JP3658439B2 - Scanning imaging lens and optical scanning device - Google Patents

Scanning imaging lens and optical scanning device Download PDF

Info

Publication number
JP3658439B2
JP3658439B2 JP30887595A JP30887595A JP3658439B2 JP 3658439 B2 JP3658439 B2 JP 3658439B2 JP 30887595 A JP30887595 A JP 30887595A JP 30887595 A JP30887595 A JP 30887595A JP 3658439 B2 JP3658439 B2 JP 3658439B2
Authority
JP
Japan
Prior art keywords
scanning
optical
scanned
imaging lens
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30887595A
Other languages
Japanese (ja)
Other versions
JPH09145992A (en
Inventor
直樹 茂庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Optical Industries Co Ltd
Original Assignee
Ricoh Optical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Optical Industries Co Ltd filed Critical Ricoh Optical Industries Co Ltd
Priority to JP30887595A priority Critical patent/JP3658439B2/en
Publication of JPH09145992A publication Critical patent/JPH09145992A/en
Application granted granted Critical
Publication of JP3658439B2 publication Critical patent/JP3658439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は走査結像レンズおよびこの走査結像レンズを用いた光走査装置に関する。
【0002】
【従来の技術】
光源装置から放射される実質的な平行光束を線像結像光学系により主走査対応方向(光源から被走査面に到る光路を光学系の光軸に沿って直線的に展開した仮想的な光路を考え、この仮想的な光路上において主走査方向と平行的に対応する方向、上記仮想的な光路上で副走査方向に平行的に対応する方向を「副走査対応方向」という)に長い線像として結像させ、上記線像の結像位置の近傍に偏向反射面を有する光偏向器により等角速度的に偏向させ、偏向光束を結像光学系により被走査面上にビームスポットとして集光させて被走査面の等速的な光走査を行う光走査装置は従来から広く知られている。
【0003】
上記のような光走査装置における「結像光学系」として用いられる「走査結像レンズ」は、回転多面鏡等の光偏向器により等角速度的に偏向される偏向光束を被走査面に向かって集束させる「結像機能」とともに、被走査面上におけるビームスポットの移動を等速的にするために「fθ機能」を有する必要がある。
【0004】
近来、光走査に「より解像度の高い高品質の画像」を記録するため、走査結像レンズとして、fθ特性とともに、主・副走査方向の像面湾曲、ビーム径(被走査面上におけるビームスポットの径)の不均一性が良好に補正されたものが求められている。
【0005】
fθ特性が悪いと光走査の等速性からのずれが大きく、記録画像に「歪み」が生じ、ビーム径の不均一性が良好に補正されていないと、像高とともにビーム径が変動して記録画像の解像度を低下させる。また、像面湾曲が良好に補正されていない場合もビーム径が変動し、解像度低下の原因となる。
【0006】
【発明が解決しようとする課題】
この発明は上述の事情に鑑み、走査結像レンズにおいて、fθ特性と主・副走査方向の像面湾曲の有効走査領域全域にわたる良好な補正を可能ならしめることを課題とする。
【0007】
この発明の別の課題は、走査結像レンズにおいて、fθ特性と主・副走査方向の像面湾曲とともにビーム径の不均一性の有効走査領域全域にわたる良好な補正を可能ならしめることである。
【0008】
この発明はまた、光走査装置において、記録画像の歪みや解像度の低下の有効な防止を可能ならしめることを課題とする。
【0009】
【課題を解決するための手段】
この発明の「走査結像レンズ」は、実質的な平行光束を主走査対応方向に長い線像に結像させ、上記線像の結像位置近傍に偏向反射面を有する光偏向器により等角速度的に偏向させ、結像光学系により被走査面上にビームスポットとして集光し、被走査面を等速的に光走査する光走査装置において結像光学系として用いられる走査結像レンズである。
【0010】
この発明の走査結像レンズは、図1に示すように「光偏向器3側から被走査面8側へ向かって、第1群である第1レンズ5、第2群である第2レンズ6、第3群である第3レンズ7を配してなる3群3枚構成」である。
【0011】
光偏向器3により偏向される光束は偏向反射面4の近傍に「主走査対応方向に長い線像」として結像し、走査結像レンズにより被走査面8上にビームスポットとして集光されるから、走査結像レンズは副走査対応方向(図1の図面に直交する方向)に関し、被走査面8の位置と偏向反射面4の位置とを「幾何光学的に略共役な関係」とすることで所謂「面倒れ補正機能」を持ち、等角速度的に偏向される光束の結像点であるビームスポットの移動を等速化するから、主走査対応方向に関して「fθ機能」を持つ。
【0012】
請求項1記載の走査結像レンズにおいて、第1群である第1レンズ5は、偏向反射面4側が「凹の球面」、被走査面8側が「平面」であり、「負の屈折力」を持つ。
【0013】
第2群である第2レンズ6は、偏向反射面4側が「副走査対応方向にのみ曲率を持つ凹のシリンダ面」、被走査面側が「凸の球面」であり、主走査対応方向に正の屈折力を持ち、副走査対応方向に負の屈折力を持つアナモフィックなレンズである。
【0014】
第3群である第3レンズ7は、偏向反射面4側が「平面」、被走査面側が「トーリック面」であり、副走査対応方向に「より強い正の屈折力」を持つアナモフィックなレンズである。
【0015】
走査結像レンズの「主走査対応方向における全系の合成焦点距離」をf、偏向の起点から「第1群の偏向反射面側の面までの光軸上の距離」をDとするとき、これらは条件:
(1) 0.07< D/f <0.50
満足する。
【0016】
上記「偏向の起点」は、光スポットの像高が0のときの「走査結像レンズの光軸と偏向反射面との交点」であり、前記「線像」は設計上、その長さ方向の中央部がこの偏向の起点に結像される。
【0017】
請求項1記載の走査結像レンズを構成する上記第1〜第3レンズの材質は設計に応じて適宜選択可能であり、走査結像レンズを2種以上の材質で構成できることは勿論であるが、第1〜第3群を同一の材料で構成することも出来る(請求項2)。
【0018】
この発明の光走査装置は「光源装置から放射される実質的な平行光束を、線像結像光学系により主走査対応方向に長い線像として結像させ、線像の結像位置の近傍に偏向反射面を有する光偏向器により等角速度的に偏向させ、偏向光束を結像光学系により被走査面上にビームスポットとして集光させて被走査面の等速的な光走査を行う光走査装置」であって、結像光学系として請求項1または2記載の走査結像レンズを用いることを特徴とする(請求項3)
【0019】
【発明の実施の形態】
図1は、この発明の光走査装置の実施の1形態を示す。
【0020】
光源装置1は「実質的な平行光束」を放射するレーザー光源である。
【0021】
光源装置1からの実質的な平行光束は、線像結像光学系であるシリンダレンズ2により副走査対応方向(図面に直交する方向)にのみ収束され、光偏向器であるポリゴンミラー3の偏向反射面4の近傍に「主走査対応方向に長い線像」として結像し、偏向反射面4に依る反射光束はポリゴンミラー4の回転に伴い等角速度的に偏向する偏向光束として「走査結像レンズ」に入射し、同レンズの作用により被走査面8上にビームスポットとして集光し、被走査面8を光走査する。
【0022】
線像結像光学系2としてはシリンダレンズのほかに「凹シリンダミラー」を用いることができ、光偏向器としては図示のポリゴンミラーの他に回転2面鏡、回転単面鏡等を用いることができる。
【0023】
上記のように、この発明の「走査結像レンズ」は光走査装置に用いられるときは、副走査対応方向に関して被走査面8の位置と偏向反射面4の位置とを「幾何光学的に略共役な関係」としており、したがって請求項4記載の光走査装置は光偏向器における「面倒れ」を補正する機能を持つ。
【0024】
請求項1または2記載の「走査結像レンズ」はその構成により、fθ特性、主・副走査方向の像面湾曲の良好な補正を可能とし、請求項2記載の走査結像レンズは、主・副走査方向の「ビーム径の不均一さ」の良好な補正を可能とする。
【0025】
上記の如く、この発明の走査結像レンズは、各郡とも「主走査対応方向に曲率半径無限大の面」を持つ。即ち、第1群では被走査面側のレンズ面が「平面」であり、第2群では偏向反射面側の面が「副走査対応方向にのみ曲率を持つ凹のシリンダ面」であり、第3群では偏向反射面側の面が「平面」である。
【0026】
特に、第2,第3郡の主走査対応方向の形状(光軸と、主走査対応方向とを含む平面内でのレンズ断面形状)を「直線と円弧」の組み合わせとすることにより「主走査対応方向の屈折力」を相対的に高めて「主走査方向の像面湾曲」の補正を可能とするとともに、比較的屈折率の小さい「安価な硝材」の使用を可能としている。
