JPH09143589A - Method for concentrating, separating and recovering rare earth metal - Google Patents
Method for concentrating, separating and recovering rare earth metalInfo
- Publication number
- JPH09143589A JPH09143589A JP32628295A JP32628295A JPH09143589A JP H09143589 A JPH09143589 A JP H09143589A JP 32628295 A JP32628295 A JP 32628295A JP 32628295 A JP32628295 A JP 32628295A JP H09143589 A JPH09143589 A JP H09143589A
- Authority
- JP
- Japan
- Prior art keywords
- scandium
- acid
- leaching
- separating
- concentrating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 14
- 229910052761 rare earth metal Inorganic materials 0.000 title description 3
- 150000002910 rare earth metals Chemical class 0.000 title description 2
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 66
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims abstract description 63
- 238000002386 leaching Methods 0.000 claims abstract description 39
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000007788 liquid Substances 0.000 claims abstract description 13
- 239000012141 concentrate Substances 0.000 claims abstract description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 6
- 230000001590 oxidative effect Effects 0.000 claims abstract description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 3
- 239000002244 precipitate Substances 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 9
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 7
- 239000003929 acidic solution Substances 0.000 claims 2
- 239000000243 solution Substances 0.000 claims 2
- 239000007864 aqueous solution Substances 0.000 claims 1
- 239000002253 acid Substances 0.000 abstract description 18
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052721 tungsten Inorganic materials 0.000 abstract description 9
- 239000010937 tungsten Substances 0.000 abstract description 9
- 238000011084 recovery Methods 0.000 abstract description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052770 Uranium Inorganic materials 0.000 abstract description 3
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 abstract description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052760 oxygen Inorganic materials 0.000 abstract description 2
- 239000001301 oxygen Substances 0.000 abstract description 2
- 206010001497 Agitation Diseases 0.000 abstract 1
- 230000002378 acidificating effect Effects 0.000 abstract 1
- 238000013019 agitation Methods 0.000 abstract 1
- 229910044991 metal oxide Inorganic materials 0.000 abstract 1
- 150000004706 metal oxides Chemical class 0.000 abstract 1
- 238000007670 refining Methods 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 50
- 229910052782 aluminium Inorganic materials 0.000 description 26
- 229910052742 iron Inorganic materials 0.000 description 26
- 229910052710 silicon Inorganic materials 0.000 description 25
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 17
- 239000010703 silicon Substances 0.000 description 17
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 15
- 229910052748 manganese Inorganic materials 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 239000003513 alkali Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000003723 Smelting Methods 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000004411 aluminium Substances 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- -1 rare earth compound Chemical class 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910000863 Ferronickel Inorganic materials 0.000 description 1
- 102100038736 Histone H3.3C Human genes 0.000 description 1
- 101001031505 Homo sapiens Histone H3.3C Proteins 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 239000010883 coal ash Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000011968 lewis acid catalyst Substances 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- LQPWUWOODZHKKW-UHFFFAOYSA-K scandium(3+);trihydroxide Chemical compound [OH-].[OH-].[OH-].[Sc+3] LQPWUWOODZHKKW-UHFFFAOYSA-K 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、レアーアースメタ
ル、特にスカンジュウム(Sc)を微量含有する物質か
らのスカンジュウムの濃縮分離回収方法に関するもので
あり、スカンジュウムを微量含有する物質を酸化性雰囲
気の高温、高圧のもとで、スカンジュウムを選択的に酸
浸出した後、沈殿剤によりスカンジュウムの濃縮沈殿物
を得る方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for concentrating and separating and recovering scandium from a rare earth metal, especially a material containing a trace amount of scandium (Sc). The present invention relates to a method for selectively leaching scandium under high pressure and then obtaining a concentrated precipitate of scandium with a precipitating agent.
【0002】本発明は、特に鉄やアルミニュウムやシリ
コンを多く含む酸化物質からのスカンジュウムの濃縮分
離回収に有用であり、本発明によれば、スカンジュウム
をたとえば、0.001〜0.4重量%程度の微量に含
有する物質から1〜10重量%程度の高濃度のスカンジ
ュウムを含む水酸化物、炭酸化物が得られる。The present invention is particularly useful for concentrating and separating and recovering scandium from an oxide substance containing a large amount of iron, aluminum and silicon. According to the present invention, scandium is contained in an amount of, for example, about 0.001 to 0.4% by weight. From the substance contained in a trace amount, a hydroxide or carbonate containing a high concentration of scandium of about 1 to 10% by weight can be obtained.
【0003】[0003]
【従来の技術】スカンジュウムの用途は、高演色ランプ
として体育館やホテルなどで使用されているメタルハラ
イドランプの封入物、固体レーザー発振源としてのレー
ザー用単結晶への添加剤、ディスプレイ用ブラウン管の
長残光オレンジ色蛍光体などに使用されている。2. Description of the Related Art Scandium is used as an encapsulant for metal halide lamps used in gymnasiums and hotels as high color rendering lamps, additives to single crystals for lasers as solid-state laser oscillation sources, and long-lasting cathode ray tubes for displays. Used in light orange phosphors.
【0004】近年、スカンジュウムの新用途として、レ
アアース化合物を酸の一種のルイス酸として活用したル
イス酸触媒としてスカンジュウムが非常に有望で、次世
代をになう新触媒として今後おおいに発展が期待されて
いる。In recent years, as a new use of scandium, scandium is very promising as a Lewis acid catalyst utilizing a rare earth compound as a type of Lewis acid, and it is expected to develop greatly as a new catalyst for the next generation. There is.
【0005】スカンジュウムは地殻中に5〜10ppm
程度含まれているが、スカンジュウム単独で工業的に利
用できる鉱石はほとんど無いに等しく、濃縮性に非常に
乏しいのが現状である。Scandium is 5-10 ppm in the crust
Although it is contained to some extent, there is almost no ore that can be industrially used by scandium alone, and the present situation is that the concentration property is very poor.
【0006】スカンジュウムを微量含有する酸化物とし
ては、代表的にはスカンジュウムを0.001〜0.4
重量%程度含むタングステン、錫、ウラン製錬の残渣及
びフェロニッケル製錬スラグ、石炭の灰分、赤泥等があ
るが、商業資源として現在使用されている物は主として
タングステン、錫及びウラン製錬残渣である。As an oxide containing a trace amount of scandium, scandium is typically 0.001 to 0.4.
There are tungsten, tin, and uranium smelting residues containing about wt% and ferro-nickel smelting slag, coal ash, red mud, etc., but the currently used commercial resources are mainly tungsten, tin and uranium smelting residues. Is.
【0007】従来のスカンジュウム回収技術としては、
例えばタングステン鉱石からアルカリ処理によりタング
ステンを抽出するが、スカンジュウムは残渣中に残る。As a conventional scandium recovery technique,
For example, tungsten is extracted from tungsten ore by alkali treatment, but scandium remains in the residue.
【0008】この残渣を酸溶解してスカンジュウムを浸
出するが、このさい大気圧のもとで浸出した後、溶媒抽
出法、キレート及びイオン交換法等によりスカンジュウ
ムを分離回収している。The residue is acid-dissolved to leach out scandium, which is leached under atmospheric pressure and then separated and recovered by solvent extraction, chelate and ion exchange methods.
【0009】この方法によれば、スカンジュウムの浸出
率を上げるにはスカンジュウム以外に多量に含有されて
いる鉄やアルミニュウムが同時に浸出され、浸出液中の
鉄やアルミニュウム濃度はスカンジュウムに対し数百倍
にもなる為、酸消費量が非常に多くなるばかりか、この
方法によればシリコンも浸出され、これがゲル状となり
液のろ過を困難とするばかりか、溶媒抽出法においては
クラッド(もやもやとしたゲル状の第3相)の発生をも
たらし、キレート及びイオン交換法においては目詰まり
や通気性不良をもたらし、以後の液処理も複雑となり、
経済性の面のみならず操業上の面からも問題があった。According to this method, in order to increase the leaching rate of scandium, iron and aluminium, which are contained in large amounts other than scandium, are leached at the same time, and the concentration of iron and aluminium in the leaching solution is several hundred times that of scandium. Therefore, not only the acid consumption becomes very large, but according to this method, silicon is also leached out, which causes gelation and makes it difficult to filter the liquid. (3rd phase), causing clogging and poor air permeability in the chelate and ion exchange methods, and the subsequent liquid treatment becomes complicated.
There were problems not only in terms of economy but also in terms of operation.
【0010】[0010]
【発明が解決しようとする課題】本発明は、スカンジュ
ウムを微量に含有する物質からスカンジュウム以外に多
量に含有されている鉄やアルミニュウムさらにシリコン
の浸出を制御し、スカンジュウムを優先的に酸浸出し、
経済的に効率良くスカンジュウムを濃縮分離回収する方
法を提供するものである。The present invention is to control the leaching of iron and aluminum and silicon which are contained in a large amount in addition to scandium from a substance containing a small amount of scandium, and preferentially leaching scandium with acid,
An economically efficient method for concentrating, separating and recovering scandium is provided.
【0011】[0011]
【課題を解決するための手段】そこで、本発明者は上記
不都合を回避し、スカンジュウムを微量含有する酸化物
からスカンジュウムを効率良く濃縮分離回収する為に種
々研究を重ねた結果、酸化性雰囲気の高温、高圧下で酸
浸出を行うと鉄、アルミニュウム及びシリコンの浸出が
制御される一方、スカンジュウムのほぼ全量が選択的に
効率良く浸出されることを発見した。Therefore, the present inventor has conducted various studies to avoid the above-mentioned inconvenience and to efficiently concentrate and recover scandium from an oxide containing a small amount of scandium, and as a result, the oxidizing atmosphere We have found that the acid leaching under high temperature and high pressure controls the leaching of iron, aluminum and silicon, while the leaching of almost all of the scandium is selectively and efficiently leached.
【0012】さらに、この浸出液は鉄やアルミニュウム
やシリコンをわずかしか含有していない為、以後の液処
理において沈殿剤によりスカンジュウムの沈殿物を得る
場合、ろ過性の良好な高温度のスカンジュウム水酸化
物、炭酸化物として回収されることを見いだし本発明に
至った。Further, since this leachate contains only a small amount of iron, aluminum and silicon, when a precipitate of scandium is obtained by a precipitant in the subsequent liquid treatment, a high temperature scandium hydroxide having good filterability is obtained. As a result, they have found that they can be recovered as carbonates and have reached the present invention.
【0013】以下本発明を詳細に説明する。The present invention will be described in detail below.
【0014】本発明におけるスカンジュウムを微量、た
とえば、0.001〜0.4重量%、好ましくは0.0
06超〜0.4重量%、さらに好ましくは、0.01〜
0.4重量%程度含有する酸化物は、スカンジュウムを
含む物であればよく、特に種類が限定されるものではな
いが、通常5〜50%の鉄、2〜10%のアルミニュウ
ム、2〜20%のシリコンが含まれている。A small amount of scandium in the present invention, for example, 0.001 to 0.4% by weight, preferably 0.0
More than 06 to 0.4% by weight, more preferably 0.01 to
The oxide contained at about 0.4% by weight is not particularly limited as long as it contains scandium, but is usually 5 to 50% iron, 2 to 10% aluminum, and 2 to 20%. Contains% silicon.
【0015】従ってスカンジュウムを微量含有する物質
からスカンジュウムを効率よく濃縮分離回収するには、
酸浸出時においてこれら鉄、アルミニュウム及びシリコ
ンの浸出を出来るだけ制御しスカンジュウムを選択的に
浸出する必要がある。Therefore, in order to efficiently concentrate and recover scandium from a substance containing a trace amount of scandium,
During acid leaching, it is necessary to control leaching of iron, aluminum and silicon as much as possible to selectively leached scandium.
【0016】鉄、アルミニュウム及びシリコンの浸出を
制御するには、オートクレーブを使用し酸化性雰囲気の
高温、高圧下で酸浸出することによりなしえる。The leaching of iron, aluminum and silicon can be controlled by acid leaching under high temperature and high pressure in an oxidizing atmosphere using an autoclave.
【0017】酸浸出時の温度は150℃以上、圧力は5
kg/cm2以上が必要であり、特に220℃〜260
℃、24〜48kg/cm2の範囲が好ましい。これに
より、鉄、アルミニウム及びシリコンの浸出が抑制され
る。During the acid leaching, the temperature is 150 ° C. or higher and the pressure is 5
kg / cm 2 or more is required, especially 220 ° C to 260
The temperature is preferably in the range of 24 to 48 kg / cm 2 . This suppresses the leaching of iron, aluminum and silicon.
【0018】酸化性雰囲気とするには、含有するFe2
O3、Al2O3等の酸化物の作用によってもなしえる
が、オートクレーブ内に酸素あるいは空気を吹き込むこ
とで容易になしえる。To make an oxidizing atmosphere, Fe 2
This can be done by the action of oxides such as O 3 and Al 2 O 3, but it can be easily done by blowing oxygen or air into the autoclave.
【0019】高温、高圧を維持する為にはオートクレー
ブ内に水蒸気を吹き込むことにより容易に達成される。
また、浸出反応を促進する為には、この水蒸気による蒸
気撹拌の他にインペラーによる撹拌により、1時間以内
で浸出反応を終了することが可能である。In order to maintain high temperature and high pressure, it is easily achieved by blowing steam into the autoclave.
In order to accelerate the leaching reaction, it is possible to complete the leaching reaction within 1 hour by stirring with an impeller in addition to the steam stirring with the steam.
【0020】使用される酸は硫酸、塩酸あるいは硝酸の
いずれも可能であるが、オートクレーブ材質の腐食性の
点から硫酸が最も好ましい。酸の使用量は高温、高圧下
のもとで酸浸出した後の浸出液のPHが常温において1
前後となるように調整する。The acid used may be sulfuric acid, hydrochloric acid or nitric acid, but sulfuric acid is most preferable from the viewpoint of the corrosiveness of the autoclave material. The amount of acid used is 1 at room temperature as the pH of the leaching solution after acid leaching under high temperature and high pressure.
Adjust it so that it is in front and back.
【0021】以上の条件のもとで酸浸出することによ
り、スカンジュウムの95%以上が浸出され、鉄、アル
ミニュウム及びシリコンの浸出はそれぞれ5%、10%
及び5%以下に制御される。By acid leaching under the above conditions, 95% or more of scandium is leached, and leaching of iron, aluminum and silicon is 5% and 10%, respectively.
And controlled to 5% or less.
【0022】本発明により得られたスカンジュウムを含
有する酸浸出液は鉄、アルミニュウム、シリコン濃度が
低く、特に低シリコン濃度液が得られることから浸出液
のシリコンによる、ゲル化が制御され、この浸出液と浸
出残渣とのろ過分離性が大幅に改善される。The acid leaching solution containing scandium obtained by the present invention has a low iron, aluminum and silicon concentration, and since a particularly low silicon concentration solution is obtained, gelation by silicon of the leaching solution is controlled, and the leaching solution and leaching are controlled. Filtration and separability from the residue are significantly improved.
【0023】本発明により得られたスカンジュウムを含
有する酸浸出液を、炭酸ナトリュウム、炭酸カルシュウ
ム、炭酸アンモニュウム、水酸化ナトリュウム、水酸化
カルシュウム、アンモニア水、炭酸マグネシュウム、水
酸化マグネシュウム、酸化カルシュウム、、酸化マグネ
シュウム等のアルカリを使用して、水酸化物、炭酸化物
として沈殿物を得る。The acid leachate containing scandium obtained according to the present invention is treated with sodium carbonate, calcium carbonate, ammonium carbonate, sodium hydroxide, calcium hydroxide, aqueous ammonia, magnesium carbonate, magnesium hydroxide, calcium oxide, magnesium oxide. A precipitate is obtained as a hydroxide or a carbonate using an alkali such as.
【0024】この場合の浸出液PHは4超〜6、好まし
くは5〜6に調整することにより、スカンジュウムのほ
ぼ全量を沈殿物として回収できるが、浸出液を上述した
アルカリの作用によりまずPHを2〜4、好ましくは3
〜4としこのPHでまず鉄、アルミニュウム及びシリコ
ンを沈殿物として除去した後、さらにアルカリの作用に
よりPHを4超〜6として水酸化物あるいは炭酸化物と
して沈殿物を得ることにより、より高濃度のスカンジュ
ウム濃縮沈殿物を形成することができる。In this case, by adjusting the pH of the leachate to more than 4 to 6, preferably 5 to 6, almost all the amount of scandium can be recovered as a precipitate. 4, preferably 3
After removing iron, aluminum, and silicon as a precipitate with this PH, the pH is adjusted to more than 4 to 6 by the action of alkali to obtain a precipitate as a hydroxide or a carbonate, thereby obtaining a higher concentration. A scandium enriched precipitate can be formed.
【0025】これは、高温、高圧の酸化性雰囲気での酸
浸出により浸出された鉄は、ほぼ全量が3価の鉄として
存在する為PH4以下でほぼ全量沈殿除去が可能とな
り、またアルミニュウムもPH4以下で80%程度の沈
殿除去が可能であることによる。This is because almost all iron leached by acid leaching in a high temperature, high pressure oxidizing atmosphere exists as trivalent iron, so that almost all the iron can be removed by precipitation at pH 4 or less. This is because the precipitation removal of about 80% is possible below.
【0026】さらに、シリコンはこの沈殿物が凝集剤の
作用となり、沈殿物の表面に付着することにより75%
程度が除去される。Further, in the case of silicon, the precipitate acts as a coagulant and adheres to the surface of the precipitate to give 75%.
The degree is removed.
【0027】一方、スカンジュウムはPHが4以下でほ
ぼ全量液に存在し、PH5.5で全量水酸化物あるいは
水酸化物として沈殿生成することによりスカンジュウム
の濃縮分離回収を可能とすることが出来る。On the other hand, scandium has a pH of 4 or less and is almost entirely present in the liquid, and the total amount of the precipitate is formed as hydroxide or hydroxide at PH 5.5, whereby it is possible to concentrate and separate the scandium.
【0028】[0028]
【実施例】以下に本発明を実施例によりさらに詳しく説
明する。EXAMPLES The present invention will be described in more detail below with reference to examples.
【0029】[0029]
【実施例1】タングステン精鉱をアルカリ処理しタング
ステンを浸出した後の浸出残渣(Fe:42%、Mn:
7%、Al:2.5%、Si:3.3%、Sc:0.0
15%)を水により25%スラリーとし、98%硫酸を
残渣1kgに対し175g加え、オートクレーブにより
温度240℃、圧力35kg/cm2で1時間浸出した
後、オートクレーブの圧力を大気圧まで下げた。Example 1 Leaching residue (Fe: 42%, Mn :) after leaching tungsten by subjecting a tungsten concentrate to alkali treatment
7%, Al: 2.5%, Si: 3.3%, Sc: 0.0
15%) was made into a 25% slurry with water, 175 g of 98% sulfuric acid was added to 1 kg of the residue, and the mixture was leached with an autoclave at a temperature of 240 ° C. and a pressure of 35 kg / cm 2 for 1 hour, and then the pressure of the autoclave was reduced to atmospheric pressure.
【0030】浸出後の常温での液PHは0.9であり、
Fe:1.6g/l、Al:0.4k/l、Mn:2
3.4g/l、Si:0.2g/l、Sc:0.053
g/l濃度の浸出液が得られた。The liquid pH at room temperature after leaching is 0.9,
Fe: 1.6 g / l, Al: 0.4 k / l, Mn: 2
3.4 g / l, Si: 0.2 g / l, Sc: 0.053
A leachate with a concentration of g / l was obtained.
【0031】この時のScとMnの浸出率はそれぞれ9
5%と90%であり、Fe、Al、Siの浸出率はそれ
ぞれ1%、4%、2%であった。The leaching rates of Sc and Mn at this time are 9 respectively.
The leaching rates of Fe, Al and Si were 1%, 4% and 2%, respectively.
【0032】この浸出液と残渣を23%スラリー濃度に
おいてフィルタープレスにより固液分離したところ、2
9kg/m2・Hrの残渣処理量が可能であり、その時
の含水率は38%であった。The leachate and the residue were subjected to solid-liquid separation by a filter press at a slurry concentration of 23%.
A residual treatment amount of 9 kg / m 2 · Hr was possible, and the water content at that time was 38%.
【0033】この浸出液を炭酸カルシュウムによりPH
3.8とし、Fe、Alを炭化物として沈殿除去した。
これに伴ってSiも同時に除去された。それぞれの沈殿
除去率はFe:98%、Al:80%、Si:70%で
あった。この時のSc共沈率はわずか3%であり、ほぼ
全量液中に残った。The leachate was pH adjusted with calcium carbonate.
It was set to 3.8, and Fe and Al were precipitated and removed as carbides.
Along with this, Si was also removed at the same time. The respective precipitation removal rates were Fe: 98%, Al: 80%, and Si: 70%. At this time, the Sc coprecipitation rate was only 3%, and almost the entire amount remained in the liquid.
【0034】次に、この液を炭酸ナトリュウムによりP
H5.5としScを炭酸化物として沈殿回収した。この
時のSc沈殿回収率は100%であり、Fe、Alの全
量とSi:30%、Mn:0.3%が同時に沈殿し、S
c:9.0%、Fe:5.6%、Al:13.9%、S
i:4.0%、Mn:12.2%のSc濃縮物が得られ
た。この濃縮物はタングステン精鉱をアルカリ処理しタ
ングステンを浸出した後の浸出残渣に対し600倍のS
c濃縮倍率となった。Next, this solution was treated with sodium carbonate to obtain P
It was set to H5.5 and Sc was precipitated and recovered as a carbonate. The Sc precipitation recovery rate at this time was 100%, and the total amount of Fe and Al and Si: 30% and Mn: 0.3% were simultaneously precipitated,
c: 9.0%, Fe: 5.6%, Al: 13.9%, S
A Sc concentrate of i: 4.0%, Mn: 12.2% was obtained. This concentrate is 600 times more S than the leaching residue after leaching tungsten by subjecting the tungsten concentrate to alkali treatment.
c Concentration ratio was obtained.
【0035】[0035]
【実施例2】Scを0.025%含んでいる赤泥(F
e:48%、Mn:1%、Al:2.8%、Si:3.
8%、Mg:2.2%)を水により30%スラリーと
し、98%硫酸を赤泥1kgに対し205g加え、オー
トクレーブにより温度240℃、圧力35kg/cm2
で1時間浸出した後、オートクレーブの圧力を大気圧ま
で下げた。Example 2 Red mud containing 0.025% Sc (F
e: 48%, Mn: 1%, Al: 2.8%, Si: 3.
8%, Mg: 2.2%) to make a 30% slurry with water, add 205 g of 98% sulfuric acid to 1 kg of red mud, and autoclave the temperature at 240 ° C, pressure 35 kg / cm 2.
After leaching for 1 hour at 1, the pressure of the autoclave was reduced to atmospheric pressure.
【0036】浸出後の常温での液PHは0.9であり、
Fe:1.5g/l、Al:0.4k/l、Mn:4.
5g/l、Mg:10.1g/l、Si:0.4g/
l、Sc:0.012g/l濃度の浸出液が得られた。The liquid pH at room temperature after leaching is 0.9,
Fe: 1.5 g / l, Al: 0.4 k / l, Mn: 4.
5 g / l, Mg: 10.1 g / l, Si: 0.4 g / l
l, Sc: 0.012 g / l concentration of leachate was obtained.
【0037】この時のScとMn及びMgの浸出率はそ
れぞれ94%と90%及び92%であり、Fe、Al、
Siの浸出率はそれぞれ0.5%、3%、2%であっ
た。The leaching rates of Sc, Mn, and Mg at this time were 94%, 90%, and 92%, respectively, and Fe, Al, and
The leaching rates of Si were 0.5%, 3%, and 2%, respectively.
【0038】この浸出液と残渣を32%スラリー濃度に
おいてフィルタープレスにより固液分離したところ、3
3kg/m2・Hrの残渣処理が可能であり、その時の
含水率は30%であった。When this leachate and the residue were subjected to solid-liquid separation with a filter press at a slurry concentration of 32%, 3
A residue treatment of 3 kg / m 2 · Hr was possible, and the water content at that time was 30%.
【0039】この浸出液を水酸化カルシュウムによりP
H3.5とし、Fe、Alを水酸化物として沈殿除去し
た。これに伴ってSiも同時に除去された。それぞれの
沈殿除去率はFe:97%、Al:73%、Si:70
%であった。この時のSc共沈率はわずか2%であり、
ほぼ全量液中に残った。This leachate was treated with calcium hydroxide to form P
It was set to H3.5, and Fe and Al were precipitated and removed as hydroxides. Along with this, Si was also removed at the same time. The respective precipitation removal rates are Fe: 97%, Al: 73%, Si: 70
%Met. The Sc coprecipitation rate at this time was only 2%,
Almost all the liquid remained in the solution.
【0040】次に、この液を水酸化ナトリュウムにより
PH5.7としScを水酸化物として沈殿回収した。こ
の時のSc沈殿回収率は100%であり、Fe、Alの
全量とSi:25%、Mn:0.5%、Mg:0.2%
が同時に沈殿し、Sc:2.1%、Fe:7.9%、A
l:18.9%、Si:5.3%、Mn:4.1%、M
g:3.5%のSc濃縮物が得られた。この濃縮物はも
との赤泥に対し840倍のSc濃縮倍率となった。Next, this solution was adjusted to pH 5.7 with sodium hydroxide to precipitate and recover Sc as hydroxide. At this time, the Sc precipitation recovery rate was 100%, and the total amount of Fe and Al and Si: 25%, Mn: 0.5%, Mg: 0.2%
Simultaneously precipitates, Sc: 2.1%, Fe: 7.9%, A
1: 18.9%, Si: 5.3%, Mn: 4.1%, M
A Sc concentrate of g: 3.5% was obtained. This concentrate had a Sc concentration ratio of 840 times that of the original red mud.
【0041】[0041]
【発明の効果】本発明によれば、多量に鉄やアルミニュ
ウム及びシリコンを含んでいるスカンジュウム含有物質
から鉄やアルミニュウム及びシリコンをほとんど浸出す
ることなく、スカンジュウムのほぼ全量を優先的に浸出
することが出来る為、酸の消費量が大幅に低減され経済
的効果が非常に大きいだけでなく、浸出液と浸出残渣と
のろ過分離性が良好で、操業上の面からも効率的であ
る。According to the present invention, almost all the amount of scandium can be preferentially leached from a scandium-containing substance containing a large amount of iron, aluminum and silicon without leaching almost all of iron, aluminum and silicon. As a result, not only the consumption of acid is greatly reduced and the economic effect is very large, but also the filtration and separation properties of the leachate and the leach residue are good, and it is efficient in terms of operation.
【0042】さらに、スカンジュウムは水酸化物あるい
は炭酸化物として容易に分離回収できる為、高濃度のス
カンジュウム沈殿物が得られる。Furthermore, since scandium can be easily separated and recovered as hydroxide or carbonate, a high-concentration scandium precipitate can be obtained.
【0043】本発明によって得られたスカンジュウム濃
縮沈殿物は水酸化物あるいは炭酸化物である為、酸に容
易に溶解し高濃度のスカンジュウム液が得られることか
ら、以後のキレート抽出や溶媒抽出法による、さらに9
9%以上の高純度スカンジュウム製造が容易でしかも効
率的に行える。Since the scandium concentrated precipitate obtained by the present invention is a hydroxide or a carbonate, it can be easily dissolved in an acid to obtain a high-concentration scandium solution. , 9 more
High-purity scandium of 9% or more can be easily and efficiently produced.
Claims (5)
らスカンジュウムを回収するにあたり、スカンジュウム
を微量含有する酸化物を酸化性雰囲気の高温、高圧のも
とで、酸性溶液中にスカンジュウムを選択的に浸出し、
スカンジュウム含有溶液を得た後、液のPH調整後、ス
カンジュウムの濃縮沈殿物を形成することを特徴とする
スカンジュウムの濃縮分離回収方法。1. When recovering scandium from an oxide containing a trace amount of scandium, the oxide containing a trace amount of scandium is selectively leached into an acidic solution under high temperature and pressure in an oxidizing atmosphere. ,
A method for concentrating, separating and recovering scandium, comprising forming a concentrated precipitate of scandium after obtaining a solution containing scandium, and adjusting the pH of the solution.
℃〜260℃、圧力が5〜48kg/cm2以上である
ことを特徴とする請求項1記載の濃縮分離回収方法。2. The temperature for leaching scandium is 150.
The method according to claim 1, wherein the temperature is ℃ to 260 ℃, and the pressure is 5 to 48 kg / cm 2 or more.
水溶液であることを特徴とする請求項1記載の濃縮分離
回収方法。3. The method of concentrating, separating and recovering according to claim 1, wherein the acidic solution is an aqueous solution of sulfuric acid, nitric acid, or hydrochloric acid.
PHが4〜6であることを特徴とする請求項1記載の濃
縮分離回収方法。4. The method of concentrating, separating and recovering according to claim 1, wherein the liquid PH for forming the scandium concentrate is 4 to 6.
炭酸化物であることを特徴とする請求項1記載の濃縮分
離回収方法。5. The scandium enriched precipitate is a hydroxide,
The method of concentrating, separating and recovering according to claim 1, which is a carbonate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32628295A JP3307204B2 (en) | 1995-11-22 | 1995-11-22 | Concentration separation and recovery method of rare earth metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32628295A JP3307204B2 (en) | 1995-11-22 | 1995-11-22 | Concentration separation and recovery method of rare earth metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09143589A true JPH09143589A (en) | 1997-06-03 |
JP3307204B2 JP3307204B2 (en) | 2002-07-24 |
Family
ID=18186031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32628295A Expired - Lifetime JP3307204B2 (en) | 1995-11-22 | 1995-11-22 | Concentration separation and recovery method of rare earth metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3307204B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014148431A1 (en) | 2013-03-18 | 2014-09-25 | 国立大学法人九州大学 | Method for separating impurities from an acidic solution containing nickel and cobalt and/or scandium |
JP2016507637A (en) * | 2012-12-17 | 2016-03-10 | スカンジウム、プロプライエタリー、リミテッドScandium Pty Ltd | Method for producing scandium-containing solid material with high scandium content |
CN105986124A (en) * | 2015-03-04 | 2016-10-05 | 中国石油化工股份有限公司 | Method for recycling rare earth from porous material containing rare earth, silicon and aluminum |
US9481638B2 (en) | 2012-03-13 | 2016-11-01 | Kyushu University, National University Corporation | Scandium extraction method |
US9725786B2 (en) | 2012-12-12 | 2017-08-08 | Kyushu University, National University Corporation | Nickel extraction method |
US9803262B2 (en) | 2012-08-20 | 2017-10-31 | Kyushu University, National University Corporation | Gallium extraction agent and gallium extraction method |
US10036082B2 (en) | 2015-01-20 | 2018-07-31 | Kyushu University, National University Corporation | Zirconium extractant and method for extracting zirconium |
CN110527829A (en) * | 2019-10-17 | 2019-12-03 | 中国恩菲工程技术有限公司 | The beneficiation method of tungstenic Tin concentrate |
-
1995
- 1995-11-22 JP JP32628295A patent/JP3307204B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9481638B2 (en) | 2012-03-13 | 2016-11-01 | Kyushu University, National University Corporation | Scandium extraction method |
US9803262B2 (en) | 2012-08-20 | 2017-10-31 | Kyushu University, National University Corporation | Gallium extraction agent and gallium extraction method |
US9725786B2 (en) | 2012-12-12 | 2017-08-08 | Kyushu University, National University Corporation | Nickel extraction method |
JP2016507637A (en) * | 2012-12-17 | 2016-03-10 | スカンジウム、プロプライエタリー、リミテッドScandium Pty Ltd | Method for producing scandium-containing solid material with high scandium content |
WO2014148431A1 (en) | 2013-03-18 | 2014-09-25 | 国立大学法人九州大学 | Method for separating impurities from an acidic solution containing nickel and cobalt and/or scandium |
US9458526B2 (en) | 2013-03-18 | 2016-10-04 | Kyushu University, National University Corporation | Method for separating impurities from an acidic solution containing nickel and cobalt and/or scandium |
US10036082B2 (en) | 2015-01-20 | 2018-07-31 | Kyushu University, National University Corporation | Zirconium extractant and method for extracting zirconium |
CN105986124A (en) * | 2015-03-04 | 2016-10-05 | 中国石油化工股份有限公司 | Method for recycling rare earth from porous material containing rare earth, silicon and aluminum |
CN110527829A (en) * | 2019-10-17 | 2019-12-03 | 中国恩菲工程技术有限公司 | The beneficiation method of tungstenic Tin concentrate |
Also Published As
Publication number | Publication date |
---|---|
JP3307204B2 (en) | 2002-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3085173B2 (en) | Concentration separation and recovery method of rare earth metal from oxidized ore | |
US4193968A (en) | Process for recovering gallium | |
JP3385997B2 (en) | Method of recovering valuable metals from oxide ore | |
JP3344194B2 (en) | Method for producing high-purity rare earth metal oxide from oxidized ore | |
JP3430973B2 (en) | Method for recovering nickel and scandium from oxidized ore | |
JP2016507637A (en) | Method for producing scandium-containing solid material with high scandium content | |
JP3275681B2 (en) | Production method of high purity scandium oxide | |
US3973949A (en) | Zinc recovery by chlorination leach | |
RU2135610C1 (en) | Method of hydrometallurgical zinc sulfide-into-zinc sulfate conversion from zinc sulfide-containing ores and concentrates | |
JP3387302B2 (en) | Method for producing high purity rare earth metal oxide | |
JPH08508543A (en) | Recovery of cerium from fluoride-containing ores | |
JPS5952218B2 (en) | Method for recovering gold from copper electrolytic slime | |
JPH09143589A (en) | Method for concentrating, separating and recovering rare earth metal | |
US4184868A (en) | Method for producing extra fine cobalt metal powder | |
JP4215547B2 (en) | Cobalt recovery method | |
JPS634028A (en) | Treatment for scrap containing rare earth element and iron | |
JPH0681050A (en) | Method for recovering nickel and cobalt | |
JP2004182533A (en) | Method of recovering cobalt | |
JPS63496A (en) | Method for purifying gallium electrolytic solution | |
NO150321B (en) | FR | |
JP2001097716A (en) | METHOD FOR SEPARATING AND CONCENTRATING Ga | |
US2242493A (en) | Process for the production of beryllium compounds | |
JP2537617B2 (en) | Treatment method for magnesia silicate nickel ore | |
JPH11209831A (en) | Method for refining and recovering zirconium | |
JPH0623048B2 (en) | Method for recovering tungsten from ammoniacal tungsten solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090517 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090517 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100517 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110517 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110517 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120517 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130517 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140517 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |