JPH09144504A - Turbine cooling blade and its working method - Google Patents

Turbine cooling blade and its working method

Info

Publication number
JPH09144504A
JPH09144504A JP7304592A JP30459295A JPH09144504A JP H09144504 A JPH09144504 A JP H09144504A JP 7304592 A JP7304592 A JP 7304592A JP 30459295 A JP30459295 A JP 30459295A JP H09144504 A JPH09144504 A JP H09144504A
Authority
JP
Japan
Prior art keywords
cooling
blade
turbine
film
film cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7304592A
Other languages
Japanese (ja)
Inventor
Hidemichi Yamawaki
栄道 山脇
Takashi Maie
孝 真家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP7304592A priority Critical patent/JPH09144504A/en
Publication of JPH09144504A publication Critical patent/JPH09144504A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/11Two-dimensional triangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/14Two-dimensional elliptical

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laser Beam Processing (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To make an individual film cooling hole freely adjustable, attain uniformity of a flow rate without producing an excessive pressure loss, enable the application to an engineering-ceramic-made turbine blade excellent in high temperature performance, and further enhance film efficiency. SOLUTION: A plurality of film cooling holes 12 for blowing out cooling gas are provided in a surface of a hollow turbine blade 10. This film cooling hole is formed in a diffuser shape spread to the downstream of a main flow from inside the turbine blade. In this film cooling hole 12, irradiation of a laser beam 5, having a focal point 14b in the inside of the hollow turbine blade, is applied to its surface, the film cooling hole is formed in the hollow turbine blade 10 by this laser beam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、タービン翼の表面
に冷却ガスの薄いフィルムを形成するためのフィルム冷
却孔を備えたタービン冷却翼とその加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine cooling blade provided with film cooling holes for forming a thin film of cooling gas on the surface of a turbine blade and a method for processing the same.

【0002】[0002]

【従来の技術】ガスタービン及びガスタービンを用いた
複合サイクルの熱効率は、タービン入口温度を高めるこ
とによって著しく向上させることができる。このため、
図8に示すように、これまで耐熱材料の開発や冷却技術
の改良によって、タービン入口温度の高温化が図られて
きている。
The thermal efficiency of gas turbines and combined cycles using gas turbines can be significantly improved by increasing the turbine inlet temperature. For this reason,
As shown in FIG. 8, the turbine inlet temperature has been increased by developing heat-resistant materials and improving cooling technology.

【0003】かかるタービン翼に用いる耐熱材料には、
従来、主としてCo基及びNi基の耐熱金属が用いられ
てきたが、現在、耐熱合金より優れた耐熱材料として、
SiCやSi3 4 などのエンジニアリングセラミック
が注目され、研究開発が行われている(図9)。かかる
セラミック翼の適用により、耐用温度を約1400℃前
後にまで高めることができる。
Heat resistant materials used for such turbine blades include
Conventionally, mainly Co-based and Ni-based refractory metals have been used, but nowadays, as a heat-resistant material superior to heat-resistant alloys,
Engineering ceramics such as SiC and Si 3 N 4 are drawing attention and are being researched and developed (Fig. 9). By applying such a ceramic blade, the service temperature can be increased to about 1400 ° C.

【0004】また、タービン翼の耐熱材料を許容温度以
下に保つために、圧縮空気の一部を用いて翼を冷却する
対流冷却、インピンジ冷却、フィルム冷却、トランスピ
レーション冷却、等の冷却技術が、従来、単独に或いは
組合わせて用いられている。このうち、フィルム冷却
は、図10に例示するように、タービン翼1の表面に空
気吹出孔2(フィルム冷却孔)を設け、この孔から冷却
空気3を吹き出してタービン翼の表面に冷却空気の薄い
フィルムを形成するものである。かかるフィルム冷却孔
2には、丸孔又は矩形孔が主として用いられている(例
えば、特開昭62−165505号公報、特願平6−1
61734号、未公開、等)。かかるフィルム冷却は、
翼への流入熱量を減少させる効果が高く、タービン入口
温度の高温化のために特に適していることが知られてい
る。
Further, in order to keep the heat-resistant material of the turbine blade below the allowable temperature, there are cooling techniques such as convection cooling, impingement cooling, film cooling, and transpiration cooling in which a part of compressed air is used to cool the blade. Conventionally, they are used alone or in combination. Among them, in the film cooling, as illustrated in FIG. 10, an air blowout hole 2 (film cooling hole) is provided on the surface of the turbine blade 1, and cooling air 3 is blown from this hole to cool the cooling air on the surface of the turbine blade. It forms a thin film. A round hole or a rectangular hole is mainly used as the film cooling hole 2 (for example, JP-A-62-165505, Japanese Patent Application No. 6-1).
61734, unpublished, etc.). Such film cooling is
It is known that the effect of reducing the amount of heat flowing into the blade is high, and that it is particularly suitable for increasing the turbine inlet temperature.