【0027】
また、第2群の偏向反射面側の面を「副走査対応方向にのみ曲率を持つ凹のシリンダ面」にするとともに、第3群の被走査面側の面を「トーリック面」とすることにより「副走査方向の像面湾曲」の補正を可能にしている。
【0028】
条件(1)は、ビーム径を良好に保つための条件であり、下限値:0.07を超えると「副走査方向のビーム径変動」が大きくなり、上限値:0.50を超えると「主走査方向のビーム径変動」が大きくなり、条件1の範囲外では、レンズ面の曲率やレンズの厚み、空気間隙といった設計パラメータによりビーム径の変動を良好に抑えることが難しい。
【0029】
条件(1)の範囲内では、主・副走査方向とも、ビーム径の変動を良好に抑えることができる。
【0030】
【実施例】
以下、請求項1,2記載の走査結像レンズに関する具体的な実施例を5例挙げる。
【0031】
図1に示すように各実施例において、光偏向器3側から数えて第i番目のレンズ面の曲率半径を、主走査対応方向に就きRix、副走査対応方向に就きRiy(i=1〜6)、第i番目のレンズ面と第i+1番目のレンズ面との間の光軸上の面間隔をDi(i=1〜5)、光偏向器3の偏向の起点から第1番目のレンズ面までの光軸上の距離をD0(i=0)、第3群の被走査面側の面から被走査面8に到る光軸上の距離をD6(i=6)とする。
また偏向の起点側から数えて第j番目のレンズの使用波長(LDの発振波長)に対する屈折率をNj(j=1〜3)とする。
【0032】
Mは主走査対応方向における全系の焦点距離、fSは副走査対応方向における全系の合成焦点距離、2θは有効偏向角(単位:度)を表す。全実施例を通じ、光偏向器は図1に示すごとき偏向反射面を10面持つポリゴンミラー3であり、内接円半径:32mm、偏向反射面4への入射光束と走査結像レンズ光軸とのなす角:60度、光源装置1の発振波長:325nmである。
【0033】
実施例1
M=330,fS=66.498,2θ=44.3
i Rixiyi j Nj
0 24.932
1 −60.0 −60.0 11.908 1 1.48163
2 ∞ ∞ 9.158
3 ∞ −25.0 13.979 2 1.48163
4 −76.611 −76.611 9.784
5 ∞ ∞ 11.255 3 1.48163
6 −171.558 −23.855 402.818
条件式のパラメータの値:D0/fM=0.076 。
【0034】
実施例2
M=330,fS=85.062,2θ=44.3
i Rixiyi j Nj
0 52.026
1 −129.09 −129.09 11.604 1 1.48163
2 ∞ ∞ 15.651
3 ∞ −71.0 18.423 2 1.48163
4 −133.571 −133.571 4.622
5 ∞ ∞ 14.9 3 1.48163
6 −203.44 −34.57 372.488
条件式のパラメータの値:D0/fM=0.158 。
【0035】
実施例3
M=330,fS=124.872,2θ=44.3
i Rixiyi j Nj
0 162.61
1 −1429.8 −1429.8 7.754 1 1.48163
2 ∞ ∞ 1.396
3 ∞ −131.0 24.72 2 1.48163
4 −235.121 −235.121 1.675
5 ∞ ∞ 18.62 3 1.48163
6 −363.55 −53.62 324.472
条件式のパラメータの値:D0/fM=0.493 。
【0036】
実施例4
M=200,fS=67.245,2θ=61.9
i Rixiyi j Nj
0 61.511
1 −543.19 −543.19 6.732 1 1.48163
2 ∞ ∞ 13.248
3 ∞ −64.5 14.468 2 1.48163
4 −142.212 −142.212 0.532
5 ∞ ∞ 13.151 3 1.48163
6 −199.28 −28.06 200.027
条件式のパラメータの値:D0/fM=0.308 。
【0037】
実施例5
M=200,fS=73.355,2θ=61.9
i Rixiyi j Nj
0 79.257
1 −600.435 −600.435 7.563 1 1.48163
2 ∞ ∞ 5.593
3 ∞ −74.5 16.713 2 1.48163
4 −132.972 −132.972 5.83
5 ∞ ∞ 14.227 3 1.48163
6 −221.499 −32.38 194.646
条件式のパラメータの値:D0/fM=0.396 。
【0038】
実施例1に関する像面湾曲とfθ特性を図2に示す。
実施例2に関する像面湾曲とfθ特性を図3に示す。
実施例3に関する像面湾曲とfθ特性を図4に示す。
実施例4に関する像面湾曲とfθ特性を図5に示す。
実施例5に関する像面湾曲とfθ特性を図6に示す。
【0039】
実施例1に関する像高によるビーム径の変化を図7に示す。
実施例2に関する像高によるビーム径の変化を図8に示す。
実施例3に関する像高によるビーム径の変化を図9に示す。
実施例4に関する像高によるビーム径の変化を図10に示す。
実施例5に関する像高によるビーム径の変化を図11に示す。
なお、像面湾曲の図において、破線は主走査方向、実線は副走査方向に関するものである。
【0040】
これらの図から明らかなように、各実施例とも、像面湾曲は主・副走査方向とも良好に補正され、ビーム径の変動も小さい。
各実施例とも各群に非球面を用いていないので第1〜第3レンズの製造が容易である。また、各実施例とも第1〜第3群が同一材料で構成される(請求項2)ので製造が容易であり低コスト化が可能である。
【0041】
【発明の効果】
以上に説明したように、この発明によれば新規な走査結像レンズおよび光走査装置を提供できる。
【0042】
請求項1記載の走査結像レンズは、主・副走査方向の像面湾曲とfθ特性とを良好に補正することが可能である。
【0043】
請求項1記載の走査結像レンズはまた、主・副走査方向の像面湾曲とfθ特性を良好に補正することが可能であり、被走査面上でのビーム径の変動を有効に小さくできる。
【0044】
請求項2記載の走査結像レンズは第1〜第3群が同一材料で構成されるので、設計・製造が容易であり、低コスト化が可能である。
【0045】
請求項3記載の光走査装置は、良好な光走査の実現が可能である。
【図面の簡単な説明】
【図1】この発明の走査結像レンズのレンズ構成と、この走査結像レンズを用いた光走査装置の光学配置を示す図である。
【図2】実施例1に関する像面湾曲とfθ特性の図である。
【図3】実施例2に関する像面湾曲とfθ特性の図である。
【図4】実施例3に関する像面湾曲とfθ特性の図である。
【図5】実施例4に関する像面湾曲とfθ特性の図である。
【図6】実施例5に関する像面湾曲とfθ特性の図である。
【図7】実施例1におけるビーム径の画角による変化の図である。
【図8】実施例2におけるビーム径の画角による変化の図である。
【図9】実施例3におけるビーム径の画角による変化の図である。
【図10】実施例4におけるビーム径の画角による変化の図である。
【図11】実施例4におけるビーム径の画角による変化の図である。
【符号の説明】
1 光源装置
2 線像結像光学系
3 光偏向器
4 偏向反射面
5 第1群
6 第2群
7 第3群
8 被走査面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a scanning imaging lens and an optical scanning device using the scanning imaging lens.
[0002]
[Prior art]
A substantially parallel light beam radiated from the light source device is a virtual image obtained by linearly developing the optical path from the light source to the scanned surface along the optical axis of the optical system by the line image imaging optical system. Considering the optical path, the direction corresponding to the virtual scanning path in parallel with the main scanning direction and the direction corresponding to the virtual scanning path in parallel to the sub scanning direction are referred to as “sub scanning corresponding direction”). An image is formed as a line image, deflected at an equiangular velocity by an optical deflector having a deflection reflection surface in the vicinity of the image formation position of the line image, and the deflected light beam is collected as a beam spot on the surface to be scanned by the imaging optical system. 2. Description of the Related Art Conventionally, an optical scanning device that performs light scanning at a constant speed on a surface to be scanned is widely known.
[0003]
The “scanning imaging lens” used as the “imaging optical system” in the optical scanning apparatus as described above is directed toward the surface to be scanned with a deflected light beam deflected at a constant angular velocity by an optical deflector such as a rotary polygon mirror. In addition to the “imaging function” for focusing, it is necessary to have an “fθ function” in order to make the movement of the beam spot on the scanned surface constant.
[0004]
Recently, in order to record “higher quality images with higher resolution” in optical scanning, as a scanning imaging lens, fθ characteristics, curvature of field in the main and sub scanning directions, beam diameter (beam spot on the scanned surface) There is a demand for a material in which the non-uniformity of the diameter of the material is well corrected.
[0005]
If the fθ characteristic is poor, the deviation from the constant speed of the optical scanning is large, “distortion” occurs in the recorded image, and if the nonuniformity of the beam diameter is not corrected well, the beam diameter fluctuates with the image height. Reduce the resolution of the recorded image. Also, when the curvature of field is not corrected well, the beam diameter fluctuates, causing a reduction in resolution.
[0006]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to make it possible to satisfactorily correct the fθ characteristic and the field curvature in the main and sub scanning directions over the entire effective scanning region in the scanning imaging lens.
[0007]
Another object of the present invention is to make it possible to perform a good correction over the entire effective scanning region of the nonuniformity of the beam diameter as well as the fθ characteristic and the curvature of field in the main and sub scanning directions in the scanning imaging lens.
[0008]
Another object of the present invention is to enable effective prevention of distortion of a recorded image and a decrease in resolution in an optical scanning device.
[0009]
[Means for Solving the Problems]
The “scanning imaging lens” of the present invention forms a substantially parallel light beam into a line image that is long in the direction corresponding to the main scanning, and is provided with a constant angular velocity by an optical deflector having a deflection reflection surface in the vicinity of the imaging position of the line image. Is a scanning imaging lens used as an imaging optical system in an optical scanning device that deflects optically, condenses as a beam spot on a scanned surface by an imaging optical system, and optically scans the scanned surface at a constant speed .
[0010]
As shown in FIG. 1, the scanning imaging lens of the present invention is “from the optical deflector 3 side toward the scanned surface 8 side, the first lens 5 as the first group and the second lens 6 as the second group. , “A third group of three elements in which the third lens 7 as the third group is arranged”.
[0011]
The light beam deflected by the optical deflector 3 is imaged as a “line image long in the main scanning direction” in the vicinity of the deflecting reflection surface 4 and condensed as a beam spot on the scanned surface 8 by the scanning imaging lens. Therefore, the scanning imaging lens has a “geometrical optically conjugate relationship” between the position of the scanned surface 8 and the position of the deflecting reflecting surface 4 in the sub-scanning corresponding direction (direction orthogonal to the drawing of FIG. 1). Thus, it has a so-called “surface tilt correction function” and makes the movement of the beam spot, which is the imaging point of the light beam deflected at a constant angular velocity constant, so that it has the “fθ function” in the main scanning corresponding direction.
[0012]
2. The scanning imaging lens according to claim 1, wherein the first lens 5 as the first group has a "refractive spherical surface" on the deflecting / reflecting surface 4 side and a "plane" on the scanned surface 8 side, and has a "negative refractive power". have.
[0013]
The second lens 6 in the second group has a “deflection cylinder surface having a curvature only in the sub-scanning corresponding direction” on the side of the deflecting reflection surface 4 and a “convex spherical surface” on the surface to be scanned. This is an anamorphic lens having a negative refractive power in the sub-scanning corresponding direction.
[0014]
The third lens 7 in the third group is an anamorphic lens having a “flat surface” on the deflecting / reflecting surface 4 side, a “toric surface” on the scanned surface side, and “stronger positive refractive power” in the sub-scanning direction. is there.
[0015]
The total focal length of the entire system in the main scanning-corresponding direction of the scanning imaging lens is f M , and the “distance on the optical axis from the deflection start point to the surface on the deflection reflecting surface side of the first group” is D 0 . When these are the conditions:
(1) 0.07 <D 0 / f M <0.50
Satisfied.
[0016]
The above-mentioned “starting point of deflection” is the “intersection between the optical axis of the scanning imaging lens and the deflecting reflecting surface” when the image height of the light spot is 0, and the “line image” is designed in the length direction. The center of the image is imaged at the origin of this deflection.
[0017]
The material of the first to third lenses constituting the scanning imaging lens according to claim 1, wherein is selectable appropriately depending on the design, but is of course to be able to configure the scanning imaging lens with two or more materials The first to third groups can be made of the same material (claim 2).
[0018]
The optical scanning device according to the present invention “forms a substantially parallel light beam emitted from the light source device as a long line image in the direction corresponding to the main scanning by the line image forming optical system, and in the vicinity of the image forming position of the line image. Optical scanning that deflects the beam at a constant angular velocity by an optical deflector having a deflecting reflecting surface and focuses the deflected light beam as a beam spot on the surface to be scanned by the imaging optical system to perform constant speed optical scanning of the surface to be scanned. The scanning imaging lens according to claim 1 or 2 is used as an imaging optical system (Claim 3) .
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of an optical scanning device according to the present invention.
[0020]
The light source device 1 is a laser light source that emits a “substantially parallel light flux”.
[0021]
The substantially parallel light beam from the light source device 1 is converged only in the sub-scanning corresponding direction (direction orthogonal to the drawing) by the cylinder lens 2 which is a line image imaging optical system, and is deflected by the polygon mirror 3 which is an optical deflector. An image formed as a “line image long in the main scanning direction” is formed in the vicinity of the reflecting surface 4, and the reflected light beam due to the deflecting reflecting surface 4 is “scanned imaged as a deflected light beam deflected at a constant angular velocity as the polygon mirror 4 rotates. It enters the lens ”and is focused as a beam spot on the surface to be scanned 8 by the action of the lens, and the surface to be scanned 8 is optically scanned.
[0022]
In addition to the cylinder lens, a “concave cylinder mirror” can be used as the line image imaging optical system 2, and a rotating dihedral mirror, a rotating single mirror or the like is used in addition to the illustrated polygon mirror as the optical deflector. Can do.
[0023]
As described above, when the “scanning imaging lens” of the present invention is used in an optical scanning device, the position of the surface to be scanned 8 and the position of the deflection reflecting surface 4 in the sub-scanning corresponding direction are “substantially geometrically optical. Accordingly, the optical scanning device according to claim 4 has a function of correcting “surface tilt” in the optical deflector.
[0024]
The “scanning imaging lens” according to claim 1 or 2 enables favorable correction of the fθ characteristic and the curvature of field in the main / sub-scanning direction by the configuration thereof. -Good correction of "non-uniform beam diameter" in the sub-scanning direction is possible.
[0025]
As described above, the scanning imaging lens of the present invention has “a surface with an infinite curvature radius in the main scanning direction” in each group. That is, in the first group, the lens surface on the scanned surface side is a “flat surface”, and in the second group, the surface on the deflection reflecting surface side is “a concave cylinder surface having a curvature only in the sub-scanning corresponding direction”. In the third group, the surface on the deflection reflection surface side is a “plane”.
[0026]
In particular, by combining the shape of the second and third groups in the main scanning correspondence direction (the lens cross-sectional shape in the plane including the optical axis and the main scanning correspondence direction) with a combination of “straight line and arc”, “main scanning” The “refractive power in the corresponding direction” is relatively increased to enable correction of “field curvature in the main scanning direction”, and “inexpensive glass material” having a relatively low refractive index can be used.
[0027]
Further, the surface of the second group on the deflecting / reflecting surface side should be “a concave cylinder surface having a curvature only in the sub-scanning direction”, and the surface of the third group on the scanned surface side should be “toric surface”. This makes it possible to correct “field curvature in the sub-scanning direction”.
[0028]
Condition (1) is a condition for maintaining a good beam diameter. When the lower limit value exceeds 0.07, “beam diameter fluctuation in the sub-scanning direction” increases, and when the upper limit value exceeds 0.50, “ “Beam diameter fluctuation in the main scanning direction” becomes large, and outside the range of condition 1, it is difficult to satisfactorily suppress the fluctuation of the beam diameter due to design parameters such as the curvature of the lens surface, the lens thickness, and the air gap.
[0029]
Within the range of condition (1), fluctuations in the beam diameter can be satisfactorily suppressed in both the main and sub scanning directions.
[0030]
【Example】
Hereinafter, five specific examples regarding the scanning imaging lens according to claims 1 and 2 will be given .
[0031]
As shown in FIG. 1, in each embodiment, the radius of curvature of the i-th lens surface counted from the optical deflector 3 side is R ix in the main scanning corresponding direction, and R iy (i = 1 to 6), the surface distance on the optical axis between the i-th lens surface and the (i + 1) -th lens surface is D i (i = 1 to 5), and the first point from the deflection starting point of the optical deflector 3 The distance on the optical axis to the second lens surface is D 0 (i = 0), and the distance on the optical axis from the surface of the third group on the scanned surface side to the scanned surface 8 is D 6 (i = 6). ).
The refractive index with respect to the wavelength used (the oscillation wavelength of the LD) of the j-th lens counted from the deflection start side is N j (j = 1 to 3).
[0032]
f M represents the focal length of the entire system in the main scanning correspondence direction, f S represents the combined focal length of the entire system in the sub scanning correspondence direction, and 2θ represents the effective deflection angle (unit: degree). Throughout all the examples, the optical deflector is a polygon mirror 3 having ten deflecting reflection surfaces as shown in FIG. 1, and has an inscribed circle radius of 32 mm, an incident light beam on the deflecting reflecting surface 4, an optical axis of the scanning imaging lens, and the like. The oscillation angle of the light source device 1 is 325 nm.
[0033]
Example 1
f M = 330, f S = 66.498, 2θ = 44.3
i R ix R iy D i j N j
0 24.932
1 −60.0 −60.0 11.908 1 1.48163
2 ∞ ∞ 9.158
3 ∞ -25.0 13.9779 2 1.48163
4 -76.611 -76.611 9.784
5 ∞ ∞ 11.255 3 1.48163
6 -171.558-23.855 402.818
Parameter value of conditional expression: D 0 / f M = 0.076
[0034]
Example 2
f M = 330, f S = 85.062, 2θ = 44.3
i R ix R iy D i j N j
0 52.026
1 -129.09 -129.09 11.604 1 1.48163
2 ∞ ∞ 15.651
3∞-71.0 18.423 2 1.48163
4 −133.571 −133.571 4.622
5 ∞ ∞ 14.9 3 1.48163
6 -203.44 -34.57 372.488
Parameter value of conditional expression: D 0 / f M = 0.158.
[0035]
Example 3
f M = 330, f S = 124.872, 2θ = 44.3
i R ix R iy D i j N j
0 162.61
1-1429.8-1429.8 7.754 1 1.48163
2 ∞ ∞ 1.396
3 ∞-131.0 24.72 2 1.48163
4 -235.121 -235.121 1.675
5 ∞ ∞ 18.62 3 1.48163
6 -363.55 -53.62 324.472
Parameter value of conditional expression: D 0 / f M = 0.493.
[0036]
Example 4
f M = 200, f S = 67.245, 2θ = 61.9
i R ix R iy D i j N j
0 61.511
1 -543.19 -543.19 6.732 1 1.48163
2 ∞ ∞ 13.248
3 ∞ -64.5 14.468 2 1.48163
4 -142.212 -142.212 0.532
5 ∞ ∞ 13.151 3 1.48163
6 -199.28 -28.06 200.027
Parameter value of conditional expression: D 0 / f M = 0.308.
[0037]
Example 5
f M = 200, f S = 73.355, 2θ = 61.9
i R ix R iy D i j N j
0 79.257
1 -600.435 -600.435 7.563 1 1.48163
2 ∞ ∞ 5.593
3 ∞ -74.5 16.713 2 1.48163
4-132.972 -132.972 5.83
5 ∞ ∞ 14.227 3 1.48163
6 -221.499 -32.38 194.646
Parameter value of conditional expression: D 0 / f M = 0.396.
[0038]
FIG. 2 shows the field curvature and the fθ characteristic regarding the first embodiment.
FIG. 3 shows the field curvature and the fθ characteristic regarding the second embodiment.
FIG. 4 shows the field curvature and the fθ characteristic regarding the third embodiment.
FIG. 5 shows the field curvature and the fθ characteristic regarding the fourth embodiment.
FIG. 6 shows the field curvature and the fθ characteristic regarding the fifth embodiment.
[0039]
FIG. 7 shows the change in the beam diameter according to the image height regarding the first embodiment.
FIG. 8 shows changes in the beam diameter depending on the image height in the second embodiment.
FIG. 9 shows the change in the beam diameter according to the image height related to Example 3.
FIG. 10 shows changes in the beam diameter according to the image height in the fourth embodiment.
FIG. 11 shows changes in the beam diameter depending on the image height in the fifth embodiment.
In the field curvature diagram, the broken line relates to the main scanning direction, and the solid line relates to the sub-scanning direction.
[0040]
As is clear from these drawings, in each of the examples, the field curvature is corrected well in both the main and sub-scanning directions, and the variation in the beam diameter is small.
Since each embodiment does not use an aspherical surface for each group, it is easy to manufacture the first to third lenses. In each embodiment, since the first to third groups are made of the same material ( claim 2 ), the manufacture is easy and the cost can be reduced.
[0041]
【The invention's effect】
As described above, according to the present invention, a novel scanning imaging lens and an optical scanning device can be provided.
[0042]
The scanning imaging lens according to claim 1 can satisfactorily correct the field curvature and the fθ characteristic in the main and sub scanning directions.
[0043]
The scanning imaging lens according to claim 1 is also capable of satisfactorily correcting the curvature of field and the fθ characteristic in the main and sub scanning directions, and can effectively reduce the variation of the beam diameter on the surface to be scanned. .
[0044]
In the scanning imaging lens according to the second aspect, since the first to third groups are made of the same material, the design and manufacture are easy, and the cost can be reduced.
[0045]
The optical scanning device according to claim 3 can realize good optical scanning.
[Brief description of the drawings]
FIG. 1 is a diagram showing a lens configuration of a scanning imaging lens according to the present invention and an optical arrangement of an optical scanning device using the scanning imaging lens.
2 is a diagram of field curvature and fθ characteristics related to Example 1. FIG.
3 is a diagram of field curvature and fθ characteristics related to Example 2. FIG.
FIG. 4 is a diagram of field curvature and fθ characteristics related to Example 3.
FIG. 5 is a diagram of field curvature and fθ characteristics related to Example 4;
6 is a diagram of field curvature and fθ characteristics regarding Example 5. FIG.
7 is a graph showing changes in beam diameter according to the angle of view in Embodiment 1. FIG.
FIG. 8 is a diagram showing a change in the beam diameter according to the angle of view in the second embodiment.
FIG. 9 is a graph showing changes in the beam diameter depending on the angle of view in the third embodiment.
FIG. 10 is a graph showing changes in the beam diameter according to the angle of view in the fourth embodiment.
FIG. 11 is a graph showing changes in the beam diameter according to the angle of view in the fourth embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Light source device 2 Line image imaging optical system 3 Optical deflector 4 Deflection reflective surface 5 1st group 6 2nd group 7 3rd group 8 Surface to be scanned

Claims (3)

実質的な平行光束を主走査対応方向に長い線像に結像させ、上記線像の結像位置近傍に偏向反射面を有する光偏向器により等角速度的に偏向させ、走査結像レンズにより被走査面上にビームスポットとして集光し、上記被走査面を等速的に光走査する光走査装置における走査結像レンズであって、
光偏向器側から被走査面側へ向かって順次、第1〜第3群を配してなり、主走査対応方向に関してfθ機能を持ち、
第1群は、偏向反射面側に凹の球面、被走査面側に平面を有し、負の屈折力を持つ第1レンズ、
第2群は、偏向反射面側に副走査対応方向にのみ曲率を持つ凹のシリンダ面、被走査面側に凸の球面を有し、主走査対応方向に正の屈折力を持ち、副走査対応方向に負の屈折力を持つアナモフィックな第2レンズ、
第3群は、偏向反射面側に平面、被走査面側にトーリック面を有し、副走査対応方向により強い正の屈折力を持つアナモフィックな第3レンズである、3群3枚構成であり、
主走査対応方向における全系の合成焦点距離をf M 、偏向の起点から第1群の偏向反射面側の面までの光軸上の距離をD 0 とするとき、これらが条件:
(1) 0.07< D 0 /f M <0.50
を満足することを特徴とする走査結像レンズ。
A substantially parallel light beam is formed into a line image that is long in the main scanning direction, deflected at an equiangular velocity by an optical deflector having a deflecting reflection surface in the vicinity of the image forming position of the line image, and covered by a scanning imaging lens. A scanning imaging lens in an optical scanning device that collects light as a beam spot on a scanning surface and optically scans the surface to be scanned at a constant speed,
The first to third groups are sequentially arranged from the optical deflector side to the scanned surface side, and have an fθ function in the main scanning corresponding direction.
The first group has a concave spherical surface on the deflection reflecting surface side, a flat surface on the scanned surface side, and a first lens having negative refractive power,
The second group has a concave cylinder surface having a curvature only in the direction corresponding to the sub-scanning on the deflecting reflection surface side, and a convex spherical surface on the surface to be scanned, and has a positive refractive power in the direction corresponding to the main scanning. An anamorphic second lens with negative refractive power in the corresponding direction,
Group 3 plane deflecting reflective surface side has a toric surface on the surface to be scanned side, Ru anamorphic third lens der having a strong positive refractive power by the sub-scanning direction, in three groups three-element Yes,
Assuming that the total focal length of the entire system in the main scanning correspondence direction is f M and the distance on the optical axis from the deflection start point to the surface on the deflection reflecting surface side of the first group is D 0 , these are the conditions:
(1) 0.07 <D 0 / f M <0.50
A scanning imaging lens characterized by satisfying
請求項1記載の走査結像レンズにおいて、The scanning imaging lens according to claim 1.
第1〜第3群が同一材料で構成されていることを特徴とする走査結像レンズ。A scanning imaging lens, wherein the first to third groups are made of the same material.
光源装置から放射される実質的な平行光束を線像結像光学系により主走査対応方向に長い線像として結像させ、上記線像の結像位置の近傍に偏向反射面を有する光偏向器により等角速度的に偏向させ、偏向光束を結像光学系により被走査面上にビームスポットとして集光させて上記被走査面の等速的な光走査を行う光走査装置であって、An optical deflector that forms a substantially parallel light beam emitted from a light source device as a long line image in the main scanning direction by a line image imaging optical system, and has a deflecting reflection surface in the vicinity of the line image forming position. An optical scanning device that performs constant-speed optical scanning of the scanned surface by deflecting the deflected light beam as a beam spot on the scanned surface by an imaging optical system,
結像光学系として請求項1または2記載の走査結像レンズを用いることを特徴とする光走査装置。An optical scanning apparatus using the scanning imaging lens according to claim 1 or 2 as an imaging optical system.
JP30887595A 1995-11-28 1995-11-28 Scanning imaging lens and optical scanning device Expired - Fee Related JP3658439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30887595A JP3658439B2 (en) 1995-11-28 1995-11-28 Scanning imaging lens and optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30887595A JP3658439B2 (en) 1995-11-28 1995-11-28 Scanning imaging lens and optical scanning device

Publications (2)

Publication Number Publication Date
JPH09145992A JPH09145992A (en) 1997-06-06
JP3658439B2 true JP3658439B2 (en) 2005-06-08

Family

ID=17986320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30887595A Expired - Fee Related JP3658439B2 (en) 1995-11-28 1995-11-28 Scanning imaging lens and optical scanning device

Country Status (1)

Country Link
JP (1) JP3658439B2 (en)

Also Published As

Publication number Publication date
JPH09145992A (en) 1997-06-06

Similar Documents

Publication Publication Date Title
JP2563260B2 (en) Optical beam scanning device
JPH0727123B2 (en) Surface tilt correction scanning optical system
JP3003065B2 (en) Optical scanning device
JP4349500B2 (en) Optical scanning optical system
JP3658439B2 (en) Scanning imaging lens and optical scanning device
JPH04141619A (en) Scanning optical system with surface tilt correcting function
JP3943155B2 (en) Optical scanning device
JP2511904B2 (en) Optical beam scanning device
JP3381333B2 (en) Optical scanning device
JPH0968664A (en) Optical system for light beam scanning
JP2553882B2 (en) Scanning optical system
JP3364525B2 (en) Scanning imaging lens and optical scanning device
JP3571808B2 (en) Optical scanning optical system and laser beam printer including the same
JP2856475B2 (en) Fθ lens for optical scanning device
JP2635604B2 (en) Optical scanning device
JP3243030B2 (en) Scanning imaging lens and optical scanning device
JP3441008B2 (en) Scanning imaging lens and optical scanning device
JP2840354B2 (en) Fθ lens system in optical scanning device
JP2716428B2 (en) Surface tilt correction scanning optical system
JP2711531B2 (en) Optical system for optical scanning device
JPH01200220A (en) Light beam scanning optical system
JP2856491B2 (en) Fθ lens for optical scanning device
JP3330649B2 (en) Anamorphic fθ lens and optical scanning device
JP2927846B2 (en) Fθ lens system in optical scanning device
JPH04278910A (en) Image forming lens system in optical scanner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees