanning direction. K i and A i are aspherical coefficients. The values of these coefficients are shown in Table 2.

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【発明の効果】以上説明したように、本発明によれば、
以下のような効果を有する。
As described above, according to the present invention,
It has the following effects.

【0038】まず、請求項1記載の発明によれば、第2
結像レンズを、長手方向中心から長手方向端部に向かっ
て、被走査面から遠ざかるように湾曲させることによ
り、実用的な構成で、副走査方向の光学倍率が有効走査
領域において均一となり、複数の走査線が全て直線とな
り、走査線の位置ずれが生じないという効果を有する。
First, according to the invention of claim 1, the second
By curving the imaging lens from the center in the longitudinal direction toward the end in the longitudinal direction and away from the surface to be scanned, the optical magnification in the sub-scanning direction becomes uniform in the effective scanning area in a practical configuration, All of the scanning lines are straight lines, and there is an effect that the positional deviation of the scanning lines does not occur.

【0039】請求項2記載の発明によれば、第2結像レ
ンズの偏向器側の面を、鞍形トーリック面とすることに
より、副走査方向の像面湾曲が良好に補正されるという
効果を有する。また、回転運動のみでの加工が可能とな
るため、レンズの製造が容易となるという効果をも有す
る。
According to the second aspect of the present invention, the deflector-side surface of the second imaging lens is a saddle-shaped toric surface, so that the field curvature in the sub-scanning direction is favorably corrected. Have. Further, since the processing can be performed only by the rotational movement, there is an effect that the lens can be easily manufactured.

【0040】請求項3記載の発明によれば、鞍形トーリ
ック面の主走査断面を、非球面形状とすることにより、
副走査方向の曲率半径を有効走査領域で任意に設定する
ことができ、副走査方向の像面湾曲がさらに良好に補正
されるという効果を有する。
According to the third aspect of the present invention, by making the main scanning section of the saddle-shaped toric surface an aspherical shape,
The radius of curvature in the sub-scanning direction can be arbitrarily set in the effective scanning area, and the field curvature in the sub-scanning direction can be corrected even better.

【0041】請求項4記載の発明によれば、第2結像レ
ンズの被走査面側の面を、非円柱面とすることにより、
fθ特性が良好に補正されるという効果を有する。ま
た、副走査断面が直線であるため、レンズの製造が容易
となるという効果をも有する。
According to the fourth aspect of the present invention, by making the surface of the second imaging lens on the scanned surface side a non-cylindrical surface,
This has the effect that the fθ characteristic is well corrected. Further, since the sub-scanning cross section is a straight line, there is an effect that the lens can be easily manufactured.

【0042】請求項5記載の発明によれば、第2結像レ
ンズの主走査方向の屈折力を、走査中心で負、走査端で
正とすることにより、fθ特性がさらに良好に補正され
るという効果を有する。
According to the fifth aspect of the invention, by making the refracting power of the second imaging lens in the main scanning direction negative at the scanning center and positive at the scanning end, the fθ characteristic can be corrected even better. Has the effect.

【0043】請求項6記載の発明によれば、第2結像レ
ンズを、樹脂で形成することにより、加工が容易で大量
生産をすることができ、コストが低くなるという効果を
有する。
According to the sixth aspect of the invention, by forming the second imaging lens with resin, there is an effect that processing is easy and mass production is possible, and the cost is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の斜視図。FIG. 1 is a perspective view of an embodiment of the present invention.

【図2】本発明の実施の形態の結像光学系の断面図。FIG. 2 is a sectional view of the image forming optical system according to the embodiment of the present invention.

【図3】従来の光走査装置の結像光学系の主走査断面
図。
FIG. 3 is a main scanning sectional view of an image forming optical system of a conventional optical scanning device.

【図4】従来の光走査装置の走査線の湾曲を示す図。FIG. 4 is a view showing a curve of a scanning line of a conventional optical scanning device.

【図5】本発明の実施の形態の結像光学系の主走査断面
図。
FIG. 5 is a main scanning sectional view of the imaging optical system according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体レーザアレイ 2 コリメータレンズ 3 アパーチャ 4 シリンドリカルレンズ 5 回転多面鏡 6 反射面 7 第1結像レンズ 8 第2結像レンズ 9 被走査面 1 Semiconductor Laser Array 2 Collimator Lens 3 Aperture 4 Cylindrical Lens 5 Rotating Polygonal Mirror 6 Reflective Surface 7 First Imaging Lens 8 Second Imaging Lens 9 Scanned Surface

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02B 13/18 B41J 3/00 D (72)発明者 野村 雄二郎 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location G02B 13/18 B41J 3/00 D (72) Inventor Yujiro Nomura 3-3 Yamato, Suwa City, Nagano Prefecture No. 5 within Seiko Epson Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数の発光部から複数の光ビームを発生
する光源と、前記光ビームを偏向する偏向器と、前記偏
向器により偏向された前記光ビームを被走査面上に結像
する結像光学系とを有し、前記結像光学系は第1結像レ
ンズと第2結像レンズとにより構成される光走査装置で
あって、 前記第2結像レンズは、長手方向中心から長手方向端部
に向かって、被走査面から遠ざかるように湾曲している
ことを特徴とする光走査装置。
1. A light source for generating a plurality of light beams from a plurality of light emitting parts, a deflector for deflecting the light beams, and a light beam imaged on the surface to be scanned, which is deflected by the deflector. And an image optical system, wherein the image forming optical system is an optical scanning device including a first image forming lens and a second image forming lens, and the second image forming lens extends from a center in a longitudinal direction. An optical scanning device characterized in that the optical scanning device is curved so as to move away from the surface to be scanned toward the end portion in the direction.
【請求項2】 前記第2結像レンズは、前記偏向器側の
面が鞍形トーリック面であることを特徴とする請求項1
記載の光走査装置。
2. The surface of the second imaging lens on the side of the deflector is a saddle-shaped toric surface.
The optical scanning device according to claim 1.
【請求項3】 前記鞍形トーリック面の主走査断面は、
非球面形状であることを特徴とする請求項2記載の光走
査装置。
3. The main scanning cross section of the saddle-shaped toric surface is
The optical scanning device according to claim 2, wherein the optical scanning device has an aspherical shape.
【請求項4】 前記第2結像レンズは、前記被走査面側
の面が非円柱面であることを特徴とする請求項1乃至3
記載の光走査装置。
4. The surface of the second imaging lens on the side of the surface to be scanned is a non-cylindrical surface.
The optical scanning device according to claim 1.
【請求項5】 前記第2結像レンズは、主走査方向の屈
折力が走査中心で負、走査端で正であることを特徴とす
る請求項1乃至4記載の光走査装置。
5. The optical scanning device according to claim 1, wherein the second imaging lens has a negative refractive power in the main scanning direction at the scanning center and a positive refractive power at the scanning end.
【請求項6】 前記第2結像レンズは、樹脂で形成され
ていることを特徴とする請求項1乃至5記載の光走査装
置。
6. The optical scanning device according to claim 1, wherein the second imaging lens is made of resin.
JP30172795A 1995-11-20 1995-11-20 Optical scanning device Expired - Lifetime JP3943155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30172795A JP3943155B2 (en) 1995-11-20 1995-11-20 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30172795A JP3943155B2 (en) 1995-11-20 1995-11-20 Optical scanning device

Publications (2)

Publication Number Publication Date
JPH09146030A true JPH09146030A (en) 1997-06-06
JP3943155B2 JP3943155B2 (en) 2007-07-11

Family

ID=17900439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30172795A Expired - Lifetime JP3943155B2 (en) 1995-11-20 1995-11-20 Optical scanning device

Country Status (1)

Country Link
JP (1) JP3943155B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833939B1 (en) 2000-02-04 2004-12-21 Fuji Xerox Co., Ltd. Light scanning method and light scanning device
JP2007271885A (en) * 2006-03-31 2007-10-18 Matsushita Electric Ind Co Ltd Scanning optical system, optical scanner and image forming apparatus equipped with the same, and scanning lens used for scanning optical system
US7315409B2 (en) 2002-03-08 2008-01-01 Ricoh Company, Ltd. Optical scanning device and image forming apparatus using the same
JP2008065234A (en) * 2006-09-11 2008-03-21 Canon Inc Image reading apparatus using image reading lens

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833939B1 (en) 2000-02-04 2004-12-21 Fuji Xerox Co., Ltd. Light scanning method and light scanning device
US7315409B2 (en) 2002-03-08 2008-01-01 Ricoh Company, Ltd. Optical scanning device and image forming apparatus using the same
US7414765B2 (en) 2002-03-08 2008-08-19 Ricoh Company, Ltd. Optical scanning device and image forming apparatus using the same
JP2007271885A (en) * 2006-03-31 2007-10-18 Matsushita Electric Ind Co Ltd Scanning optical system, optical scanner and image forming apparatus equipped with the same, and scanning lens used for scanning optical system
JP2008065234A (en) * 2006-09-11 2008-03-21 Canon Inc Image reading apparatus using image reading lens

Also Published As

Publication number Publication date
JP3943155B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
JP3712017B2 (en) Optical scanning device
JP5269169B2 (en) Scanning optical device and laser beam printer having the same
JP3943155B2 (en) Optical scanning device
JP2956169B2 (en) Scanning optical device
JPH07174998A (en) Scanning lens and optical scanner
JP3215764B2 (en) Reflective scanning optical system
JP2005338865A (en) Scanning optical apparatus and laser beam printer having the same
JP4349500B2 (en) Optical scanning optical system
JPH1090620A (en) Optical scanner
JP3320239B2 (en) Scanning optical device
JP3420439B2 (en) Optical scanning optical system and laser beam printer including the same
JPH0968664A (en) Optical system for light beam scanning
US6178030B1 (en) Light-scanning optical system having wobble-correcting function and light-scanning apparatus using the same
JPH1152277A (en) Optical scanner
JP3381333B2 (en) Optical scanning device
JP3680871B2 (en) Self-amplifying deflection scanning optical system
JP2775434B2 (en) Scanning optical system
JP2553882B2 (en) Scanning optical system
JP3729286B2 (en) Optical scanning device
JP3571808B2 (en) Optical scanning optical system and laser beam printer including the same
JPH112769A (en) Optical scanner
JP3478679B2 (en) Scanning optical device and laser beam printer having the same
JP3658439B2 (en) Scanning imaging lens and optical scanning device
JPH01200220A (en) Light beam scanning optical system
JPH116954A (en) Line image forming lens and optical scanner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050127

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050309

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070405

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

EXPY Cancellation because of completion of term