【0005】[0005]

【発明が解決しようとする課題】航空エンジンの性能向
上と低公害化を図るために、燃料に水素を用いた水素燃
焼タービンの開発が進められている。この水素燃焼ター
ビンは、従来の航空エンジンと異なり、主流ガスと冷却
ガスが主として水蒸気となる。空気と比べて水蒸気は熱
伝導が良いことから、ガスタービンの動翼,静翼に流入
する熱量が増大し、熱負荷が大きくなる。これに対処
し、ガスタービンの性能向上を図るためには、翼への流
入熱量を減少させる効果があるフィルム冷却の性能を更
に高める必要がある。
In order to improve the performance of an aviation engine and reduce pollution, a hydrogen combustion turbine using hydrogen as a fuel is under development. Unlike the conventional aviation engine, this hydrogen combustion turbine mainly uses steam as the mainstream gas and the cooling gas. Since water vapor has better heat conduction than air, the amount of heat flowing into the moving blades and stationary blades of the gas turbine increases, and the heat load increases. In order to cope with this and improve the performance of the gas turbine, it is necessary to further enhance the film cooling performance, which has the effect of reducing the amount of heat flowing into the blade.

【0006】一方、航空エンジンの性能を飛躍的に高め
るためには、タービン入口温度を従来の最高1300℃
前後から約1700℃前後にまで高める必要があり、こ
れを実現するためには、タービン翼を従来の耐熱材料か
ら高温性能の優れたエンジニアリングセラミック(Si
C,Si3 4 ,等)に変更する必要がある。
On the other hand, in order to dramatically improve the performance of an aero engine, the turbine inlet temperature is set to a maximum of 1300 ° C, which is the conventional maximum.
It is necessary to raise the temperature from around 1700 ° C to around 1700 ° C. In order to realize this, turbine blades can be made from conventional heat-resistant materials to engineering ceramics (Si
C, Si 3 N 4 , etc.).

【0007】しかし、従来のフィルム冷却孔は、丸孔又
は矩形孔であり、丸孔のフィルム冷却孔は、フィルム効
率ηが低く、矩形孔のフィルム冷却孔は、加工が困難で
ある問題点があった。すなわち、従来の矩形孔は、矩形
孔に相当する電極を用いて放電加工により形成していた
が、この放電加工は電極によって孔形状が決まるため、
形状の微調整が困難であり、各フィルム冷却孔の流量を
均一化するには、一部に圧力損失の大きい絞りを設ける
必要があった。また、かかる放電加工は導電性のある金
属材料にしか適用できず、高温性能の優れたエンジニア
リングセラミックの加工ができない問題点があった。一
方、丸孔は、例えばレーザ加工により加工できるが、上
述したフィルム効率ηが低い問題点があった。
However, the conventional film cooling holes are round holes or rectangular holes. The film cooling holes with round holes have a low film efficiency η, and the film cooling holes with rectangular holes are difficult to process. there were. That is, the conventional rectangular hole was formed by electric discharge machining using an electrode corresponding to the rectangular hole, but since the hole shape is determined by the electrode in this electric discharge machining,
It is difficult to finely adjust the shape, and in order to make the flow rate of each film cooling hole uniform, it was necessary to provide a throttle with a large pressure loss in part. Further, such electric discharge machining can be applied only to a conductive metal material, and there is a problem that an engineering ceramic excellent in high temperature performance cannot be machined. On the other hand, round holes can be processed by, for example, laser processing, but there is a problem that the above-mentioned film efficiency η is low.

【0008】なお、フィルム効率ηは、フィルム冷却の
有効性を示すものであり、図10において、主流の温度
をTg、冷却流体膜の温度をTf、空気吹出孔2におけ
る冷却空気の温度をTc、とする場合に、η=(Tg−
Tf)/(Tg−Tc)で定義される。
The film efficiency η indicates the effectiveness of film cooling. In FIG. 10, the temperature of the main stream is Tg, the temperature of the cooling fluid film is Tf, and the temperature of the cooling air in the air outlet 2 is Tc. , And η = (Tg−
It is defined by Tf) / (Tg-Tc).

【0009】本発明は、上述した問題点を解決するため
に創案されたものである。すなわち、本発明の目的は、
個々のフィルム冷却孔を自由に調整でき、圧力損失を過
大にすることなく流量の均一化を図ることができ、高温
性能の優れたエンジニアリングセラミック製のタービン
翼にも適用でき、かつフィルム効率ηを高めることがで
きるタービン冷却翼とその加工方法を提供することにあ
る。
The present invention has been made to solve the above problems. That is, the object of the present invention is:
Individual film cooling holes can be adjusted freely, the flow rate can be made uniform without excessive pressure loss, it can be applied to engineering ceramic turbine blades with excellent high-temperature performance, and the film efficiency η It is an object of the present invention to provide a turbine cooling blade that can be enhanced and a processing method thereof.

【0010】[0010]

【課題を解決するための手段】本発明によれば、中空タ
ービン翼の表面に冷却ガスを吹き出すための複数のフィ
ルム冷却孔を備え、該フィルム冷却孔は、タービン翼の
内部から主流の下流側に拡がるデュフューザー状に形成
されている、ことを特徴とするタービン冷却翼が提供さ
れる。本発明の好ましい実施形態によれば、前記フィル
ム冷却孔は、タービン翼の内部に頂点を有する円錐形状
を有する。また、前記フィルム冷却孔は、タービン翼の
内部に頂点を有する円錐形状が翼の長さ方向に連なった
横長デュフューザー形状を有する、ことが好ましい。
According to the present invention, a plurality of film cooling holes for blowing a cooling gas are provided on the surface of a hollow turbine blade, and the film cooling holes are provided from the inside of the turbine blade on the downstream side of the main flow. A turbine cooling blade is provided, which is formed in the shape of a diffuser that spreads over. According to a preferred embodiment of the present invention, the film cooling hole has a conical shape having an apex inside the turbine blade. Further, it is preferable that the film cooling hole has a laterally long diffuser shape in which a conical shape having an apex inside the turbine blade is continuous in the blade length direction.

【0011】更に、本発明によれば、中空タービン翼の
表面にタービン翼の内部に焦点を有するレーザビームを
照射し、該レーザビームにより中空タービン翼にフィル
ム冷却孔を形成する、ことを特徴とするタービン冷却翼
の加工方法が提供される。
Further, according to the present invention, the surface of the hollow turbine blade is irradiated with a laser beam having a focus inside the turbine blade, and the laser beam forms a film cooling hole in the hollow turbine blade. A method for processing a turbine cooling blade is provided.

【0012】上述した本発明のタービン冷却翼とその加
工方法によれば、タービン翼の内部から主流の下流側に
拡がるデュフューザー状のフィルム冷却孔を、タービン
翼の内部に焦点を有するレーザビームにより加工するの
で、従来の金属材料のみならず、従来放電加工では加工
できなかったエンジニアリングセラミック製のタービン
翼にも適用できる。また、デュフューザー状のフィルム
冷却孔をレーザビームにより加工することにより、レー
ザビームの調整により、従来の放電加工に比較して個々
のフィルム冷却孔を自由に調整でき、圧力損失を過大に
することなく流量の均一化を図ることができる。更に、
種々の実験を行った結果、後述するように、かかるデュ
フューザー状のフィルム冷却孔のフィルム効率ηを、従
来の丸孔のみならず矩形孔よりも高めることができるこ
とがわかった。
According to the above-described turbine cooling blade of the present invention and the processing method thereof, the diffuser-shaped film cooling hole extending from the inside of the turbine blade to the downstream side of the main flow is processed by the laser beam having the focus inside the turbine blade. Therefore, it can be applied not only to conventional metal materials but also to turbine blades made of engineering ceramics, which could not be processed by conventional electric discharge machining. Also, by processing the film cooling holes in the shape of a diffuser with a laser beam, by adjusting the laser beam, individual film cooling holes can be freely adjusted as compared with conventional electrical discharge machining, without increasing pressure loss excessively. The flow rate can be made uniform. Furthermore,
As a result of various experiments, it was found that the film efficiency η of such a diffuser-like film cooling hole can be increased more than that of a conventional round hole as well as a rectangular hole, as described later.

【0013】[0013]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において共通す
る部分には同一の符号を付して使用する。図1は、本発
明によるタービン冷却翼とその加工方法を示す全体構成
図である。この図に示すように、本発明のタービン冷却
翼10は、中空タービン翼の表面に冷却ガスを吹き出す
ための複数のフィルム冷却孔12を備えており、このフ
ィルム冷却孔12は、タービン翼の内部から主流の下流
側に拡がるデュフューザー状に形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In the drawings, common parts are denoted by the same reference numerals. FIG. 1 is an overall configuration diagram showing a turbine cooling blade and a processing method thereof according to the present invention. As shown in this figure, a turbine cooling blade 10 of the present invention is provided with a plurality of film cooling holes 12 for blowing out a cooling gas on the surface of a hollow turbine blade. To a downstream side of the mainstream.

【0014】図1に示すように、このフィルム冷却孔1
2は、レーザビーム5をレンズ14aで絞って焦点14
bに集光するようになったレーザ加工装置14により加
工される。すなわち、このレーザ加工装置14を用い
て、中空タービン翼の表面にタービン翼の内部に焦点1
4bを有するレーザビーム5を照射し、このレーザビー
ム5により中空タービン翼にフィルム冷却孔12を容易
に形成することができる。
As shown in FIG. 1, this film cooling hole 1
2 is focused on the laser beam 5 by the lens 14a.
It is processed by the laser processing device 14 adapted to focus on b. That is, by using this laser processing device 14, the focal point 1 inside the turbine blade is formed on the surface of the hollow turbine blade.
A laser beam 5 having 4b is irradiated, and the laser beam 5 can easily form the film cooling hole 12 in the hollow turbine blade.

【0015】この加工方法により、従来の金属材料のみ
ならず、従来放電加工では加工できなかったエンジニア
リングセラミック製のタービン翼にも適用できる。ま
た、デュフューザー状のフィルム冷却孔をレーザビーム
により加工することにより、レーザビームの調整によ
り、従来の放電加工に比較して個々のフィルム冷却孔を
自由に調整でき、圧力損失を過大にすることなく流量の
均一化を図ることができる。
This processing method can be applied not only to conventional metal materials, but also to turbine blades made of engineering ceramics, which could not be processed by conventional electric discharge machining. Also, by processing the film cooling holes in the shape of a diffuser with a laser beam, by adjusting the laser beam, individual film cooling holes can be freely adjusted as compared with conventional electrical discharge machining, without increasing pressure loss excessively. The flow rate can be made uniform.

【0016】[0016]

【実施例】図1に示した加工方法により、図2及び図3
に示す種々の形状のフィルム冷却孔を加工し、その性能
を試験した。図2及び図3において、TP1とTP2
は、従来の丸孔と矩形孔であり、TP3,TP4,TP
5,TP6は、上述した本発明の方法により加工したフ
ィルム冷却孔12である。これらの図から明らかなよう
に、本発明によるフィルム冷却孔12は、TP3,TP
4,TP5,TP6に示すように、タービン翼の内部か
ら主流の下流側に拡がるデュフューザー状に形成されて
いる。
EXAMPLE FIG. 2 and FIG. 3 are carried out by the processing method shown in FIG.
The film cooling holes of various shapes shown in Figure 3 were processed and their performance was tested. 2 and 3, TP1 and TP2
Are conventional round holes and rectangular holes, and are TP3, TP4, TP
5, TP6 are the film cooling holes 12 processed by the above-described method of the present invention. As is clear from these figures, the film cooling holes 12 according to the present invention have TP3, TP
As shown by 4, TP5 and TP6, it is formed in a diffuser shape that extends from the inside of the turbine blade to the downstream side of the main flow.

【0017】TP3のフィルム冷却孔12は、本発明に
よるフィルム冷却孔のうち最も基本的なものであり、タ
ービン翼の内部に頂点を有する円錐形状を有している。
この孔形状(以下、「単純円錐孔」と呼ぶ)は、図1の
加工方向で、加工中にレーザビームの軸線を一定位置に
保持することにより、容易に加工することができる。T
P4とTP5のフィルム冷却孔12は、タービン翼の内
部に頂点を有する円錐形状が翼の長さ方向に連なった横
長デュフューザー形状を有している。この孔形状(以
下、「横長円錐孔」と呼ぶ)は、図1の加工方向で、単
純円錐孔を加工中にレーザビームの軸線を翼の長さ方向
に振ることにより、容易に加工することができる。
The film cooling hole 12 of TP3 is the most basic film cooling hole according to the present invention and has a conical shape having an apex inside the turbine blade.
This hole shape (hereinafter referred to as “simple conical hole”) can be easily processed in the processing direction of FIG. 1 by holding the axis of the laser beam at a constant position during processing. T
The film cooling holes 12 of P4 and TP5 have a laterally long diffuser shape in which conical shapes having vertices inside the turbine blades are continuous in the blade length direction. This hole shape (hereinafter referred to as "horizontal elongated conical hole") can be easily machined in the machining direction of Fig. 1 by swaying the axis of the laser beam in the blade length direction during machining of the simple conical hole. You can

【0018】TP6のフィルム冷却孔12は、図1の加
工方向で、単純円錐孔を加工中にレーザビームの軸線を
正三角形に振ることにより、加工でき、この孔形状を以
下、「三角錐孔」と呼ぶ。なお、図3に示した各寸法
は、試験において実際の使用状態との相似則を満たす寸
法であり、実機においては、ほぼこの1/10程度の寸
法となる。また、本発明はこれらの寸法に限定されない
のは勿論である。
The film cooling hole 12 of the TP6 can be processed by swinging the axis line of the laser beam into an equilateral triangle during the processing of the simple conical hole in the processing direction of FIG. ". Each dimension shown in FIG. 3 is a dimension that satisfies the rule of similarity with the actual usage in the test, and is about 1/10 of this in an actual machine. Of course, the present invention is not limited to these dimensions.

【0019】図4は、各冷却孔のフィルム効率の比較図
であり、(A)は密度比1.1の場合、(B)は密度比
2.0の場合を示している。図4において、性能に影響
を与える種々のパラメータについて、曲率は翼背側の典
型的な曲率半径と冷却孔形の比を模擬し、Blowing Rati
o (主流と冷却ガスの質量流速比:以下、質量流速比と
呼ぶ)は、0.5から2.5までについて、また密度比
は、1〜2の実機の想定範囲をカバーする条件としてい
る。この図から、TP3のフィルム冷却孔(単純円錐
孔)とTP4とTP5のフィルム冷却孔(横長円錐孔)
は、従来の丸孔(TP1)と矩形孔(TP2)よりも、
ほとんどの条件で高いフィルム効率を示しているのがわ
かる。
FIG. 4 is a comparison diagram of the film efficiency of each cooling hole. FIG. 4A shows the case where the density ratio is 1.1, and FIG. 4B shows the case where the density ratio is 2.0. In Fig. 4, for various parameters that affect performance, the curvature simulates the ratio of the typical radius of curvature on the blade back side to the cooling hole shape, and
o (Mass flow velocity ratio between main flow and cooling gas: hereinafter referred to as mass flow velocity ratio) is from 0.5 to 2.5, and density ratio is a condition that covers the assumed range of 1 to 2 actual machines. . From this figure, the film cooling holes of TP3 (simple conical holes) and the film cooling holes of TP4 and TP5 (horizontal conical holes)
Is better than the conventional round hole (TP1) and rectangular hole (TP2).
It can be seen that the film efficiency is high under most conditions.

【0020】図5は、従来の丸孔(TP1)と矩形孔
(TP2)に対する各冷却孔の平均フィルム効率の比率
を示す図であり、(A)は丸孔に対する比率、(B)は
矩形孔に対する比率を示している。この図から、本発明
によるTP3(単純円錐孔)とTP4及びTP5(横長
円錐孔)は、従来の丸孔(TP1)はもとより従来の放
電加工を前提としたデュフューザー孔、すなわち矩形孔
(TP2)よりも高いフィルム効率を有することが確認
できた。
FIG. 5 is a diagram showing the ratio of the average film efficiency of each cooling hole to the conventional round hole (TP1) and rectangular hole (TP2), where (A) is the ratio to the round hole and (B) is the rectangular shape. The ratio to the holes is shown. From this figure, TP3 (simple conical hole) and TP4 and TP5 (horizontally conical hole) according to the present invention are not only conventional round holes (TP1) but also conventional diffuser holes, that is, rectangular holes (TP2). It was confirmed that the film had a higher film efficiency than the above.

【0021】また、図5において、TP4とTP5のフ
ィルム冷却孔(横長円錐孔)が特に高いフィルム効率を
示しており、デュフューザー孔形状については、冷却孔
の並んでいるピッチ方向に孔断面積を拡大し、孔出口に
おいて隣の孔との間隔を実質的に狭めることがフィルム
効率の向上に寄与することが確認できた。
Further, in FIG. 5, the film cooling holes (horizontally elongated conical holes) of TP4 and TP5 show particularly high film efficiency. Regarding the shape of the diffuser hole, the hole cross-sectional area is arranged in the pitch direction in which the cooling holes are lined up. It was confirmed that the enlargement and the substantial reduction of the space between the adjacent holes at the hole exit contributed to the improvement of the film efficiency.

【0022】図6及び図7は、動翼及び静翼の予測冷却
性能をそれぞれ示す図である。図4及び図5の試験結果
で得られたフィルム効率のデータを基に、1700℃級
の水素燃焼タービンに適用した場合、15%程度のフィ
ルム効率の向上が期待できることから、図6及び図7に
示すように、冷却効率で0.03の効率向上が見込ま
れ、冷却ガス流量にすると、タービン入口流量に対する
割合として1.2%〜1.7%程度の流量削減効果があ
ることがわかった。
FIGS. 6 and 7 are views showing the predicted cooling performances of the moving blade and the stationary blade, respectively. Based on the film efficiency data obtained in the test results of FIGS. 4 and 5, when applied to a 1700 ° C. class hydrogen combustion turbine, an improvement in film efficiency of about 15% can be expected. As shown in Fig. 7, the cooling efficiency is expected to improve by 0.03, and it has been found that when the cooling gas flow rate is used, there is a flow rate reduction effect of about 1.2% to 1.7% as a ratio to the turbine inlet flow rate. .

【0023】なお、本発明は上述した実施例に限定され
ず、本発明の要旨を逸脱しない範囲で自由に変更できる
ことは勿論である。
The present invention is not limited to the above-described embodiments, and it goes without saying that the present invention can be freely modified without departing from the gist of the present invention.

【0024】[0024]

【発明の効果】上述したように、本発明によるタービン
冷却翼の冷却孔形状は、レーザー加工によりセラミック
に対して適用可能であり、しかも従来のデュフューザー
孔より性能を向上させることができ、高温の水素燃焼タ
ービンを小流量の冷却ガスで効率的に冷却することが期
待できる。
As described above, the cooling hole shape of the turbine cooling blade according to the present invention can be applied to the ceramic by the laser processing, and further, the performance can be improved as compared with the conventional diffuser hole, and high temperature It can be expected that the hydrogen combustion turbine can be efficiently cooled with a small flow rate of cooling gas.

【0025】すなわち、本発明のタービン冷却翼とその
加工方法は、個々のフィルム冷却孔を自由に調整でき、
圧力損失を過大にすることなく流量の均一化を図ること
ができ、高温性能の優れたエンジニアリングセラミック
製のタービン翼にも適用でき、かつフィルム効率ηを高
めることができる、等の優れた効果を有する。
That is, according to the turbine cooling blade of the present invention and the processing method thereof, individual film cooling holes can be freely adjusted,
The uniform flow rate can be achieved without excessive pressure loss, it can be applied to engineering ceramic turbine blades with excellent high-temperature performance, and the film efficiency η can be increased. Have.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるタービン冷却翼とその加工方法を
示す全体構成図である。
FIG. 1 is an overall configuration diagram showing a turbine cooling blade and a processing method thereof according to the present invention.

【図2】試験した種々のフィルム冷却孔の斜視図であ
る。
FIG. 2 is a perspective view of various film cooling holes tested.

【図3】試験した種々のフィルム冷却孔の部分断面図で
ある。
FIG. 3 is a partial cross-sectional view of various film cooling holes tested.

【図4】各冷却孔のフィルム効率の比較図である。FIG. 4 is a comparative diagram of film efficiency of each cooling hole.

【図5】従来の丸孔と矩形孔に対する各冷却孔の平均フ
ィルム効率の比率を示す図である。
FIG. 5 is a diagram showing a ratio of an average film efficiency of each cooling hole to a conventional round hole and a rectangular hole.

【図6】動翼の予測冷却性能図である。FIG. 6 is a predicted cooling performance diagram of a moving blade.

【図7】静翼の予測冷却性能図である。FIG. 7 is a predicted cooling performance diagram of a stationary blade.

【図8】ガスタービンの高温化の推移を示す図である。FIG. 8 is a diagram showing changes in the temperature of the gas turbine.

【図9】耐熱合金の進歩を示す図である。FIG. 9 is a diagram showing progress in heat resistant alloys.

【図10】従来のフィルム冷却を示す模式図である。FIG. 10 is a schematic view showing conventional film cooling.

