JPH09144377A - Tuning mass damper device - Google Patents

Tuning mass damper device

Info

Publication number
JPH09144377A
JPH09144377A JP30913295A JP30913295A JPH09144377A JP H09144377 A JPH09144377 A JP H09144377A JP 30913295 A JP30913295 A JP 30913295A JP 30913295 A JP30913295 A JP 30913295A JP H09144377 A JPH09144377 A JP H09144377A
Authority
JP
Japan
Prior art keywords
building
vibration
mass
liquid filling
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30913295A
Other languages
Japanese (ja)
Other versions
JP3085164B2 (en
Inventor
Mitsuru Kageyama
満 蔭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP07309132A priority Critical patent/JP3085164B2/en
Publication of JPH09144377A publication Critical patent/JPH09144377A/en
Application granted granted Critical
Publication of JP3085164B2 publication Critical patent/JP3085164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To effectively damp both of translational vibration and torsional vibration by a pair of TMDs against a building where characteristic frequency of the translational vibration is higher than characteristic frequency of the torsional vibration and to reduce the number of devices and to lighten them as much as possible. SOLUTION: This device is furnished with a pair of mass bodies 13a, 13b arranged face to face on both sides of a building 11 in the longitudinal direction, a spring material to elastically support these mass bodies, a damper 17 to damp vibrational components orthogonal with the longitudinal direction of each of the mass bodies, a first liquid charging chamber 18a interposed between one of the mass bodies and the building and capacity of which is expanded and contracted in accordance with relative displacement, a second liquid charging chamber 18b, a communicating pipe 24 to communicate the first and second liquid charging chambers to each other and a chamber 26 to partition a gas chamber 25 in the middle of a piping route of the communicating pipe. Consequently, it is possible to make the gas chamber function as a spring at the time of torsional vibration and make it not function as the spring at the time of translational vibration and accordingly, make it possible to correspond to both of vibration modes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、建物の並進及び
ねじれの二つの振動モードに対して制振効果が得られる
ようにした同調マスダンパ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tuned mass damper device capable of obtaining a vibration damping effect for two vibration modes of translation and twist of a building.

【0002】[0002]

【従来の技術】高層建物の地震及び強風時の揺れを抑制
するための制振装置の一つとして、同調マスダンパ(T
unned Mass Damper、以下TMDと略
記する)が知られている。このTMDは、高層建物の固
有振動周期と同じ固有振動周期で振動する付加質量体及
びバネからなる振動系とこの振動系の振動を減衰させる
減衰系とからなり、建物の頂部等に設置される。
2. Description of the Related Art A tuned mass damper (T) is used as one of the vibration control devices for suppressing the shaking of a high-rise building during an earthquake or strong wind.
uned Mass Damper, hereinafter abbreviated as TMD) is known. This TMD is composed of a vibration system including an additional mass body and a spring that vibrate at the same natural vibration cycle as that of a high-rise building, and a damping system that damps the vibration of this vibration system, and is installed on the top of the building or the like. .

【0003】ところで、建物に生じる揺れには、建物全
体が平行に動く並進(水平)振動だけでなく、ねじれ振
動もある。ここで、一般に建物の並進振動とねじれ振動
とはその固有振動数が異なるので、パッシブなTMDを
1台設置するだけではこれら二つの振動モードを有効に
低減することはできず、並進振動用のものとねじれ振動
用のものとを別途個別に複数台設ける必要がある。
By the way, the shaking generated in a building includes torsional vibration as well as translational (horizontal) vibration in which the entire building moves in parallel. Here, since the natural frequencies of translational vibration and torsional vibration of a building are generally different, it is not possible to effectively reduce these two vibration modes by installing only one passive TMD. It is necessary to separately provide a plurality of units and one for torsional vibration.

【0004】図5(a)、(b)は、平断面の矩形の建
物1の頂部にTMDを適用した場合のモデルを示すもの
で、建物1の中央には並進振動対応用のTMD2が設置
され、長手方向両側にはねじれ振動対応用の一対のTM
D3が対向設置されている。
FIGS. 5 (a) and 5 (b) show a model in which TMD is applied to the top of a rectangular building 1 having a flat cross section, and a TMD 2 for translational vibration is installed in the center of the building 1. And a pair of TMs on both sides in the longitudinal direction for torsional vibration
D3 is installed opposite.

【0005】各TMD2,3は、付加質量体をバネを介
して建物上に支持するとともに、付加質量体の振動を減
衰させる減衰装置などを備え、それぞれ建物1の並進振
動の固有振動数及びねじれ振動の固有振動数に各々同調
するように調整される。またTMD2の質量体の重量
は、各TMD3の質量体の重量の約二倍程度に設定され
る。
Each of the TMDs 2 and 3 supports the additional mass body on the building through a spring, and is provided with a damping device for damping the vibration of the additional mass body. The natural frequency and the torsion of the translational vibration of the building 1 are respectively provided. It is adjusted so as to tune to each natural frequency of vibration. Further, the weight of the TMD2 mass body is set to about twice the weight of each TMD3 mass body.

【0006】即ち、図5(a)の想像線に示すように、
建物1の短辺方向であるY方向に並進振動が加わった場
合には、TMD2の質量体がY方向に同調して逆位相で
往復動することにより、建物の並進振動とは逆向きの力
がTMD2から建物1に反作用力として加わることにな
り、その結果、建物の並進振動が減衰される。
That is, as shown by the imaginary line in FIG.
When translational vibration is applied in the Y direction, which is the short-side direction of the building 1, the mass of the TMD 2 reciprocates in antiphase in synchronism with the Y direction, so that the force opposite to the translational vibration of the building is exerted. Will be applied as a reaction force from the TMD 2 to the building 1, and as a result, the translational vibration of the building will be attenuated.

【0007】また図5(b)の想像線で示すように、建
物1のXY方向にねじれ振動が加わった場合には、一対
のTMD3は相互に逆相方向に同調して動き、ねじれ振
動を減衰させる。
As shown by the imaginary line in FIG. 5 (b), when torsional vibrations are applied in the XY directions of the building 1, the pair of TMDs 3 move in synchronism with each other in opposite phase directions, causing torsional vibrations. Attenuate.

【0008】このように、各TMD2,3は建物1のそ
れぞれ並進及びねじれの固有振動数に対応するものであ
るから、一つの建物に対してTDMを3台以上、機能と
しては二種類必要とする。
As described above, since the TMDs 2 and 3 correspond to the natural frequencies of translation and twist of the building 1, three TDMs or more, and two types of functions are required for one building. To do.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、各TM
D2,3の制振効果は、質量体の重量に大きく依存する
ものであるから、一つの振動モードに対抗させるTMD
の最低重量は、建物総重量に応じて設定しなければなら
ず、相当重いものとなる。
[Problems to be Solved by the Invention] However, each TM
Since the damping effect of D2 and D3 depends largely on the weight of the mass body, TMD that opposes one vibration mode
The minimum weight of must be set according to the total weight of the building, which is considerably heavy.

【0010】従って、二つの振動モードに対応するため
に二種類ものTMDを建物1の頂部に装備することは、
装置費用のほか、建物に加わる重量も約二倍となり、こ
れを支持する建物構造の負担が大きなものとなる。
Therefore, it is necessary to equip the top of the building 1 with two kinds of TMDs in order to support two vibration modes.
In addition to the equipment cost, the weight added to the building will be doubled, and the burden on the building structure that supports this will be heavy.

【0011】この発明は、以上の問題を解決するために
創案されたものであり、その目的は、並進振動の固有振
動数よりもねじれ振動の固有振動数の方が高い建物に対
して、その双方の振動を一対のTMDで有効に減衰させ
るとができ、もって装置数の減少並びに軽量化を可及的
に図り得る同調マスダンパ装置を提供することにある。
The present invention was devised to solve the above problems, and its object is to provide a building in which the natural frequency of torsional vibration is higher than the natural frequency of translational vibration. It is an object of the present invention to provide a tuned mass damper device that can effectively attenuate both vibrations with a pair of TMDs, thereby reducing the number of devices and reducing the weight as much as possible.

【0012】[0012]

【課題を解決するための手段】前記目的を達成するた
め、この発明のTMD装置は、建物の平面長手方向両側
に対向配置された一対の質量体と、該各質量体をそれぞ
れ少なくとも前記対向配置方向に対して直交する方向に
振動可能に弾性支持するバネと、該各質量体の前記直交
する方向の振動成分を減衰すべく該各質量体と該建物と
の間に介設された減衰器と、該一方の質量体と該建物と
の間に介設され、前記直交方向の振動に伴う該建物との
相対変位に応じて容積が拡縮される第1の液体充填室
と、該他方の質量体と該建物との間に介設され、前記一
方の質量体と同位相の振動に伴う該建物との相対変位に
応じて該第1の液体充填室とは容積が逆向きに拡縮され
る第2の液体充填室と、該第1の液体充填室と該第2の
液体充填室とを結んで設けられ、両液体充填室同士を連
通させる連通管と、該連通管の配管経路の途中に接続さ
れ、連通管内の液体の圧力変動に応じて弾性体を変位さ
せるバネ手段と、を備えたことを特徴とするものであ
る。
In order to achieve the above object, a TMD device of the present invention comprises a pair of mass bodies arranged facing each other on both sides in the longitudinal direction of a plane of a building, and at least each of the mass bodies facing each other. A spring that elastically supports in a direction orthogonal to the direction so that it can vibrate, and an attenuator interposed between each of the mass bodies and the building to damp the vibration component of the mass body in the orthogonal direction. A first liquid filling chamber that is interposed between the one mass body and the building, and whose volume is expanded or contracted in accordance with relative displacement of the building due to the vibration in the orthogonal direction, and the other It is interposed between the mass body and the building, and the volume is expanded and contracted in a direction opposite to that of the first liquid filling chamber according to the relative displacement between the mass body and the building due to the vibration in phase with the one mass body. Connecting the second liquid filling chamber, the first liquid filling chamber and the second liquid filling chamber And a spring means that is connected in the middle of the piping path of the communication pipe and that displaces the elastic body according to the pressure fluctuation of the liquid in the communication pipe. It is characterized by.

