JPH09142828A - Production of highly pure sandy synthetic silica, and production of highly pure synthetic quartz glass molded product - Google Patents

Production of highly pure sandy synthetic silica, and production of highly pure synthetic quartz glass molded product

Info

Publication number
JPH09142828A
JPH09142828A JP30921595A JP30921595A JPH09142828A JP H09142828 A JPH09142828 A JP H09142828A JP 30921595 A JP30921595 A JP 30921595A JP 30921595 A JP30921595 A JP 30921595A JP H09142828 A JPH09142828 A JP H09142828A
Authority
JP
Japan
Prior art keywords
gel
sandy
synthetic silica
purity
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30921595A
Other languages
Japanese (ja)
Inventor
Akihiro Takazawa
彰裕 高澤
Shoji Oishi
昭二 大石
Fumiya Ishikawa
文矢 石川
Yasuo Tanabe
康雄 田▲邉▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP30921595A priority Critical patent/JPH09142828A/en
Publication of JPH09142828A publication Critical patent/JPH09142828A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/106Forming solid beads by chemical vapour deposition; by liquid phase reaction
    • C03B19/1065Forming solid beads by chemical vapour deposition; by liquid phase reaction by liquid phase reactions, e.g. by means of a gel phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce highly pure sandy synthetic silica having the same or higher purity as that produced by an oxyhydrogen flame medium method. SOLUTION: This method for producing the highly pure sandy synthetic silica by a liquid phase reaction comprises producing a gel from the solution or dispersion of a raw material, drying the gel and calcining the dried gel. Therein, the dried gel is fed into the calcination process followed to the drying process through a flexible cylinder having a binding or unbinding means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光ファイバー、シリ
コン単結晶引き上げ用るつぼ、LSIの封止材等半導体
関連分野等に適した高純度石英ガラス製品製造用の砂状
合成シリカの製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing sandy synthetic silica for producing high-purity silica glass products suitable for semiconductor-related fields such as optical fibers, silicon single crystal pulling crucibles, and LSI encapsulating materials.

【0002】近年、光通信分野、半導体産業等に使用さ
れるガラス製品については、その純度に関し非常に厳し
い管理が行われている。このような高純度のガラスを得
るに際し、従来、天然石英を粉砕して得た砂状の天然石
英粉(いわゆるsandと称されるものである)を溶融
して製造されていたが、天然石英は良質のものであって
も種々の金属不純物を含んでおり、純度、均一性の面か
ら十分満足し得るものではなかった。このため特に純度
を向上する手段として、四塩化ケイ素を酸水素炎の中で
分解して発生した煤を基体に付着・成長させ、得られた
煤の固まりを加熱して透明化しブロック状の石英ガラス
を得、このブロックを粉砕して砂状合成シリカを得る、
酸水素炎煤法があり、気相反応であるため不純物の混入
を防ぐことができる。しかしながら、この方法は多くの
エネルギーを要し、製造コストが高いという難点があ
る。一方では、金属アルコキシド等の有機金属化合物を
原料としてゾルを生成し、これをゲル化して更に乾燥、
焼成、粉砕、溶融等の工程を経てガラスとする、いわゆ
るゾル−ゲル法による合成石英ガラスの製造が提案され
ており、この方法は液相反応であるため安価である。
In recent years, glass products used in the fields of optical communication, semiconductor industry, etc. have undergone extremely strict control regarding the purity. In order to obtain such high-purity glass, conventionally, it was produced by melting sand-like natural quartz powder (so-called sand) obtained by crushing natural quartz. Even if it is of good quality, it contains various metal impurities and was not sufficiently satisfactory in terms of purity and uniformity. Therefore, as a means to improve the purity, the soot generated by decomposing silicon tetrachloride in an oxyhydrogen flame is made to adhere and grow on the substrate, and the obtained soot mass is heated to make it transparent and block quartz. Obtain glass and crush this block to obtain synthetic sandy silica,
There is an oxyhydrogen soot method, and since it is a gas phase reaction, it is possible to prevent impurities from mixing in. However, this method has a drawback that it requires a lot of energy and the manufacturing cost is high. On the other hand, an organic metal compound such as a metal alkoxide is used as a raw material to generate a sol, which is gelled and further dried,
It has been proposed to manufacture synthetic quartz glass by a so-called sol-gel method in which glass is obtained through steps such as firing, crushing, and melting, and this method is inexpensive because it is a liquid phase reaction.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ゾル−
ゲル法においては、蒸留等の手段により精製した原料を
用いることによってある程度は純度の高い石英ガラスと
することはできるが、原料段階から一貫して容器と接触
しているため、不純物の混入を完全に防ぐことはでき
ず、特に、焼成して得られる砂状合成シリカはもちろん
のこと焼成に先立って100℃程度の加熱により乾燥し
てなる乾燥ゲルもまた、非常に硬く(ビッカース硬度に
おいてはステンレスを上回っている)、各工程間の移送
により容器、配管部等の一連の反応装置内壁から不純物
が容易に混入するため、特に高純度を要する目的には十
分対応することができなかった。このため安価な液相反
応によっても酸水素炎煤法と同等またはそれ以上の高純
度を有する合成石英ガラスを得る方法が望まれていた。
However, the sol
In the gel method, it is possible to obtain quartz glass with a high degree of purity by using raw materials that have been purified by means such as distillation, but since it is in contact with the container consistently from the raw material stage, it is possible to completely eliminate impurities. In particular, not only sandy synthetic silica obtained by calcination but also dry gel obtained by drying by heating at about 100 ° C. prior to calcination is very hard (in Vickers hardness, stainless steel). However, since impurities are easily mixed from the inner wall of a series of reactors such as a container and a pipe by the transfer between each step, it was not possible to sufficiently meet the purpose that requires high purity. Therefore, there has been a demand for a method of obtaining a synthetic quartz glass having a high purity equal to or higher than that of the oxyhydrogen flame soot method even by an inexpensive liquid phase reaction.

【0004】[0004]

【課題を解決するための手段】本発明者等は上記の課題
に鑑み鋭意検討を重ねた結果、製造工程を特定配置にて
行うことにより液相反応によっても極めて高純度の砂状
合成シリカを得ることができることを見いだし本発明に
到達した。すなわち本発明の目的は、高純度の砂状合成
シリカを得ることであり、しかしてかかる目的は、原料
溶液または分散液からゲルを得るゲル化工程、該ゲルを
乾燥し乾燥ゲルとする乾燥工程、及び該乾燥ゲルを焼成
する焼成工程を有する、液相反応による砂状合成シリカ
の製造方法において乾燥ゲルが、柔軟性を有しかつ結束
・解束手段を有する筒を介して乾燥工程の下部での焼成
工程に供されることを特徴とする高純度砂状合成シリカ
の製造方法、等により達せられる。
Means for Solving the Problems The inventors of the present invention have made extensive studies in view of the above problems, and as a result, by carrying out a manufacturing process in a specific arrangement, an extremely high-purity sandy synthetic silica can be obtained by a liquid phase reaction. The inventors have found what can be obtained and have reached the present invention. That is, an object of the present invention is to obtain a high-purity sandy synthetic silica, and such an object is a gelling step of obtaining a gel from a raw material solution or dispersion, and a drying step of drying the gel to obtain a dried gel. And a baking step of baking the dry gel, the dry gel is used in a method for producing a sandy synthetic silica by a liquid phase reaction, and the dry gel is provided at a lower part of the drying step through a tube having a binding / unbinding means. It is achieved by a method for producing high-purity sandy synthetic silica, which is characterized by being subjected to a calcination step in.

【0005】[0005]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明におけるゲル化工程とは、原料溶液または分散液
からシリカゲルを得る工程である。原料として、ケイ素
のアルコキシド、塩、酸化物等のケイ素化合物を加水分
解してシリカゾルとし、更にこれをシリカゲルとする加
水分解法、及びヒュームドシリカ等を水に分散してシリ
カゾルとし、更にこれをシリカゲルとするコロイド分散
法の二つが主な方法であるが、本発明はこれらに限られ
ず、要するに液相からゲルを生成する工程であれば適用
できる。ただ、これらのうち、加水分解法が、より好ま
しい。これは、コロイド分散法の場合、ヒュームドシリ
カの作成自体に高温を要すること、作成時に炉壁の煉瓦
等耐熱材料から微量の金属酸化物等が揮発し不純物とし
て混入することがあり、純度に問題が生ずる場合のある
こと、および得られたゲルの物性が加水分解法に比べれ
ばやや劣り、得られる砂状合成シリカの歩留りも落ちる
こと等の理由による。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The gelation step in the present invention is a step of obtaining silica gel from a raw material solution or dispersion. As a raw material, a silicon alkoxide, a salt, a silicon compound such as an oxide is hydrolyzed to give a silica sol, and a hydrolysis method using this as silica gel, and fumed silica or the like dispersed in water to give a silica sol, which is further The two main methods are a colloidal dispersion method using silica gel, but the present invention is not limited to these methods and can be applied as long as it is a step of forming a gel from a liquid phase. However, of these, the hydrolysis method is more preferable. This is because in the case of the colloidal dispersion method, the production of fumed silica itself requires high temperatures, and trace amounts of metal oxides, etc. may evaporate from refractory materials such as bricks on the furnace wall during production, and may be mixed in as impurities. This is because problems may occur, the physical properties of the obtained gel are slightly inferior to those obtained by the hydrolysis method, and the yield of the obtained sandy synthetic silica is reduced.

【0006】また、加水分解法のうち、原料としてケイ
素アルコキシドを用いるのが最も好ましい。これは、副
生物がアルコールのみであるため容器等の腐食の問題が
なく、また簡単に留去できるので好適であるためであ
る。尚、ケイ素アルコキシドを得るに際しては、金属ケ
イ素とアルコールとを反応させる方法、四塩化ケイ素等
のハロゲン化ケイ素とアルコールとを反応させる方法、
ケイ素水酸化物または酸化物とアルコールとを反応させ
る方法、エステル交換、アルコール交換反応、アルキル
シリコン水素化物とケトンとの反応による方法等があ
り、条件、目的等により適宜選択できるが、これらのう
ち特に金属ケイ素とアルコールとを反応させる方法は、
塩素その他の発生による容器等の腐食、他の副生物の分
離回収といった問題もなく好適である。
Of the hydrolysis methods, it is most preferable to use silicon alkoxide as a raw material. This is because the by-product is only alcohol, so that there is no problem of corrosion of the container and the like, and it can be easily distilled off, which is preferable. When obtaining a silicon alkoxide, a method of reacting metal silicon with an alcohol, a method of reacting a silicon halide such as silicon tetrachloride with an alcohol,
There are a method of reacting a silicon hydroxide or an oxide with an alcohol, a transesterification, an alcohol exchange reaction, a method by a reaction of an alkylsilicon hydride and a ketone, and the like, which can be appropriately selected depending on conditions, purposes, etc. In particular, the method of reacting metal silicon with alcohol is
It is suitable without problems such as corrosion of containers due to generation of chlorine and the like and separation and recovery of other by-products.

【0007】ケイ素アルコキシドの種類は、炭素数1〜
4のアルコキシ基、即ちメトキシ基、エトキシ基、プロ
ポキシ基、ブトキシ基等が挙げられ、これらのうちでも
メトキシ基またはエトキシ基が好ましい。また、その数
は2個以上であることが好ましく、モノマーあるいはオ
リゴマーを用いることができる。
The type of silicon alkoxide has 1 to 1 carbon atoms.
The alkoxy group of 4, that is, a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like can be mentioned, and among these, a methoxy group or an ethoxy group is preferable. Further, the number is preferably 2 or more, and a monomer or an oligomer can be used.

【0008】具体的には、テトラメトキシシラン、ジメ
トキシジメチルシラン、テトラエトキシシラン、テトラ
プロポキシシラン、テトラブトキシシラン等が挙げられ
るが、これらのうちケイ素原子に直接結合したアルキル
基を有さないテトラメトキシシラン、テトラエトキシシ
ラン、テトラプロポキシシラン、テトラブトキシシラン
等を用いた場合、得られる砂状合成シリカの黒色異物発
生を防ぐことができ、より好ましい。
Specific examples thereof include tetramethoxysilane, dimethoxydimethylsilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane. Among them, tetramethoxy having no alkyl group directly bonded to a silicon atom. The use of silane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, etc. is more preferable because it can prevent the generation of black foreign matter in the obtained sandy synthetic silica.

【0009】加水分解反応は公知の方法に従ってアルコ
キシドと水を反応させることにより行われる。この際、
必要に応じて相溶性のあるアルコール類やエーテル類、
ケトン類等の有機溶媒を混合してもよい。アルコールと
しては、メタノール、エタノール、プロパノール等が、
エーテル類としてはジエチルエーテル等が、ケトン類と
してはアセトン等が挙げられる。
The hydrolysis reaction is carried out by reacting an alkoxide with water according to a known method. On this occasion,
If necessary, compatible alcohols and ethers,
You may mix organic solvents, such as ketones. As alcohol, methanol, ethanol, propanol, etc.,
Examples of ethers include diethyl ether, and examples of ketones include acetone.

【0010】ただし、加水分解反応の進行につれてアル
コキシドに結合していたアルコキシ基が、アルコールと
して遊離するためゲル化する以前に反応液が均一な状態
となる場合、すなわち、加水分解速度の大きいアルコキ
シ基(例えばメトキシ基)を有するような原料の場合、
アルコールの添加を行わなくとも実際上支障なく運転で
きる。
However, when the alkoxy group bonded to the alkoxide is liberated as alcohol as the hydrolysis reaction proceeds, the reaction solution becomes in a uniform state before gelling, that is, the alkoxy group having a high hydrolysis rate. In the case of a raw material having (for example, a methoxy group),
It can be operated without any problems without adding alcohol.

【0011】触媒として塩酸、酢酸、フッ酸、硫酸のよ
うな酸、アンモニア水のようなアルカリ等が挙げられ
る。加水分解に使用する水は、目的物である砂状合成シ
リカを高純度に保持するには使用される水に同伴して反
応液中に持ち込まれる不純物を極力少量にすることが必
要であるため、超純水等を用いるのが好ましい。
Examples of the catalyst include acids such as hydrochloric acid, acetic acid, hydrofluoric acid and sulfuric acid, and alkali such as aqueous ammonia. The water used for hydrolysis is required to keep the target sandy synthetic silica in high purity because the amount of impurities that accompany the water used and brought into the reaction solution should be minimized. It is preferable to use ultrapure water or the like.

【0012】水の添加量は、加水分解反応が進行する量
であれば特に制限されないが、実際上は理論的に必要な
量よりも過剰に加えることが多くかつ、ゲル化に要する
時間および粗粉砕に要する時間等を適正な範囲とするた
めに、アルコキシド対水のモル比を1:2〜1:10、
望ましくは1:3〜1:8、特に望ましくは1:4〜
1:7の範囲とするのが実用的である。極端に水が多い
とゲル化に長時間を要するばかりでなく、たとえゲル化
してもゲルが粉砕工程に適する硬度となるまでに時間が
かかったり場合によっては過剰に加えた水を蒸発させな
ければならない他後述する乾燥工程に時間がかかる等の
不都合が生ずる。また水が少なすぎると加水分解が充分
進まず従ってゲル化も充分行われない。
The amount of water added is not particularly limited as long as the hydrolysis reaction proceeds, but in practice, it is often added in excess of the theoretically required amount, and the time required for gelation and coarse In order to adjust the time required for pulverization to an appropriate range, the molar ratio of alkoxide to water is 1: 2 to 1:10,
Desirably 1: 3 to 1: 8, and particularly desirably 1: 4 to
It is practical that the range is 1: 7. If the amount of water is extremely large, not only does gelation take a long time, but even if gelation occurs, it takes time for the gel to reach the hardness suitable for the crushing process, and in some cases unless excess water is evaporated. In addition to this, other disadvantages such as the time required for the drying process to be described later occur. On the other hand, if the amount of water is too small, the hydrolysis does not proceed sufficiently, so that gelation is not sufficiently performed.

【0013】加水分解反応は、アルコキシドと水との均
一溶液が形成された時点以降にほぼ終了する。次いで加
水分解反応終了後は溶液がゲル化し一体化するまで静止
する。加水分解反応及びゲル化の条件は用いられる原料
によって異なるが、通常20〜80℃の温度下、常圧の
圧力条件下であわせて20分〜10時間程度である。加
水分解物をゲル化させるには、加熱すれば直ちにゲルを
得ることができるが、常温で放置しても数時間でゲル化
するので、加温の程度を調節することによってゲル化時
間を調整することができる。
The hydrolysis reaction is almost completed after the time when a uniform solution of alkoxide and water is formed. After completion of the hydrolysis reaction, the solution is allowed to stand still until it gels and is integrated. The conditions of the hydrolysis reaction and gelation differ depending on the raw materials used, but are generally about 20 minutes to 10 hours at a temperature of 20 to 80 ° C. and under a normal pressure condition. To gel the hydrolyzate, you can obtain the gel immediately by heating, but it will gel in several hours even if left at room temperature, so adjust the gelling time by adjusting the degree of heating. can do.

【0014】得られたゲルは、乾燥工程を経る。乾燥方
法は、一般には100〜200℃、真空又は不活性ガス
中で加熱する。容器の外側のジャケットに蒸気を供給す
る等の方法によることもできる。例えば廻転加熱法(筒
状体内で転動加熱する方法、特願平4−34471
2)、コニカルドライヤー等の回転攪拌機で攪拌する方
法(特願平5−126266)の他、反応槽内を減圧に
して揮発成分を除去する方法等があり、条件、目的に応
じて適宜選択すればよい。ゲルを水性溶媒で洗浄した後
乾燥する、容器のアルカリ洗浄を行ってから乾燥する
(特願平5−126262)等、前処理の後乾燥するこ
ともできる。
The gel obtained is subjected to a drying process. The drying method is generally heating at 100 to 200 ° C. in a vacuum or an inert gas. It is also possible to use a method such as supplying steam to the outer jacket of the container. For example, a rotation heating method (a method of rolling heating in a tubular body, Japanese Patent Application No. 344741/1992).
2), a method of stirring with a rotary stirrer such as a conical dryer (Japanese Patent Application No. 5-126266), a method of removing the volatile components by reducing the pressure in the reaction tank, etc., which may be appropriately selected according to the conditions and purposes. Good. It is also possible to carry out post-treatment drying, such as washing the gel with an aqueous solvent and then drying, washing the container with alkali and then drying (Japanese Patent Application No. 5-126262).

【0015】乾燥工程は、好ましくはゲル化工程の下部
で行う。下部とは、より高度の低い位置であることを意
味し、この限りにおいて、いずれの場所であってもよ
い。すなわち、ゲル化工程の行われる部位の真下、ある
いは斜め下等で、乾燥工程を行う。このような位置であ
れば、何らの動力を必要とせず、重力によってゲルは自
然に乾燥工程へと移行することができる。望ましくは、
このうちゲル化工程の行われる部位の真下で行うのが本
発明の目的に最も適した効果を上げることができる。例
えば反応槽の下部に設けられたホッパーの真下に乾燥器
を配置し、反応生成物が直接乾燥器内に投入される構造
とすれば、途中の経路で汚染されることもない。
The drying step is preferably carried out below the gelling step. The lower part means a position at a lower altitude, and as long as this is the case, it may be anywhere. That is, the drying process is performed just below the portion where the gelation process is performed, or diagonally below. In such a position, no power is required, and the gel can naturally move to the drying step by gravity. Preferably,
Of these, the effect most suitable for the purpose of the present invention can be obtained directly under the portion where the gelation step is performed. For example, if the dryer is arranged directly below the hopper provided in the lower part of the reaction tank, and the reaction product is directly charged into the dryer, it will not be contaminated along the way.

【0016】尚、乾燥工程を経る前に、粉砕工程を経て
もよい。あるいは乾燥工程を経てから、粉砕工程を経て
もよい。また、予備乾燥後粉砕し、更に本格的な乾燥を
行ったり、粗粉砕後乾燥し、再び粉砕を行うこともでき
る。一般的には乾燥する前の湿潤ゲルの状態で粉砕する
と、柔らかいので粉砕しやすく、要する衝撃も少ないの
で不純物の混入も少ない。乾燥してから粉砕する場合は
粉砕工程は乾燥工程の下部で行うのが好ましい。粉砕し
てから乾燥する場合は乾燥工程は粉砕工程の下部で行う
のが好ましい。粉砕方法は、公知の諸法、例えばゲルを
粗粉砕した後市販のスクリーンによる造粒機もしくは粉
砕機に乾燥後または未乾燥の粗粉砕ゲルを供給し粉砕す
る方法、垂直方向に回転可能な密閉型回転式容器内でゲ
ル化工程を行った後、該容器の回転によりゲルの粉砕を
も行う方法(特開平5−201717号公報)等が採用
できるが、反応槽下部のホッパーの下に直接ナイロンス
クリーンの回転粉砕機を取付け、ここを通過したゲルが
直接乾燥器内に投入される構造とすれば、一層効果的で
ある。
A crushing step may be performed before the drying step. Alternatively, the pulverization step may be performed after the drying step. It is also possible to carry out full-scale drying after preliminary drying and pulverization, or coarse pulverization and then drying and pulverization again. Generally, crushing in a wet gel state before drying is soft and easy to crush, requires less impact, and contains less impurities. When pulverizing after drying, the pulverizing step is preferably performed in the lower part of the drying step. In the case of crushing and then drying, the drying step is preferably performed at the lower part of the crushing step. The crushing method is a known method, for example, a method in which a gel is roughly crushed and then dried or fed to a granulator or a crusher with a commercially available screen or an undried coarsely crushed gel, and a vertically rotatable seal is used. Although a method of crushing the gel by rotating the container after performing the gelation step in the mold type rotary container (Japanese Patent Laid-Open No. 5-201717), etc., can be adopted, but directly below the hopper at the bottom of the reaction tank. It is even more effective if a rotary crusher with a nylon screen is attached and the gel passing through this is put directly into the dryer.

【0017】焼成工程は、常法により、1000〜13
00℃で行うことができる。堅型移動装置により焼成し
たり(特開平5−17123号公報)、酸素濃度30v
ol%以上とし、黒色異物を減少させたりすることもで
きる。焼成工程は、乾燥工程の下部で行うのが好まし
い。この場合、乾燥ゲルが、柔軟性を有しかつ結束・解
束手段を有する筒を介して乾燥工程の下部での焼成工程
に供されるのが望ましい。ここで、柔軟性を有しかつ結
束・解束手段を有する筒とは、織布、不織布、ポリ四フ
ッ化エチレン(「テフロン」、商標)でコーティングさ
れた織布等各種コーティングクロス、ラバー等の、柔軟
性を有する材質から成る筒である。柔軟性を有し、後述
する結束・解束操作による変形の繰返しによっても、工
業上充分実用可能な程度の強度を有するものであれば、
特に材質は制限されない。但し、乾燥ゲル又は砂状合成
シリカが通過する際の接触によっても不純物混入量が無
視できるものであることを要する。また、この筒の有す
る結束・解束手段とは、筒を絞ったり解放したりして筒
内を通過する物体の量を制御するための手段である。最
も簡単には筒の円周方向に、なわ、ひも等の線状物を通
し、線状物を外部から引っ張ることにより筒を結束して
筒内の物体の通過を停止したり、線状物を緩めることに
より筒を解放して、筒内の物体の通過量を最大としたり
することができる。
The firing process is carried out by a conventional method in the range of 1000 to 13
It can be performed at 00 ° C. Baking with a rigid moving device (JP-A-5-17123), oxygen concentration 30v
It is also possible to reduce the amount of black foreign matter by making it ol% or more. The firing step is preferably performed below the drying step. In this case, it is preferable that the dried gel is subjected to a firing step in the lower part of the drying step through a tube having flexibility and having a binding / unbundling means. Here, the flexible tube having a binding / unbunching means is a woven cloth, a non-woven cloth, a woven cloth coated with polytetrafluoroethylene (“Teflon”, a trademark), various coating cloths, rubber, etc. The tube is made of a flexible material. As long as it has flexibility and has a strength that is industrially sufficiently practical even after repeated deformation by binding and unbinding operations described later,
The material is not particularly limited. However, it is necessary that the amount of impurities mixed in is negligible even when the dried gel or the sandy synthetic silica passes through it. The bundling / unbundling means included in the cylinder is a means for controlling the amount of objects passing through the cylinder by squeezing or releasing the cylinder. The easiest way is to pass a linear object such as a lasso or string through the circumference of the cylinder and pull the linear object from the outside to bind the cylinders together to stop the passage of objects inside the cylinder, or The cylinder can be released by loosening to maximize the passage amount of the object in the cylinder.

【0018】但し、かかる結束・解束手段は構造が極め
て簡便ではあるが、線状物の引っ張りに要する腕力が大
きく、安定した操作が困難である。従って、工業的に
は、図1及び図2に示すように、筒20を、わく21に
通じ、わく21の周囲の2点(A,B,C…H)以上を
結ぶ、ひも22が、わく21に設けられた溝にセットさ
れたハンドル23を操作することにより筒20の結束・
解束操作を行う構造とすれば、安定した操作が微小なト
ルクによっても可能となる上、ゲル、砂状合成シリカの
通過経路である筒内には一切の障害物が存在せず、これ
ら粉体が、ケーシング等の金属部分等接触により不純物
混入のおそれのある部分には一切接触することもなく、
好適である。なお、図1及び図2は、各々結束時及び解
束時の、結束・解束手段を有する筒の状態を示す図であ
る。図2においては、ひも22は、わく21に沿った状
態となって、筒20を解束している。更に、かかる構造
の結束・解束手段を有する筒は操作が簡単・確実である
上構造が簡単で要する構成部品が少なく軽量であり、ま
た取付けも容易である。本発明においては、かかる柔軟
性を有しかつ結束・解束手段を有する筒を用いることに
より焼成工程への乾燥ゲルの供給が安定して、容易に行
われる。水分をほとんど含まない、乾燥して高硬度の乾
燥ゲルを、ボールバルブ等通常の流量制御装置や、ロー
タリーフィーダー、テーブルフィーダー等通常の粉体供
給機を用いて焼成工程へと供給した場合これら供給機の
接粉部とゲルの接触により供給機の接粉部の材質を不純
物として混入しやすい。その上、高硬度かつ摩擦しやす
い細かな乾燥ゲルが接粉部に入り込み、流量調整が容易
に行えない場合がある。上述した柔軟性を有しかつ結束
・解束手段を有する筒を用いる場合、これらの難点がな
く、更に装置全体の簡略化、軽量化も同時に達成できる
ので、望ましい。尚、乾燥ゲルを焼成に先立って分級す
る場合は、乾燥工程の下部に柔軟性を有しかつ結束・解
束手段を有する筒を設け、該筒を、通過した乾燥ゲルが
分級装置へと供給され、分級により得られた、最適の粒
度分布を有する乾燥ゲルのみが更に下部の、焼成炉に直
接投下される構造等により、乾燥工程の下部で焼成工程
を行うこととすれば、分級装置へのゲル供給、並びにこ
れに通じた焼成工程への分級済ゲルの供給をも、上述の
柔軟性を有しかつ結束・解束手段を有する筒を通じて行
うことにより、簡便かつ適切に行うことが可能となる。
尚、プロセス全体を、縦長の建物として設置すれば、ゲ
ル化工程から焼成工程までの全てを上部から下部へと簡
便に進めていくことができる。この際、原料あるいは洗
浄用として用いられる水の水槽も、建物の上部に設置す
れば、使用時ごとに回転器で運搬する必要がなく、回転
器の軸部からの不純物混入も防ぐことができる。
However, although the binding / unbunching means has an extremely simple structure, the arm force required for pulling the linear object is large and stable operation is difficult. Therefore, industrially, as shown in FIGS. 1 and 2, the string 22 that connects the tube 20 to the frame 21 and connects two or more points (A, B, C ... H) around the frame 21 is By operating the handle 23 set in the groove provided in the frame 21, binding of the cylinder 20
If the structure for performing the debinding operation is used, stable operation is possible even with a small torque, and there are no obstacles in the cylinder, which is the passageway for gel and sandy synthetic silica. The body does not come into contact with any part that may contain impurities due to contact with metal parts such as casing,
It is suitable. 1 and 2 are views showing a state of a cylinder having a binding / unbundling means at the time of bundling and at the time of bundling, respectively. In FIG. 2, the string 22 is in a state along the frame 21 to unbundle the tube 20. Further, the cylinder having the bundling / unbundling means having such a structure is easy and reliable to operate, has a simple structure, requires few constituent parts, is lightweight, and is easily mounted. In the present invention, the use of a cylinder having such flexibility and a binding / unbundling means makes it possible to stably and easily supply the dried gel to the firing step. Supplying dried and high-hardness dry gel containing almost no water to the firing process using an ordinary flow rate control device such as a ball valve, or an ordinary powder feeder such as a rotary feeder or a table feeder. Due to the contact between the powder contact part of the machine and the gel, the material of the powder contact part of the feeder is likely to be mixed as an impurity. In addition, a fine dry gel having high hardness and being easily rubbed into the powder contacting part, so that the flow rate may not be easily adjusted. When the above-mentioned cylinder having flexibility and having a binding / unbunching means is used, these difficulties are not caused, and further simplification and weight reduction of the entire apparatus can be achieved at the same time, which is desirable. When classifying a dry gel prior to firing, a tube having flexibility and a binding / unbundling means is provided in the lower part of the drying step, and the dry gel passing through the tube is supplied to a classifier. If only the dry gel having the optimum particle size distribution obtained by the classification is further dropped at the lower part, such as a structure in which it is directly thrown into the baking furnace, if the baking step is performed at the lower part of the drying step, the classification device It is possible to easily and appropriately supply the gel of the above and the supply of the classified gel to the firing step, which is the same as the above, through the tube having the above-mentioned flexibility and binding / unbundling means. Becomes
If the entire process is installed as a vertically long building, it is possible to easily proceed from the gelation process to the firing process from the upper part to the lower part. At this time, if a water tank used as raw material or for washing is also installed at the upper part of the building, it is not necessary to carry it by the rotator each time it is used, and it is possible to prevent impurities from entering from the shaft of the rotator. .

【0019】[0019]

【実施例】図3、図4及び図5に本発明の製造法のため
の立体配置の一例を示す。図3に示すように、テトラメ
トキシシラン11および水12が反応槽1へ供給され、
加水分解反応によるゲル化工程を経る。この際反応槽の
ジャケットに熱湯13等を通じ、加温しつつ反応を進行
させることもできる。生成したゲルは、下部のホッパー
2aに重力で移送され、更に下部の粉砕機8へと重力に
より供給される。この際流量制御装置7を設ければ、ゲ
ルの供給量を適宜調整することができる。流量制御装置
7は、モーター6等で作動させることもできる。粉砕機
8により粉砕されたゲルは、下部のホッパー2bに重力
で移送され、適量溜まったところで更に下部の乾燥器3
へと重力により移送され、乾燥工程を経る。乾燥器にジ
ャケット9を設け、水蒸気15等を通じることにより、
乾燥することもできる。また、乾燥器を真空引き14す
ることにより、乾燥を行うこともできる。得られた乾燥
ゲルは、更に下部のホッパー2cに重力で移送される。
ここで、ホッパー2cの下部に、柔軟性を有しかつ結束
・解束手段を有する筒18aを通じて、乾燥ゲルを適量
振動式篩4等の篩別手段に供給する。この篩別により得
られた所望の粒径の乾燥ゲルのみが、るつぼ5に重力に
より投下され、焼成工程を経ることとすれば、得られた
砂状合成シリカの篩別を要せず、直接製品とすることも
できる。尚、るつぼ5を台車10上に設置し、移動可能
とすれば、複数のるつぼを設け交互に焼成を行うことに
より、一層の効率化が可能である。焼成に際しては、乾
燥空気16を吹き込みながら行うことができる。
EXAMPLES FIGS. 3, 4 and 5 show an example of a three-dimensional configuration for the production method of the present invention. As shown in FIG. 3, tetramethoxysilane 11 and water 12 are supplied to the reaction tank 1,
A gelation process by a hydrolysis reaction is performed. At this time, the reaction can be carried out while heating by passing hot water 13 or the like through the jacket of the reaction tank. The produced gel is transferred to the lower hopper 2a by gravity and further supplied to the lower crusher 8 by gravity. At this time, if the flow control device 7 is provided, the supply amount of gel can be adjusted appropriately. The flow rate control device 7 can also be operated by the motor 6 or the like. The gel crushed by the crusher 8 is transferred to the lower hopper 2b by gravity, and when an appropriate amount is collected, the lower dryer 3
Is transferred by gravity to the drying process. By installing a jacket 9 in the dryer and passing water vapor 15 etc.,
It can be dried. In addition, it is also possible to perform drying by evacuating the dryer 14. The obtained dry gel is transferred by gravity to the hopper 2c located below.
Here, an appropriate amount of dry gel is supplied to the sieving means such as the vibrating screen 4 through the flexible tube 18a having the binding / unbunching means below the hopper 2c. Only the dry gel having a desired particle size obtained by this sieving is dropped into the crucible 5 by gravity, and if a calcination step is performed, sieving of the obtained sandy synthetic silica is not required, It can also be a product. In addition, if the crucible 5 is installed on the carriage 10 and is movable, a plurality of crucibles are provided and firing is performed alternately, so that the efficiency can be further improved. The firing can be performed while blowing the dry air 16.

【0020】また、本発明の他の例として、図4に示す
ように、反応槽1中でのゲル化工程により得られたゲル
を、反応槽1から移送することなく引続き乾燥し、得ら
れた乾燥ゲルをホッパー2に移送した後、直接振動式篩
4を通過させ、更に柔軟性を有しかつ結束・解束手段を
有する筒18bを通じ適量のゲルをヒーター19等で加
熱したロータリーキルン17内に重力により落下させて
焼成工程を行い、得られた砂状合成シリカをロータリー
キルン下部より柔軟性を有しかつ結束・解束手段を有す
る筒18cを通じて適量取り出し包装することもでき
る。
As another example of the present invention, as shown in FIG. 4, the gel obtained by the gelation step in the reaction tank 1 is continuously dried without being transferred from the reaction tank 1 to obtain a gel. After the dried gel is transferred to the hopper 2, it is passed directly through the vibrating screen 4, and a suitable amount of gel is heated by a heater 19 or the like through a cylinder 18b having flexibility and binding / unbundling means in a rotary kiln 17. It is also possible to drop by gravity to perform a firing step, and the obtained sandy synthetic silica can be taken out and packaged in an appropriate amount from a lower portion of the rotary kiln through a cylinder 18c having a binding / unbundling means.

【0021】また、図5に示すように、反応槽1でのゲ
ル化工程により得られたゲルを、ホッパー2aより振動
流動乾燥機3a内に投下し、ここでの乾燥工程を経て得
られた乾燥ゲルを、更に下部の粉砕機8で粉砕し、粉砕
された乾燥ゲルを、柔軟性を有しかつ結束・解束手段を
有する筒18dを通じ篩別機へ適量供給し、篩別後ロー
タリーキルン17内に落下させ焼成工程を行い、得られ
た砂状合成シリカをロータリーキルン下部より取り出し
包装することもできる。
Further, as shown in FIG. 5, the gel obtained by the gelling step in the reaction tank 1 is dropped from the hopper 2a into the vibrating fluidized dryer 3a, and the gel is obtained through the drying step here. The dried gel is further pulverized by the pulverizer 8 at the lower portion, and the pulverized dried gel is supplied to the sieving machine in an appropriate amount through a cylinder 18d having flexibility and having binding / unbunching means, and after sieving, the rotary kiln 17 The sandy synthetic silica thus obtained may be dropped into the rotary kiln and taken out from the lower part of the rotary kiln for packaging.

【0022】[0022]

【発明の効果】以上のように、乾燥ゲルの分級工程、焼
成工程への供給、焼成して得られた砂状合成シリカの取
出しに特定の筒を用いることにより一連の操作が効率的
に行える上、得られる砂状合成シリカを高純度に保つこ
とができる。更に、乾燥工程をゲル化工程の下部で行
い、更にその下部で乾燥ゲルを焼成する焼成工程を行う
という構成を採ることにより、通常用いられるベルトフ
ィーダー、バケットフィーダー、チェーンフィーダー、
スクリューフィーダー等の輸送機による水平方向乃至は
上昇方向の移動を含まずに、ゲル化工程から焼成工程ま
でを行うことが可能となるため、より一層高純度の砂状
合成シリカを高効率で得ることができる。砂状合成シリ
カはもとよりその前駆体である乾燥ゲルもまた、一般の
粉粒体に比べ非常に硬く(ビッカース硬度でSUSと比
べても、上回っている)、装置内壁との摩擦が激しく内
壁成分が不純物として混入しやすく、またその前駆体で
あるシリカゲルも輸送機による輸送工程や、各種のバル
ブ、フィーダー等各装置への供給部分、流動制御部分か
らの不純物の混入防止は困難であり、また、バルブ部へ
砂状合成シリカ又は乾燥ゲルが食い込み開閉が困難とな
る場合もあり、高純度用途への支障となっていたもので
ある。このため本発明の、独自の構成及び特定の筒を用
いることによって、極めて簡便かつ効果的に不純物の混
入を防ぐことができる上に、大幅な省エネを達成し、ゲ
ル化反応から砂状合成シリカ回収までの全工程に要する
時間の短縮という効果をあげることができる意義は大き
い。
INDUSTRIAL APPLICABILITY As described above, a series of operations can be efficiently performed by using a specific cylinder for supplying the dried gel to the classification step, the firing step, and taking out the sandy synthetic silica obtained by firing. Moreover, the obtained sandy synthetic silica can be kept in high purity. Furthermore, by adopting a configuration in which the drying step is performed in the lower part of the gelling step, and the baking step of baking the dried gel is further performed in the lower part, a belt feeder, a bucket feeder, a chain feeder, which are usually used,
Since it is possible to perform from the gelation process to the firing process without horizontal or upward movement by a transport machine such as a screw feeder, it is possible to obtain highly pure sandy synthetic silica with high efficiency. be able to. Not only sandy synthetic silica but also its precursor, dry gel, is much harder than general powder and granules (the Vickers hardness is higher than that of SUS), and friction with the inner wall of the device is severe and the inner wall component Are easily mixed as impurities, and it is also difficult to prevent the mixing of impurities from the precursors of silica gel, which is the precursor thereof, in the transportation process using a transport machine, various valves, supply parts to various devices such as feeders, and flow control parts. In some cases, the sandy synthetic silica or the dried gel may bite into the valve portion, making it difficult to open and close, which is an obstacle to high-purity applications. Therefore, by using the unique structure and the specific cylinder of the present invention, it is possible to extremely easily and effectively prevent the mixing of impurities, and at the same time, achieve a great energy saving, and the sandy synthetic silica from the gelation reaction. It is significant that the effect of shortening the time required for all the steps until collection can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いることのできる柔軟性を有しかつ
結束・解束手段を有する筒の、結束時の状態を示す図
FIG. 1 is a view showing a state of a cylinder having flexibility and having a binding / unbinding means which can be used in the present invention, at the time of binding.

【図2】本発明で用いることのできる柔軟性を有しかつ
結束・解束手段を有する筒の、解束時の状態を示す図
FIG. 2 is a diagram showing a state of a tube having flexibility and having a binding / unbinding means, which can be used in the present invention, at the time of unbundling.

【図3】本発明の製造法のための立体配置の一例を示す
FIG. 3 is a diagram showing an example of a three-dimensional configuration for the production method of the present invention.

【図4】本発明の製造法のための立体配置の一例を示す
FIG. 4 is a diagram showing an example of a three-dimensional configuration for the production method of the present invention.

【図5】本発明の製造法のための立体配置の一例を示す
FIG. 5 is a diagram showing an example of a three-dimensional configuration for the production method of the present invention.

【符号の説明】[Explanation of symbols]

1 反応槽 2 ホッパー 3 乾燥器 5 るつぼ 17 ロータリーキルン 20 筒 22 ひも 21 わく 1 Reaction Tank 2 Hopper 3 Dryer 5 Crucible 17 Rotary Kiln 20 Tube 22 String 21 Waku

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田▲邉▼ 康雄 東京都千代田区丸の内2丁目5番2号 三 菱化学株式会社新規事業開発室内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tana 邉 ▼ Yasuo 2-5-2 Marunouchi, Chiyoda-ku, Tokyo Sanryo Chemical Co., Ltd. New Business Development Office

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 原料溶液または分散液からゲルを得るゲ
ル化工程、該ゲルを乾燥し乾燥ゲルとする乾燥工程、及
び該乾燥ゲルを焼成する焼成工程を有する、液相反応に
よる砂状合成シリカの製造方法において、乾燥ゲルが、
柔軟性を有しかつ結束・解束手段を有する筒を介して乾
燥工程の下部での焼成工程に供されることを特徴とする
高純度砂状合成シリカの製造方法。
1. A sandy synthetic silica by a liquid phase reaction, which comprises a gelling step of obtaining a gel from a raw material solution or dispersion, a drying step of drying the gel to give a dried gel, and a baking step of firing the dried gel. In the manufacturing method of, the dry gel,
A method for producing high-purity sandy synthetic silica, characterized by being subjected to a firing step in the lower part of a drying step through a tube having flexibility and having a binding / unbundling means.
【請求項2】 原料溶液または分散液からゲルを得るゲ
ル化工程、該ゲルを乾燥し乾燥ゲルとする乾燥工程、及
び該乾燥ゲルを焼成する焼成工程を有する、液相反応に
よる砂状合成シリカの製造方法において、乾燥ゲルが、
柔軟性を有しかつ結束・解束手段を有する筒を介して分
級装置に供給され、更に乾燥工程の下部での焼成工程に
供されることを特徴とする高純度砂状合成シリカの製造
方法。
2. A sandy synthetic silica by a liquid phase reaction, which comprises a gelling step of obtaining a gel from a raw material solution or dispersion, a drying step of drying the gel to obtain a dried gel, and a firing step of firing the dried gel. In the manufacturing method of, the dry gel,
A method for producing high-purity sandy synthetic silica, characterized by being supplied to a classifying device through a cylinder having flexibility and having a binding / unbundling means, and further being subjected to a firing step at a lower part of a drying step. .
【請求項3】 原料溶液または分散液からゲルを得るゲ
ル化工程、該ゲルを乾燥し乾燥ゲルとする乾燥工程、及
び該乾燥ゲルを焼成する焼成工程を有する、液相反応に
よる砂状合成シリカの製造方法において、焼成工程を経
た砂状合成シリカが、柔軟性を有しかつ結束・解束手段
を有する筒を介して取出されることを特徴とする高純度
砂状合成シリカの製造方法。
3. A sandy synthetic silica by a liquid phase reaction, which comprises a gelling step of obtaining a gel from a raw material solution or dispersion, a drying step of drying the gel to give a dried gel, and a baking step of firing the dried gel. 2. The method for producing high-purity sandy synthetic silica according to claim 1, wherein the sandy synthetic silica that has undergone the firing step is taken out through a tube having flexibility and having a binding / unbundling means.
【請求項4】 ゲル化工程の下部で乾燥工程が行われる
ことを特徴とする請求項1〜3のいずれかに記載の高純
度砂状合成シリカの製造方法。
4. The method for producing high-purity sandy synthetic silica according to claim 1, wherein a drying step is performed below the gelling step.
【請求項5】 柔軟性を有しかつ結束・解束手段を有す
る筒が、ポリ四フッ化エチレンでコーティングされた織
布又はラバーから成ることを特徴とする請求項1〜4の
いずれかに記載の高純度砂状合成シリカの製造方法。
5. A flexible cylinder having a binding / unbundling means is made of a polytetrafluoroethylene-coated woven fabric or rubber, and any one of claims 1 to 4 is characterized in that A method for producing the high-purity sandy synthetic silica described.
【請求項6】 結束・解束手段が、筒の外部に設けら
れ、筒の円周上の2点以上を通る1本又は2本以上の線
状物であることを特徴とする請求項1〜5のいずれかに
記載の高純度砂状合成シリカの製造方法。
6. The binding / unbinding means is one or two or more linear objects which are provided outside the cylinder and pass through two or more points on the circumference of the cylinder. 6. The method for producing the high-purity sandy synthetic silica according to any one of to 5.
【請求項7】 アルコールと金属ケイ素とを反応させて
得られるアルコキシシランを加水分解して得られるゲル
を用いることを特徴とする請求項1〜5のいずれかに記
載の高純度砂状合成シリカの製造方法。
7. A high-purity sandy synthetic silica according to claim 1, wherein a gel obtained by hydrolyzing an alkoxysilane obtained by reacting alcohol with metallic silicon is used. Manufacturing method.
【請求項8】 請求項1〜7のいずれかに記載された製
造方法により得られた高純度砂状合成シリカを溶融する
ことを特徴とする高純度合成石英ガラス成形体の製造方
法。
8. A method for producing a high-purity synthetic quartz glass molding, which comprises melting the high-purity sandy synthetic silica obtained by the production method according to any one of claims 1 to 7.
JP30921595A 1995-11-28 1995-11-28 Production of highly pure sandy synthetic silica, and production of highly pure synthetic quartz glass molded product Pending JPH09142828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30921595A JPH09142828A (en) 1995-11-28 1995-11-28 Production of highly pure sandy synthetic silica, and production of highly pure synthetic quartz glass molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30921595A JPH09142828A (en) 1995-11-28 1995-11-28 Production of highly pure sandy synthetic silica, and production of highly pure synthetic quartz glass molded product

Publications (1)

Publication Number Publication Date
JPH09142828A true JPH09142828A (en) 1997-06-03

Family

ID=17990323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30921595A Pending JPH09142828A (en) 1995-11-28 1995-11-28 Production of highly pure sandy synthetic silica, and production of highly pure synthetic quartz glass molded product

Country Status (1)

Country Link
JP (1) JPH09142828A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001019730A1 (en) * 1998-07-20 2001-03-22 E.I. Du Pont De Nemours And Company Improved continuous process for preparing microgels

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001019730A1 (en) * 1998-07-20 2001-03-22 E.I. Du Pont De Nemours And Company Improved continuous process for preparing microgels
JP2003509318A (en) * 1998-07-20 2003-03-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Improved continuous process for preparing microgels
CZ297077B6 (en) * 1998-07-20 2006-09-13 E. I. Du Pont De Nemours And Company Continuous process for preparing polysilicate microgel

Similar Documents

Publication Publication Date Title
CN110395739B (en) Production method and device for preparing spherical silicon micropowder by ultrasonic atomization
CN108128781A (en) A kind of production method of nano-silica powder
JP2001089168A (en) Production of synthetic silica glass powder of high purity
JP3413873B2 (en) Synthetic quartz glass powder
CN111646480B (en) Crystalline nano silicon dioxide and preparation method thereof
JPH09142828A (en) Production of highly pure sandy synthetic silica, and production of highly pure synthetic quartz glass molded product
EP0801026B1 (en) Process for producing synthetic quartz powder
JP2841862B2 (en) Method for producing silicon carbide
JP3888728B2 (en) Method for producing high purity spherical silica
JPH11504893A (en) Production of boron oxide
JP3877827B2 (en) Method for producing ultra high purity spherical silica fine particles
JPH0891822A (en) Production of high purity sandy synthetic silica
CN115340093B (en) Method for preparing nano silicon or amorphous silicon dioxide by silicate
JP3689926B2 (en) High-purity synthetic quartz glass powder, method for producing the same, and high-purity synthetic quartz glass molded body using the same
JPH10297914A (en) Production of both silica gel particle and synthetic qualtz
JP3343923B2 (en) Manufacturing method of high purity silica glass powder
JP3318946B2 (en) Powdery dry gel, silica glass powder, and method for producing silica glass melt molded article
JP3735886B2 (en) Method for producing synthetic quartz powder and method for producing quartz glass molded body
JPH09142852A (en) Production of both high-purity synthetic quartz glass powder and high-purity synthetic quartz glass molding product
KR101522698B1 (en) Manufacture method of Silica nanoparticles and Silica Nonoparticles
JPH08231214A (en) Production of synthetic quartz glass powder
JPS62230602A (en) Production of high-purity powder dry gel
JPS5832020A (en) Device for modifying calcium carbonate
CN1418812A (en) Process for prepn. of nano silicon dioxide powder
JPH0521855B2 (en)