【符号の説明】[Explanation of symbols]

1 タービン翼 2 フィルム冷却孔(空気吹出孔) 3 冷却空気 5 レーザビーム 10 タービン冷却翼 12 フィルム冷却孔 14 レーザ加工装置 14a レンズ 14b 焦点 1 Turbine Blade 2 Film Cooling Hole (Air Blowing Hole) 3 Cooling Air 5 Laser Beam 10 Turbine Cooling Blade 12 Film Cooling Hole 14 Laser Processing Device 14a Lens 14b Focus

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 中空タービン翼の表面に冷却ガスを吹き
出すための複数のフィルム冷却孔を備え、該フィルム冷
却孔は、タービン翼の内部から主流の下流側に拡がるデ
ュフューザー状に形成されている、ことを特徴とするタ
ービン冷却翼。
1. A plurality of film cooling holes for blowing a cooling gas are provided on the surface of a hollow turbine blade, and the film cooling holes are formed in a diffuser shape extending from the inside of the turbine blade to the downstream side of the mainstream. A turbine cooling blade characterized by the above.
【請求項2】 前記フィルム冷却孔は、タービン翼の内
部に頂点を有する円錐形状を有する、ことを特徴とする
請求項1に記載のタービン冷却翼。
2. The turbine cooling blade according to claim 1, wherein the film cooling hole has a conical shape having an apex inside the turbine blade.
【請求項3】 前記フィルム冷却孔は、タービン翼の内
部に頂点を有する円錐形状が翼の長さ方向に連なった横
長デュフューザー形状を有する、ことを特徴とする請求
項1に記載のタービン冷却翼。
3. The turbine cooling blade according to claim 1, wherein the film cooling hole has a laterally long diffuser shape in which a conical shape having an apex inside the turbine blade is continuous in a length direction of the blade. .
【請求項4】 中空タービン翼の表面にタービン翼の内
部に焦点を有するレーザビームを照射し、該レーザビー
ムにより中空タービン翼にフィルム冷却孔を形成する、
ことを特徴とするタービン冷却翼の加工方法。
4. The surface of the hollow turbine blade is irradiated with a laser beam having a focus inside the turbine blade, and the laser beam forms a film cooling hole in the hollow turbine blade.
A method for processing a turbine cooling blade, characterized in that
JP7304592A 1995-11-22 1995-11-22 Turbine cooling blade and its working method Pending JPH09144504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7304592A JPH09144504A (en) 1995-11-22 1995-11-22 Turbine cooling blade and its working method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7304592A JPH09144504A (en) 1995-11-22 1995-11-22 Turbine cooling blade and its working method

Publications (1)

Publication Number Publication Date
JPH09144504A true JPH09144504A (en) 1997-06-03

Family

ID=17934863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7304592A Pending JPH09144504A (en) 1995-11-22 1995-11-22 Turbine cooling blade and its working method

Country Status (1)

Country Link
JP (1) JPH09144504A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001254633A (en) * 2000-01-19 2001-09-21 General Electric Co <Ge> Method to form cooling hole
JP2006138624A (en) * 2004-11-09 2006-06-01 General Electric Co <Ge> Gas turbine engine component
US7273351B2 (en) 2004-11-06 2007-09-25 Rolls-Royce, Plc Component having a film cooling arrangement
JP2009162224A (en) * 2007-12-28 2009-07-23 General Electric Co <Ge> Method of forming cooling hole and turbine airfoil with hybrid-formed cooling holes
JP2010014113A (en) * 2008-06-30 2010-01-21 General Electric Co <Ge> Rear frame having elliptic cooling slot and associated method
WO2012005324A1 (en) * 2010-07-09 2012-01-12 株式会社Ihi Turbine blade and engine component
CN103406669A (en) * 2012-04-19 2013-11-27 中国航空工业集团公司北京航空制造工程研究所 Method for directly machining turbine blade air film abnormal-shaped hole through laser
CN106583949A (en) * 2016-11-29 2017-04-26 沈阳黎明航空发动机(集团)有限责任公司 Low-damage processing method of film holes in single crystal high-pressure-turbine hollow blade of aircraft engine
CN107999974A (en) * 2017-12-08 2018-05-08 中国航发动力股份有限公司 A kind of annular spread group hole laser spot quickly measures and its group's hole forming method
CN110026677A (en) * 2019-04-24 2019-07-19 西安中科微精光子制造科技有限公司 The laser processing of special-shaped air film hole
CN110202277A (en) * 2019-04-25 2019-09-06 青岛理工大学 A kind of blade of aviation engine air film hole processing device and working method
CN112443361A (en) * 2020-11-04 2021-03-05 西北工业大学 A reverse air film pore structure of pit for turbine blade
CN113146074A (en) * 2021-02-25 2021-07-23 贵阳航发精密铸造有限公司 Machining method of air film hole in turbine blade

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001254633A (en) * 2000-01-19 2001-09-21 General Electric Co <Ge> Method to form cooling hole
JP4693250B2 (en) * 2000-01-19 2011-06-01 ゼネラル・エレクトリック・カンパニイ Method for forming cooling holes
US7273351B2 (en) 2004-11-06 2007-09-25 Rolls-Royce, Plc Component having a film cooling arrangement
JP2006138624A (en) * 2004-11-09 2006-06-01 General Electric Co <Ge> Gas turbine engine component
JP2009162224A (en) * 2007-12-28 2009-07-23 General Electric Co <Ge> Method of forming cooling hole and turbine airfoil with hybrid-formed cooling holes
JP2010014113A (en) * 2008-06-30 2010-01-21 General Electric Co <Ge> Rear frame having elliptic cooling slot and associated method
EP2592228A4 (en) * 2010-07-09 2016-04-20 Ihi Corp Turbine blade and engine component
KR101434926B1 (en) * 2010-07-09 2014-08-27 가부시키가이샤 아이에이치아이 Turbine blade and engine component
WO2012005324A1 (en) * 2010-07-09 2012-01-12 株式会社Ihi Turbine blade and engine component
US9376919B2 (en) 2010-07-09 2016-06-28 Ihi Corporation Turbine blade and engine component
JP2012017721A (en) * 2010-07-09 2012-01-26 Ihi Corp Turbine blade and engine component
CN103406669A (en) * 2012-04-19 2013-11-27 中国航空工业集团公司北京航空制造工程研究所 Method for directly machining turbine blade air film abnormal-shaped hole through laser
CN106583949B (en) * 2016-11-29 2018-09-07 沈阳黎明航空发动机(集团)有限责任公司 The processing method of the low damage of the high whirlpool hollow blade air film hole of aero-engine monocrystalline
CN106583949A (en) * 2016-11-29 2017-04-26 沈阳黎明航空发动机(集团)有限责任公司 Low-damage processing method of film holes in single crystal high-pressure-turbine hollow blade of aircraft engine
CN107999974A (en) * 2017-12-08 2018-05-08 中国航发动力股份有限公司 A kind of annular spread group hole laser spot quickly measures and its group's hole forming method
CN107999974B (en) * 2017-12-08 2019-06-04 中国航发动力股份有限公司 A kind of annular spread group hole laser spot rapid survey and its group's hole forming method
CN110026677A (en) * 2019-04-24 2019-07-19 西安中科微精光子制造科技有限公司 The laser processing of special-shaped air film hole
CN110202277A (en) * 2019-04-25 2019-09-06 青岛理工大学 A kind of blade of aviation engine air film hole processing device and working method
WO2020215716A1 (en) * 2019-04-25 2020-10-29 青岛理工大学 Aero-engine blade film hole processing apparatus and working method
CN112443361A (en) * 2020-11-04 2021-03-05 西北工业大学 A reverse air film pore structure of pit for turbine blade
CN113146074A (en) * 2021-02-25 2021-07-23 贵阳航发精密铸造有限公司 Machining method of air film hole in turbine blade

Similar Documents

Publication Publication Date Title
JPH09144504A (en) Turbine cooling blade and its working method
KR100604031B1 (en) Linked, manufacturable,non-plugging microcircuits
JP3110227B2 (en) Turbine cooling blade
JP5475974B2 (en) Turbine airfoil concave cooling passage using dual swirl mechanism and method thereof
US6243948B1 (en) Modification and repair of film cooling holes in gas turbine engine components
KR101289592B1 (en) Closed loop, steam cooled turbine shroud
JP2505693B2 (en) Gas turbine
US8168912B1 (en) Electrode for shaped film cooling hole
JP2007146841A (en) Cooling microcircuit for use in turbine engine component, and turbine blade
JPH112101A (en) Gas turbine cooling moving blade
JPH05248204A (en) Turbine blade
RU2285804C1 (en) Member of gas-turbine engine and method of its manufacture
JP2015526629A (en) Parts and parts cooling method
JP2006245577A (en) Forced air-cooling chip cooler and its manufacturing process
JPH05312002A (en) Gas turbine blade
JPS5872822A (en) Cooling structure for gas turbine combustor
JP5360265B2 (en) Internal cooling structure for high temperature parts
US10190422B2 (en) Rotation enhanced turbine blade cooling
JPH11173105A (en) Moving blade of gas turbine
SU565991A1 (en) Cooled blade for a turbine
JPH0565802A (en) Gas turbine
JP3615907B2 (en) Gas turbine cooling blade
CN109642472A (en) Impinging cooling feature for gas turbines
JP2009167860A (en) Inner surface cooling structure for high temperature component
JPH03141801A (en) Cooling blade of gas turbine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090109

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110109

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20130109

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 15