【0013】上記構成によるTMD装置によれば、建物
の固有振動のうち、並進振動モードにおいては、両質量
体は同位相の振動変位をとるから、第1及び第2液体充
填室はその一方が拡大側になるとともに他方が縮小側に
なって内部の液体は連通管を通じて相互に移動し、双方
の質量体は連成系となって同位相方向に変位して連通管
内の液体の圧力は殆ど変化しない。従って、両質量体の
振動は液体が連通管内を移動して流れる際の流動抵抗、
並びに減衰器による抵抗とにより減衰されつつ、建物に
対して反作用力を加えて当該建物の並進振動を抑制す
る。
According to the TMD device having the above structure, in the translational vibration mode of the natural vibration of the building, both mass bodies take the vibration displacement of the same phase, so that one of the first and second liquid filling chambers The liquid on the inside moves toward each other through the communication pipe, becoming the expansion side and the contraction side at the other side, and both mass bodies become a coupled system and are displaced in the same phase direction, and the pressure of the liquid in the communication pipe is almost It does not change. Therefore, the vibration of both mass bodies is the flow resistance when the liquid moves and flows in the communication pipe,
In addition, while being damped by the resistance of the attenuator, a reaction force is applied to the building to suppress translational vibration of the building.

【0014】また、上記並進振動モードよりも固有振動
数が高いねじれ振動モードにおいては、各質量体は相互
に逆位相方向に変位して振動するから第1及び第2の液
体充填室はともに拡大側あるいは縮小側に拡縮し、連通
管を通じての液体の相互移動は生じず、液体の圧力に変
動が生じる。すると、この液体の圧力変動によりバネ手
段の弾性体が変位してバネ効果を呈する。つまり、一対
の質量体の逆位相方向の振動に対しては、第1及び第2
の液体充填室並びに連通管、バネ手段が適当なバネ系と
して機能して固有振動数を高めることになる。
In the torsional vibration mode, which has a higher natural frequency than the translational vibration mode, the mass bodies are displaced in opposite phase directions and vibrate, so that both the first and second liquid filling chambers expand. Side to side or contraction side, mutual movement of the liquid through the communication pipe does not occur, and the pressure of the liquid fluctuates. Then, due to the pressure fluctuation of the liquid, the elastic body of the spring means is displaced to exhibit the spring effect. That is, with respect to the vibration of the pair of mass bodies in the opposite phase direction, the first and second
The liquid filling chamber, the communicating tube, and the spring means function as an appropriate spring system to increase the natural frequency.

【0015】それ故、この発明のTMD装置は、一対の
質量対が同位相方向に変位して振動する場合と逆位相方
向に変位して振動する場合とで異なる二つの固有振動特
性を持つことになり、その同位相方向への振動時の固有
振動特性を建物固有の並進振動周期に同調させるととも
に、逆位相方向への振動時の固有振動特性を建物のねじ
れ振動周期に同調させることにより、何れの振動の抑制
も可能となる。
Therefore, the TMD device of the present invention has two different natural vibration characteristics when the pair of mass pairs are displaced and vibrated in the same phase direction and when they are displaced and vibrated in the opposite phase direction. By synchronizing the natural vibration characteristics during vibration in the same phase direction with the translational vibration cycle specific to the building, and by synchronizing the natural vibration characteristics during vibration in the opposite phase direction with the torsional vibration cycle of the building, Any vibration can be suppressed.

【0016】[0016]

【発明の実施の形態】以下、この発明の好適な実施の形
態を添付図面を参照して詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will now be described in detail with reference to the accompanying drawings.

【0017】図1、2はこの発明にかかるTMD装置を
示すものである。
1 and 2 show a TMD device according to the present invention.

【0018】図示するように、TMD装置10は、平面
長方形の高層建物11の長手方向両側に対向配置された
一対のTMD12a,12bを備えている。各TMD1
2a,12bは、建物11の重量に相応した所定の重さ
を有する質量体13a,13bと、この質量体13a,
13bを少なくとも前記対向配置方向に対して直交する
方向(つまり建物11の短辺方向)に振動自在に弾性支
持する支持手段14a,14bと、質量体13a,13
bの前記直交方向への振動を減衰させる減衰手段15
a,15bとを有している。このような、TMD12
a,12bは基本的には制振しようとする建物振動の腹
となる階層部分に設置するのが望ましく、本図示例では
建物11の頂部に設けられる場合を示している。
As shown in the figure, the TMD device 10 is provided with a pair of TMDs 12a and 12b which are arranged to face each other on both sides in the longitudinal direction of a tall rectangular building 11 having a plane shape. Each TMD1
2a and 12b are mass bodies 13a and 13b having a predetermined weight corresponding to the weight of the building 11, and the mass bodies 13a and 13b.
Supporting means 14a and 14b for elastically supporting 13b at least in a direction orthogonal to the facing arrangement direction (that is, the short side direction of the building 11) and mass bodies 13a and 13.
Damping means 15 for damping the vibration of b in the orthogonal direction
a and 15b. Such TMD12
Basically, it is desirable to install a and 12b at a layer portion which is an antinode of the building vibration to be damped, and in this illustrated example, it is shown that it is provided at the top of the building 11.

【0019】上記一対の質量体13a,13bは直方体
状をなし、その下部には上記支持手段14a,14bと
して、積層ゴム板などでなる免振用バネ材16が設けら
れていて、各質量体13a,13bはそれぞれこの免振
用バネ材16を介して建物11の頂部上に水平方向に振
動可能に設置固定されている。また、各質量体13a,
13bには、建物11との相対振動を減衰させて制振す
るための上記減衰手段15a,15bとして、その短辺
並びに長辺に沿った2方向に摩擦式あるいは流体式等に
よる減衰器17が建物11との間に介設されている。
The pair of mass bodies 13a and 13b are in the shape of a rectangular parallelepiped, and a vibration isolating spring member 16 made of a laminated rubber plate or the like is provided as the supporting means 14a and 14b below the mass bodies. Each of 13a and 13b is installed and fixed on the top of the building 11 via the vibration-isolating spring member 16 so as to be horizontally vibrable. In addition, each mass body 13a,
In 13b, as the damping means 15a, 15b for damping the relative vibration with the building 11 to suppress the vibration, a damper 17 such as a friction type or a fluid type in two directions along the short side and the long side is provided. It is interposed between the building 11 and the building 11.

【0020】ところで、本発明では、各質量体13a,
13bと建物11との間には前記直交方向の振動に伴う
これら質量体13a,13bと建物11との相対変位に
応じて容積が拡縮される液体充填室18が設けられてい
る。本図示例では、この液体充填室18はシリンダ19
とピストン20とからなるシリンダ機構で形成され、各
質量体13a,13bに対して制震方向である短辺方向
に沿って両側に設けられている。この図示例にあって
は、シリンダ19側が建物11に係止板21を介して固
定係止され、このシリンダ19内を摺動するピストン2
0側がそれぞれ質量体13a,13bに連結されてい
る。ここで、当該ピストン20から一体的に延びるピス
トンロッドの端部にはスライダ22が設けられていて、
このスライダ22は質量体13a,13bの建物長辺方
向への振動を許容するために、質量体13a,13bの
側面に設けられたガイドレール23に係合されて連結さ
れている。即ち、各質量体13a,13bの各々の変位
に対し、その制振方向の一方側の液体充填室18の容積
が拡大されるときには、他方側の液体充填室18の容積
は逆に縮小されるようになっている。
By the way, in the present invention, each mass body 13a,
A liquid filling chamber 18 whose volume is expanded or contracted according to the relative displacement between the mass bodies 13a, 13b and the building 11 due to the vibration in the orthogonal direction is provided between the building 13b and the building 13b. In the illustrated example, the liquid filling chamber 18 is a cylinder 19
It is formed by a cylinder mechanism composed of a piston 20 and a piston 20, and is provided on both sides of each of the mass bodies 13a and 13b along the short side direction which is the damping direction. In the illustrated example, the cylinder 2 side is fixedly locked to the building 11 via a locking plate 21, and the piston 2 sliding in the cylinder 19
The 0 side is connected to the mass bodies 13a and 13b, respectively. Here, a slider 22 is provided at the end of the piston rod that extends integrally from the piston 20,
The slider 22 is engaged with and connected to a guide rail 23 provided on a side surface of each of the mass bodies 13a and 13b in order to allow the mass bodies 13a and 13b to vibrate in the long side direction of the building. That is, when the volume of the liquid filling chamber 18 on the one side in the damping direction is increased with respect to the displacement of each of the mass bodies 13a and 13b, the volume of the liquid filling chamber 18 on the other side is reduced. It is like this.

【0021】さてここで、建物11が並進振動して一対
の質量体13a,13bがともに建物11に対して同位
相方向に変位する場合において、各質量体13a,13
bの振動方向の一方側に設けられてともに同位相で拡縮
される上記の液体充填室18同士をそれぞれ第1の充填
室18aとし、また他方側に設けられて上記第1の液体
充填室18aとは逆位相で拡縮される液体充填室18同
士を第2の液体充填室18bとすると、一方の質量体1
3a側の第1の液体充填室18aと他方の質量体13b
側の第2の液体充填室18bとが連通管24により相互
に結ばれて連通され、同様に他方の質量体13b側の第
1の液体充填室18aと一方の質量体13b側の第2の
液体充填室18bとが連通管24により相互に結ばれて
連通され、これら2本の連通管24,24はそれぞれ互
いにほぼX字型に交差した状態で配設されている。
Now, in the case where the building 11 is translationally oscillated and the pair of mass bodies 13a and 13b are both displaced in the same phase direction with respect to the building 11, the respective mass bodies 13a and 13b are displaced.
The liquid filling chambers 18 that are provided on one side in the vibration direction of b and are both expanded and contracted in the same phase are referred to as first filling chambers 18a. If the liquid filling chambers 18 that are expanded and contracted in the opposite phase to the second liquid filling chamber 18b are
3a side first liquid filling chamber 18a and the other mass body 13b
Side second liquid filling chamber 18b is connected to each other by a communication pipe 24 and communicates with each other. Similarly, the first liquid filling chamber 18a on the other mass body 13b side and the second liquid filling chamber 18b on one mass body 13b side are connected to each other. The liquid filling chamber 18b is connected to and communicates with each other by a communication pipe 24, and these two communication pipes 24, 24 are arranged so as to intersect each other in an approximately X shape.

【0022】そしてさらに、各々の連通管24,24に
はその配管経路途中のほぼ中間位置に、連通管24,2
4内の液体の圧力変動に応じて弾性体が変位するバネ手
段が設けられている。本図示例ではこのバネ手段は気体
室25を画成する密閉されたチャンバー26で構成さ
れ、このチャンバー26は連通管24に連通接続されて
立ち上げ状態で配置されている。
Further, each of the communication pipes 24, 24 is provided at a substantially intermediate position in the middle of the pipe path, and the communication pipes 24, 2 are provided.
There is provided spring means for displacing the elastic body according to the pressure fluctuation of the liquid in 4. In the illustrated example, the spring means is composed of a closed chamber 26 that defines a gas chamber 25. The chamber 26 is connected to the communication pipe 24 and is arranged in a standing state.

【0023】図3は上記気体室25の詳細構造を示して
いる。図において、各気体室25は、連通管24の上部
を貫通してねじ込みなどにより接続された立ち上げ管2
7と、この立ち上げ管27の上部に一体化され、内部密
封されたチャンバー26とで形成され、このチャンバー
26内には連通管24内の液体が入り込んでおり、その
液体面より上部側空間が気体室25となって空気が封入
されている。また、立ち上げ管27の内側にはこれの管
径より径小なオリフィス28が形成されている。なお、
上記液体としては水あるいは非圧縮性流体として油など
を使用し得る。
FIG. 3 shows the detailed structure of the gas chamber 25. In the figure, each gas chamber 25 is connected to a rising pipe 2 which is connected by screwing or the like through the upper portion of the communication pipe 24.
7 and a chamber 26 that is integrated with the upper portion of the riser pipe 27 and that is internally sealed. The liquid in the communication pipe 24 has entered the chamber 26, and is a space above the liquid surface. Becomes a gas chamber 25, and air is enclosed therein. Further, an orifice 28 having a diameter smaller than the diameter of the rising pipe 27 is formed inside the rising pipe 27. In addition,
Water may be used as the liquid, or oil may be used as the incompressible fluid.

【0024】図4(a)、(b)は以上の構成によるT
MD装置10の並進振動モード時及びねじれ振動モード
時における動作態様を示している。
FIGS. 4 (a) and 4 (b) show the T having the above configuration.
The operation modes in the translational vibration mode and the torsional vibration mode of the MD device 10 are shown.

【0025】先ず(a)の建物11の短辺方向の並進振
動モードに対しては、両TMD12a,12bはその建
物11全体の並進振動に対し相対的に逆向きに、かつ両
TMD12a,12bは互いに同位相で振動する。この
時、一方の質量体13aまたは13b側の第1の液体充
填室18aと他方の質量体13aまたは13b側の第2
の液体充填室18bとは、それらの容積が逆向きに拡縮
されるから、第1及び第2の液体充填室18a,18b
内に充填された液体は連通管24を通じてその縮小側か
ら拡大側へとそれぞれ小矢印に示すように円滑に移動し
て流動し、この流動の際の抵抗が振動の減衰作用をもた
らす。またこのときには、連通管24内で液体は双方の
液体充填室18a,18bに向けて交互に円滑に流動す
るので気体室25内の液面高さ、つまり気体室25の容
積には大きな変動は生じることがなく、気体室25が空
気バネとして特に機能することはない。
First, with respect to the translational vibration mode in the short side direction of the building 11 of (a), both TMDs 12a and 12b are in the opposite directions relative to the translational vibration of the entire building 11 and both TMDs 12a and 12b. Vibrate in phase with each other. At this time, the first liquid filling chamber 18a on the side of one mass body 13a or 13b and the second liquid filling chamber 18a on the side of the other mass body 13a or 13b.
Of the first and second liquid filling chambers 18a and 18b because their volumes are expanded and contracted in the opposite direction.
The liquid filled therein flows smoothly through the communication pipe 24 from the contraction side to the expansion side as indicated by the small arrows, and flows, and the resistance at the time of the flow causes a vibration damping action. Further, at this time, since the liquid in the communication pipe 24 smoothly flows alternately toward both the liquid filling chambers 18a and 18b, the liquid surface height in the gas chamber 25, that is, the volume of the gas chamber 25 does not greatly change. It does not occur, and the gas chamber 25 does not particularly function as an air spring.

【0026】次に(b)のねじれ振動モードに対して
は、各質量体13a,13bが互いに逆位相方向に変位
して振動するから、第1及び第2の液体充填室18a,
18bはともに拡大側あるいは縮小側に拡縮する。この
ため連通管24を通じての液体の相互移動は殆ど生じ
ず、液体の圧力に変動が生じる。すると、この液体の圧
力変動によりチャンバー26の気体室25内の液面高さ
が変動して、内部の空気が弾性体となって膨張収縮され
てバネ効果を呈する。
Next, in the torsional vibration mode of (b), since the respective mass bodies 13a and 13b are displaced in the opposite phase directions and vibrate, the first and second liquid filling chambers 18a and 18a,
Both 18b expand or contract to the enlargement side or the reduction side. Therefore, the mutual movement of the liquid through the communication pipe 24 hardly occurs, and the pressure of the liquid fluctuates. Then, the liquid level height in the gas chamber 25 of the chamber 26 fluctuates due to the pressure fluctuation of the liquid, and the air inside expands and contracts as an elastic body to exhibit a spring effect.

【0027】つまり、並進振動モードよりも振動数が高
く、一対の質量体13a,13b同士が逆位相方向に振
動するねじれ振動モードに対しては、第1及び第2の液
体充填室18a,18b並びに連通管24,チャンバー
26の気体室25は適当なバネ系を形成することにな
る。
That is, for the torsional vibration mode in which the frequency is higher than that in the translational vibration mode and the pair of mass bodies 13a, 13b vibrate in opposite phase directions, the first and second liquid filling chambers 18a, 18b are provided. In addition, the communication pipe 24 and the gas chamber 25 of the chamber 26 form an appropriate spring system.

【0028】それ故、この発明のTMD装置10では、
一対の質量体13a,13b同士が同位相方向に振動す
る場合と逆位相方向に振動する場合とでは、それぞれ異
なる固有振動周期を有することになり、その同位相方向
の振動の固有振動周期と逆位相方向の振動の固有振動周
期とをそれぞれ建物固有の並進振動周期、及びねじれ振
動周期に同調させることにより、建物の並進振動とねじ
れ振動との双方の振動を抑制することが可能となる。
Therefore, in the TMD device 10 of the present invention,
When the pair of mass bodies 13a and 13b vibrate in the same phase direction and in the opposite phase direction, they have different natural vibration periods, respectively. By synchronizing the natural vibration period of the vibration in the phase direction with the translational vibration period and the torsional vibration period specific to the building, it is possible to suppress both the translational vibration and the torsional vibration of the building.

【0029】以上の二種類の抑制作用は、個々のTMD
12a,12b単独での固有振動周期を決定する質量体
の重さやバネ材の弾性係数並びに減衰器の減衰係数に加
え、さらに前記流体圧によるバネ系を構成する連通管2
4の断面積及びその長さ、気体室25内部の断面積、オ
リフィス28による粘弾性系数、封入された液体の体積
質量などに相関を有するものであるから、これらの値を
適宜設定することによって並進振動モード時及びねじれ
振動モード時における建物11の固有振動特性に合わせ
て装置を調整することができる。ここで、上記質量体1
3a,13bの重さ、この質量体13a,13bを弾性
支持する免振用バネ材16の弾性係数、並びに減衰器1
7の減衰係数等は、基本的には建物11の並進振動の固
有振動に同調するように設定し、これらにさらに流体圧
によるバネ系が付加された状態でねじれ振動の固有振動
数に同調するように当該流体圧のバネ系を設定する。
The above-mentioned two kinds of suppressive actions are based on the individual TMD.
In addition to the weight of the mass body, the elastic coefficient of the spring material, and the damping coefficient of the attenuator that determine the natural vibration period of 12a and 12b alone, the communication pipe 2 that constitutes the spring system by the fluid pressure
4 has a correlation with the cross-sectional area and the length thereof, the cross-sectional area inside the gas chamber 25, the viscoelastic coefficient of the orifice 28, the volume mass of the enclosed liquid, and the like. Therefore, by appropriately setting these values. The device can be adjusted according to the natural vibration characteristics of the building 11 in the translational vibration mode and the torsional vibration mode. Here, the mass body 1
The weights of 3a and 13b, the elastic coefficient of the vibration isolating spring member 16 that elastically supports the mass bodies 13a and 13b, and the attenuator 1
The damping coefficient and the like of 7 are basically set so as to be synchronized with the natural vibration of the translational vibration of the building 11, and are further synchronized with the natural frequency of the torsional vibration with a spring system added by fluid pressure added thereto. Thus, the spring system of the fluid pressure is set.

【0030】なお、流体圧によるバネ系ではその配管経
路の引き回しの自由度は高いから、設置する際のスペー
ス的な制約も容易に回避し得る。
In the case of a spring system based on fluid pressure, the degree of freedom in routing the piping path is high, so that space restrictions when installing can be easily avoided.

【0031】また、図示例では質量体13a,13bは
積層ゴムでなるバネ材16により水平な2次元方向の振
動を許容するようにしているが、たとえばガイドレール
などによって質量体13a,13bの移動を建物11の
短辺方向のみに1次元的に規制して振動させるように構
成しても良い。
Further, in the illustrated example, the mass bodies 13a and 13b are allowed to vibrate in a horizontal two-dimensional direction by the spring material 16 made of laminated rubber, but the mass bodies 13a and 13b are moved by, for example, a guide rail. May be one-dimensionally regulated only in the short side direction of the building 11 to vibrate.

【0032】[0032]

【発明の効果】以上実施例で詳細に説明したように、こ
の発明に係るTMD装置にあっては、建物の長手方向両
側に対向配置した一対のTMD間に、当該TMD同士が
逆位相方向に変位して振動するときにはバネとして機能
する一方、同位相方向に変位して振動するときにはバネ
として機能しない流体圧によるバネ系を介在させること
により、同位相方向に振動する場合と逆位相方向に振動
する場合とでそれぞれ異なる固有振動周期を持たせるこ
とができ、よってこれらの固有振動周期をそれぞれ建物
の並進振動モードの固有振動周期とねじれ振動モードの
固有振動周期とに同調させることにより、双方の振動モ
ードに対応して制振を行わせることができる。従って、
従来のように並進振動用とねじれ振動用との2種類のT
MDを別途に建物に設置する必要が無く、従来に比べて
装置費用が安価となり、しかも建物に加わる重量も従来
の半分ですむため、これを支持する建物構造の負担が小
さくなるなどの各種利点がある。
As described above in detail in the embodiments, in the TMD device according to the present invention, between the pair of TMDs arranged opposite to each other in the longitudinal direction of the building, the TMDs are in opposite phase directions. It functions as a spring when displacing and oscillating, but does not function as a spring when displacing and oscillating in the same phase direction.By interposing a spring system by fluid pressure, it vibrates in the opposite phase direction when oscillating in the same phase direction. It is possible to have different natural vibration periods for each of the two cases, so that by synchronizing these natural vibration periods with the natural vibration period of the translational vibration mode and the natural vibration period of the torsional vibration mode of the building, respectively, Vibration can be controlled according to the vibration mode. Therefore,
Two types of T for translational vibration and torsional vibration as before
There is no need to install the MD separately in the building, the equipment cost is lower than the conventional one, and the weight added to the building is half that of the conventional one, so the load on the building structure that supports it is reduced. There is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明にかかる同調マスダンパの平面説明図
である。
FIG. 1 is a plan view of a tuning mass damper according to the present invention.

【図2】図1の側面説明図である。FIG. 2 is an explanatory side view of FIG. 1;

【図3】(a)、(b)は図2のB部拡大断面説明図で
ある。
3A and 3B are enlarged sectional explanatory views of a B part in FIG.

【図4】(a)、(b)は並進振動モード時及びねじれ
振動モード時における動作態様を示す説明図である。
4A and 4B are explanatory diagrams showing operation modes in a translational vibration mode and a torsional vibration mode.

【図5】従来の同調マスダンパの各振動モード時におけ
る動作態様を示す説明図である。
FIG. 5 is an explanatory diagram showing an operation mode of a conventional tuning mass damper in each vibration mode.

【符号の説明】[Explanation of symbols]

11 高層建物 12a,12b TMD(同調マスダンパ) 13a,13b 質量体 14a,14b 支持手段 15a,15b 減衰手段 16 免振用バネ材 17 減衰器 18a 第1の液体充填室 18b 第2の液体充填室 19 シリンダ 20 ピストン 24 連通管 25 空気室 26 チャンバー(バネ手段) 11 High-rise building 12a, 12b TMD (tuning mass damper) 13a, 13b Mass body 14a, 14b Supporting means 15a, 15b Damping means 16 Damping spring material 17 Damper 18a First liquid filling chamber 18b Second liquid filling chamber 19 Cylinder 20 Piston 24 Communication pipe 25 Air chamber 26 Chamber (spring means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 建物の平面長手方向両側に対向配置され
た一対の質量体と、 該各質量体をそれぞれ少なくとも前記対向配置方向に対
して直交する方向に振動可能に弾性支持するバネと、 該各質量体の前記直交する方向の振動成分を減衰すべく
該各質量体と建物との間に介設された減衰器と、 該一方の質量体と該建物との間に介設され、前記直交方
向の振動に伴う建物との相対変位に応じて容積が拡縮さ
れる第1の液体充填室と、 該他方の質量体と該建物との間に介設され、前記一方の
質量体と同位相の振動に伴う建物との相対変位に応じて
該第1の液体充填室とは容積が逆向きに拡縮される第2
の液体充填室と、 該第1の液体充填室と該第2の液体充填室とを結んで設
けられ、両液体充填室同士を連通させる連通管と、 該連通管の配管経路の途中に接続され、連通管内の液体
の圧力変動に応じて弾性体を変位させるバネ手段と、 を備えたことを特徴とする同調マスダンパ装置。
1. A pair of mass bodies arranged opposite to each other on both sides in the longitudinal direction of a plane of a building, and springs elastically supporting each mass body so as to be capable of vibrating at least in a direction orthogonal to the facing arrangement direction. An attenuator interposed between each of the mass bodies and the building in order to damp the vibration component of each of the mass bodies in the orthogonal direction; and an attenuator interposed between the one mass body and the building, A first liquid filling chamber, the volume of which expands and contracts according to the relative displacement with the building due to the vibration in the orthogonal direction, and the same mass body as the one mass body, which is provided between the other mass body and the building. A second volume that expands and contracts in a volume opposite to that of the first liquid-filled chamber according to relative displacement with the building due to phase vibration
A liquid filling chamber, a first liquid filling chamber and a second liquid filling chamber that are connected to each other, and a connecting pipe that connects the two liquid filling chambers to each other, and is connected in the middle of a pipe path of the connecting pipe. A tuning mass damper device, comprising: spring means for displacing the elastic body in accordance with pressure fluctuations of the liquid in the communication pipe.
JP07309132A 1995-11-28 1995-11-28 Tuning mass damper device Expired - Fee Related JP3085164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07309132A JP3085164B2 (en) 1995-11-28 1995-11-28 Tuning mass damper device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07309132A JP3085164B2 (en) 1995-11-28 1995-11-28 Tuning mass damper device

Publications (2)

Publication Number Publication Date
JPH09144377A true JPH09144377A (en) 1997-06-03
JP3085164B2 JP3085164B2 (en) 2000-09-04

Family

ID=17989286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07309132A Expired - Fee Related JP3085164B2 (en) 1995-11-28 1995-11-28 Tuning mass damper device

Country Status (1)

Country Link
JP (1) JP3085164B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030068595A (en) * 2002-02-15 2003-08-25 주식회사 케이.알 Tuned mass damper
JP2013000102A (en) * 2011-06-21 2013-01-07 Kyb Co Ltd Boom sprayer and boom vibration-damping device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101996506B1 (en) * 2017-08-29 2019-07-04 주식회사 맘스오피스 Eco-friendly garbage collection system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030068595A (en) * 2002-02-15 2003-08-25 주식회사 케이.알 Tuned mass damper
JP2013000102A (en) * 2011-06-21 2013-01-07 Kyb Co Ltd Boom sprayer and boom vibration-damping device

Also Published As

Publication number Publication date
JP3085164B2 (en) 2000-09-04

Similar Documents

Publication Publication Date Title
US5775472A (en) Multi-axis tuned mass damper
EP0968379B1 (en) Pneumatic tuned mass damper
CA2186453C (en) Hydraulic inertial vibration isolator
US6217011B1 (en) Fluid mount including a partitionless compensator
JPH10504088A (en) Tuning mass damper
RU2256588C2 (en) Vibration damper for helicopter main rotor
US6315094B1 (en) Passive virtual skyhook vibration isolation system
US7806420B2 (en) Hydraulic damper
US6082508A (en) Pneumatic damping strut
JP3085164B2 (en) Tuning mass damper device
JPH07150810A (en) Damping device
JPH07150809A (en) Damping device
JPS6221946B2 (en)
JPS61215823A (en) Structure resonance preventive device
JPH06117485A (en) Frequency coping type vibration damper
JP3231095B2 (en) Fluid-filled anti-vibration mount
JP2688251B2 (en) Vibration control system for structures supported on the ground
JP2002098188A (en) Vibration isolation structure with damping function
CN209510995U (en) A kind of liquid bullet vibration damping connector
JP3564594B2 (en) Anti-vibration device
JPH0542789U (en) Dynamic vibration absorber with adjustment mechanism
JPH09125743A (en) Variable resistance device of electroviscous type
Kawamata Accelerated Liquid Mass Dampers as Tools of Structural Vibration Control
JP2005291314A (en) Vibration control device
JPS58110327A (en) Supporting device of power unit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080707

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees