JPH09139200A - Manufacture of non-aqueous electrolyte battery and positive pole component member for non-aqueous electrolyte battery - Google Patents

Manufacture of non-aqueous electrolyte battery and positive pole component member for non-aqueous electrolyte battery

Info

Publication number
JPH09139200A
JPH09139200A JP7298505A JP29850595A JPH09139200A JP H09139200 A JPH09139200 A JP H09139200A JP 7298505 A JP7298505 A JP 7298505A JP 29850595 A JP29850595 A JP 29850595A JP H09139200 A JPH09139200 A JP H09139200A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
positive electrode
electrolyte battery
pyridine
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7298505A
Other languages
Japanese (ja)
Inventor
Yukihiro Ogura
幸弘 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP7298505A priority Critical patent/JPH09139200A/en
Publication of JPH09139200A publication Critical patent/JPH09139200A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve stability and reliability for discharge property of minute current or long-duration storage. SOLUTION: In a non-aqueous electrolyte battery provided with a negative pole component members 2d and 3, positive pole component members 1, 2a, and 2b, and a non-aqueous electrolyte 2e as battery power generation elements, the faces of the positive pole component members 1, 2a, and 2b in contact with at least non-aqueous electrolyte 2e is covered with a film 5 of a pyridine high polymer molecule compound. It is desirable that the pyridine high polymer molecule compound is at least one type of poly-2-vynil pyridine hydrochloride and poly-4-vynil pyridine hydrochloride, and that the viscosity average molecule weight is 21000 or more. Pyridine high polymer molecule compound solution is applied on a face in contact with the non-aqueous electrolyte, and an adsorption layer is formed by applying heating treatment at a 50 to 100 deg.C if required.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液電池お
よび非水電解液電池用正極構成部材の製造方法に関す
る。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte battery and a method for manufacturing a positive electrode constituent member for a non-aqueous electrolyte battery.

【0002】[0002]

【従来の技術】近年、非水電解液電池として、リチウム
やナトリウムなどの軽金属を負極活物質とする負極、金
属の酸化物,硫化物もしくはハロゲン化物を正極活物質
とする正極、および非水電解液を電池発電要素として備
えた電池が、高電圧,高エネルギー密度および長期信頼
性の高い電池として注目されている。たとえば、二酸化
マンガン( MnO2 ),フッ化炭素(CF2 n ,塩化チオ
ニル(SOCl2 )などを正極活物質として成るリチウムイ
オン電池が、電卓,時計の電源やメモリのバックアップ
電池として多用されている。すなわち、リチウムイオン
電池などの非水電解液電池は、銀電池やアルカリ電池に
比べて自己放電が小さいため、長期間の使用に耐えるこ
とから、前記電卓,時計などの電源に使用されている。
そして、この非水電解液電池については、駆動される電
子機器類の発達,発展に対応して、微小電流による長期
間に亘る安定した放電特性が要求されている。ここで、
微小電流とは高々数μA であるが、安定した放電特性を
確保するためには、電池自身の高信頼性が重要視され
る。
2. Description of the Related Art Recently, as a non-aqueous electrolyte battery, a negative electrode using a light metal such as lithium or sodium as a negative electrode active material, a positive electrode using a metal oxide, sulfide or halide as a positive electrode active material, and a non-aqueous electrolyte. Batteries equipped with a liquid as a battery power generation element have been attracting attention as batteries having high voltage, high energy density and long-term reliability. For example, lithium-ion batteries, which use manganese dioxide (MnO 2 ), fluorocarbon (CF 2 ) n , thionyl chloride (SOCl 2 ) as a positive electrode active material, are often used as calculators, clock power supplies and memory backup batteries. There is. That is, a non-aqueous electrolyte battery such as a lithium-ion battery has a smaller self-discharge than a silver battery or an alkaline battery and thus can be used for a long period of time. Therefore, it is used as a power source for the calculator, the clock and the like.
In addition, this non-aqueous electrolyte battery is required to have stable discharge characteristics over a long period of time by a minute current in response to the development and development of driven electronic devices. here,
The minute current is at most several μA, but in order to secure stable discharge characteristics, high reliability of the battery itself is important.

【0003】一方、携帯用電話機や携帯型撮像機など各
種の機器システムに組込み、作動電源として使用されて
いる二次電池においても、携帯用電話機や携帯型撮像機
などの小形化,軽量化に伴って、電源として高エネルギ
ー密度の高いリチウムイオン電池などが要求されてい
る。なお、この種の非水電解液電池では、電解液とし
て、たとえば炭酸プロピレン,炭酸エチレン,1,2-ジメ
トキシエタン,γ -ブチロラクトン,テトラヒドロフラ
ンなどの有機溶剤中に、 LiCl04 ,LiBF4 , LiAsF6
どのリチウム塩を溶解させて成る有機電解液(非水電解
液)が用いられている。また、正極活物質を支持する正
極,正極端子を兼ねる正極缶,正極集電体などの正極構
成部材としては、ニッケル含有量が 3〜20重量%のオー
ステナイト系ステンレス鋼製が一般的に使用されてい
る。
On the other hand, even in the case of a secondary battery used as an operating power source by being incorporated in various equipment systems such as a mobile phone and a portable image pickup device, it is possible to reduce the size and weight of the mobile phone and the portable image pickup device. Along with this, a lithium ion battery having a high energy density is required as a power source. In this type of non-aqueous electrolyte battery, for example, LiCl0 4 , LiBF 4 , LiAsF 6 is used as an electrolytic solution in an organic solvent such as propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, γ-butyrolactone, and tetrahydrofuran. An organic electrolytic solution (non-aqueous electrolytic solution) obtained by dissolving a lithium salt such as is used. Further, as a positive electrode constituent member such as a positive electrode supporting a positive electrode active material, a positive electrode can also serving as a positive electrode terminal, and a positive electrode current collector, austenitic stainless steel having a nickel content of 3 to 20% by weight is generally used. ing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記構
成の非水電解液電池の場合、電池の保存中に、電池の内
部抵抗が増大し、所要の性能を十分に発現できないこと
や、電池としの機能を失するというような不都合がしば
しば認められる。すなわち、非水電解液電池の保存中
に、正極構成部材を成すオーステナイト系ステンレス鋼
などが非水電解液中に溶出し、これが負極上に析出して
不働体膜を形成するので、電池内部の抵抗が増大したり
して電池寿命の低下を招来し、極端な場合には正極構造
部材が侵食・穿孔され、構造的な破損を招来する恐れが
ある。そして、このような現象は、構成素材であるオー
ステナイト系ステンレス鋼中のニッケル含有量に依存
し、ニッケル含有量が多いほど顕著である。
However, in the case of the non-aqueous electrolyte battery having the above-mentioned structure, the internal resistance of the battery increases during storage of the battery, and the required performance cannot be sufficiently exhibited, and Inconveniences such as loss of function are often observed. That is, during storage of the non-aqueous electrolyte battery, austenitic stainless steel or the like forming the positive electrode constituent member is eluted into the non-aqueous electrolyte solution, and this is deposited on the negative electrode to form a passivation film. The resistance may increase and the battery life may be shortened. In an extreme case, the positive electrode structural member may be corroded and perforated, which may cause structural damage. Then, such a phenomenon depends on the nickel content in the austenitic stainless steel as a constituent material, and becomes more remarkable as the nickel content increases.

【0005】正極構成部材をオーステナイト系ステンレ
ス鋼製としたときの問題に対して、ニッケルをほとんど
含まず,応力下での割れ感受性の少ないフェライト系ス
テンレス鋼製とすることも試みられているが、たとえば
60〜80℃程度の高温下に長期間保存すると、オーステナ
イト系ステンレス鋼製の場合と同様に、非水電解液中へ
の溶出現象が認められる。
To solve the problem when the positive electrode constituent member is made of austenitic stainless steel, it has been attempted to make it of ferritic stainless steel containing almost no nickel and less susceptible to cracking under stress. For example
When stored at a high temperature of 60 to 80 ° C for a long period of time, the phenomenon of elution into the non-aqueous electrolyte is observed as in the case of austenitic stainless steel.

【0006】上記のように、従来の非水電解液一次電池
および非水電解液二次電池は、安定した微小電流の放電
性、もしくは長期間保存時における電池機能の低下など
の問題が懸念されており、信頼性の上からも実用的に十
分満足できるものとはいえない。
[0006] As described above, the conventional non-aqueous electrolyte primary battery and non-aqueous electrolyte secondary battery are concerned about problems such as stable discharge of minute current or deterioration of battery function during long-term storage. Therefore, it cannot be said that it is practically sufficiently satisfactory in terms of reliability.

【0007】本発明はこのような事情に対処してなされ
たもので、安定した微小電流の放電性や長期間保存に対
する安定性が良好で、信頼性の高い電池として機能する
非水電解液電池、および信頼性の高い電池機能を呈する
非水電解液電池用正極構造部材を製造できる方法の提供
を目的とする。
The present invention has been made in view of such circumstances, and has a stable discharge of a minute current and a good stability for long-term storage, and functions as a highly reliable non-aqueous electrolyte battery. And a method capable of manufacturing a positive electrode structural member for a non-aqueous electrolyte battery exhibiting a highly reliable battery function.

【0008】[0008]

【課題を解決するための手段】請求項1の発明は、負極
構成部材、正極構成部材、および非水系電解液を電池発
電要素として備えた非水電解液電池において、前記正極
構成部材のうち、少なくとも非水系電解液に接する正極
構成部材面がピリジン系高分子化合物の膜で被覆されて
いることを特徴とする非水電解液電池である。
According to a first aspect of the present invention, there is provided a non-aqueous electrolyte battery including a negative electrode constituent member, a positive electrode constituent member, and a non-aqueous electrolyte solution as a battery power generating element, It is a non-aqueous electrolyte battery characterized in that at least a surface of a positive electrode constituent member in contact with the non-aqueous electrolyte is coated with a film of a pyridine polymer compound.

【0009】請求項2の発明は、請求項1記載の非水電
解液電池において、ピリジン系高分子化合物が、ポリ -
2-ビニルピリジン塩酸塩およびポリ -4-ビニルピリジン
塩酸塩の少なくとも1種であることを特徴とする。
According to a second aspect of the present invention, in the non-aqueous electrolyte battery according to the first aspect, the pyridine polymer compound is poly-
It is characterized in that it is at least one of 2-vinylpyridine hydrochloride and poly-4-vinylpyridine hydrochloride.

【0010】請求項3の発明は、請求項1もしくは請求
項2記載の非水電解液電池において、ピリジン系高分子
化合物が、粘度平均分子量 21000以上のポリ -2-ビニル
ピリジン塩酸塩およびポリ -4-ビニルピリジン塩酸塩の
少なくとも1種であることを特徴とする。
According to a third aspect of the present invention, in the non-aqueous electrolyte battery according to the first or second aspect, the pyridine polymer compound has a viscosity average molecular weight of 21,000 or more, such as poly-2-vinylpyridine hydrochloride and poly-. It is characterized in that it is at least one of 4-vinylpyridine hydrochloride.

【0011】請求項4の発明は、非水電解液電池用正極
構成部材の製造方法において、前記正極構成部材の少な
くとも非水系電解液に接する面に、ピリジン系高分子化
合物溶液を塗布し、加熱処理を施してピリジン系高分子
化合物から成る吸着層を形成することを特徴とする非水
電解液電池用正極構成部材の製造方法である。請求項5
の発明は、請求項4記載の非水電解液電池用正極構造部
材の製造方法において、加熱処理温度が、50〜 100℃で
あることを特徴とする。
According to a fourth aspect of the present invention, in the method for producing a positive electrode constituent member for a non-aqueous electrolyte battery, a pyridine polymer compound solution is applied to at least a surface of the positive electrode constituent member that is in contact with the non-aqueous electrolyte solution and heated. A method for manufacturing a positive electrode constituent member for a non-aqueous electrolyte battery, which comprises subjecting the material to a treatment to form an adsorption layer made of a pyridine-based polymer compound. Claim 5
In the method for producing a positive electrode structural member for a non-aqueous electrolyte battery according to claim 4, the heat treatment temperature is 50 to 100 ° C.

【0012】本発明は、次のような試験・研究の結果に
基づいてなされたものである。すなわち、正極活物質を
支持する正極構造体,正極端子を兼ねる正極缶,正極集
電体などの正極構成部材のうち、少なくとも非水電解液
に接する正極構成部材面に、ピリジン系高分子化合物溶
液を塗布し、たとえば50〜 100℃の温度で加熱処理を施
してピリジン系高分子化合物系膜を被覆した場合、前記
被覆膜は非水電解液によって溶解・損傷されずに、非水
電解液による正極構成部材の溶出・腐食を効果的に防止
することを見出し、この知見に基づい本発明を達成した
ものである。さらに、付言するならば、正極構成部材
は、非水電解液に接触する領域面にピリジン系高分子化
合物から成る膜(吸着層)が被覆形成されている限り、
この被覆層によって非水電解液に対する腐食性が大幅に
向上(耐食性の向上)し、長期間に亘って安定した放電
特性を呈して、信頼性の高い非水電解液電池として機能
することに着目したものである。
The present invention was made based on the results of the following tests and studies. That is, among positive electrode constituent members such as a positive electrode structure that supports a positive electrode active material, a positive electrode can that also serves as a positive electrode terminal, and a positive electrode current collector, at least the surface of the positive electrode constituent member that is in contact with the non-aqueous electrolyte solution should have a pyridine polymer solution When a pyridine-based polymer compound film is coated by applying heat treatment at a temperature of 50 to 100 ° C., the coating film is not dissolved or damaged by the non-aqueous electrolyte solution, Based on this finding, the inventors of the present invention have achieved the present invention based on this finding. Further, in addition, as long as the positive electrode constituent member is coated with a film (adsorption layer) made of a pyridine-based polymer compound on the surface of the region in contact with the non-aqueous electrolyte,
Focusing on the fact that this coating layer significantly improves the corrosion resistance to non-aqueous electrolyte (improves the corrosion resistance), exhibits stable discharge characteristics over a long period of time, and functions as a highly reliable non-aqueous electrolyte battery. It was done.

【0013】本発明において、正極構造部材の少なくと
も非水電解液に接する面に被覆形成されたピリジン系高
分子化合物としては、たとえばポリ -2-ビニルピリジン
塩酸塩,ポリ -4-ビニルピリジン塩酸塩もしくはこれら
の混合物などが挙げられる。ここで、ポリ -2-ビニルピ
リジン塩酸塩やポリ -4-ビニルピリジン塩酸塩は、平均
分子量が粘度法による粘度平均分子量 21000以上が望ま
しい。
In the present invention, the pyridine type polymer compound coated on at least the surface of the positive electrode structural member which is in contact with the non-aqueous electrolyte is, for example, poly-2-vinylpyridine hydrochloride or poly-4-vinylpyridine hydrochloride. Alternatively, a mixture of these may be used. Here, it is preferable that the average molecular weight of poly-2-vinylpyridine hydrochloride or poly-4-vinylpyridine hydrochloride is 21,000 or more as determined by the viscosity method.

【0014】本発明において、前記正極構造部材の所要
領域面に対するピリジン系高分子化合物膜(吸着層)の
形成は、たとえばHClO4 などの水溶液を溶媒として調製
したピリジン系高分子化合物溶液を塗布し、たとえば50
〜 100℃の温度で加熱処理することによって行われる。
この加熱処理温度は、ピリジン系高分子化合物溶液の組
成や濃度などによって適宜選択されるが、一般的に 100
℃を超えると被覆層が所要の耐食性を示さない傾向があ
るので、高々 100℃と設定することが好ましい。 本発
明において、正極活物質としては、たとえば活物質であ
る二酸化マンガン,フッ化炭素,塩化チオニルなどが挙
げられ、この正極活物質を、たとえばステンレス鋼製の
支持体面に塗着して正極とする。さらに、負極として
は、たとえば金属リチウム箔,金属ナトリウム箔などが
挙げられる。
In the present invention, the pyridine-based polymer compound film (adsorption layer) is formed on the surface of the required region of the positive electrode structural member by applying a pyridine-based polymer compound solution prepared by using an aqueous solution of HClO 4 or the like as a solvent. , For example 50
It is carried out by heat treatment at a temperature of ~ 100 ° C.
This heat treatment temperature is appropriately selected depending on the composition and concentration of the pyridine polymer compound solution, but is generally 100
If the temperature exceeds ℃, the coating layer tends not to exhibit the required corrosion resistance, so it is preferable to set the temperature to 100 ℃ at most. In the present invention, examples of the positive electrode active material include active materials such as manganese dioxide, fluorocarbon, and thionyl chloride. The positive electrode active material is applied to a support surface made of stainless steel to form a positive electrode. . Further, examples of the negative electrode include metallic lithium foil and metallic sodium foil.

【0015】また、本発明において用いる非水電解液と
しては、たとえばエチレンカーボネート,プロピレンカ
ーボネート,ブチレンカーボネート,γ- ブチロラクト
ン,スルホラン,アセトニトリル,1,2-ジメトキシメタ
ン,1,3-ジメトキシプロパン,ジメチルエーテル,テト
ラヒドロフラン,2-メチルテトラヒドロフラン,炭酸ジ
メチル,炭酸ジエチルおよびエチルメチルカーボネート
の群れから選ばれた少なくとも1種から成る有機溶剤
(非水溶媒)に、過塩素酸リチウム( LiClO4 ),六フ
ッ化リン酸リチウム(LiPF6 ),ホウフッ化リチウム
(LiBF4 ),六フッ化ヒ素リチウム( LiAsF6 ),トリ
フルオロメタンスルホン酸リチウム(LiCF3SO3 )など
のリチウム塩(電解質)を 0.5〜 1.5 mol/l 程度溶解
させた非水電解液が一般的に挙げられる。なお、前記非
水電解液の代わりにイオン伝導性の固体電解質、たとえ
ば高分子化合物にリチウム塩を複合させた高分子固体電
解質などを用いることもできる。
Examples of the non-aqueous electrolyte used in the present invention include ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane, acetonitrile, 1,2-dimethoxymethane, 1,3-dimethoxypropane, dimethyl ether, Lithium perchlorate (LiClO 4 ), hexafluorophosphoric acid is added to an organic solvent (non-aqueous solvent) consisting of at least one selected from the group consisting of tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate. About 0.5 to 1.5 mol / l of lithium salt (electrolyte) such as lithium (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ). A dissolved non-aqueous electrolytic solution is generally mentioned. Instead of the non-aqueous electrolyte solution, an ion conductive solid electrolyte, for example, a polymer solid electrolyte obtained by compounding a lithium salt with a polymer compound may be used.

【0016】さらにまた、負極および正極間を絶縁離隔
するセパレータとしては、たとえばポリエチレン,ポリ
プロピレンなどのポリオレフィン系樹脂の不織布や多孔
膜などを用い得る。
Further, as the separator for insulating and separating the negative electrode and the positive electrode, for example, a nonwoven fabric of polyolefin resin such as polyethylene or polypropylene or a porous film can be used.

【0017】請求項1の発明では、非水電解液電池にお
いて、正極構成部材の少なくとも非水系電解液に接する
面が、前記非水電解液に対してすぐれた耐食性を有する
ピリジン系高分子化合物の膜で被覆されている。すなわ
ち、非水電解液に対してインヒビターとして働いて腐食
を抑制するピリジン系高分子化合物が、たとえば正極端
子を兼ねる外装缶などを表面被覆している。そして、こ
の腐食抑制の作用・効果によって、正極構成部材は安定
した電池機能の保持・発揮に寄与し、信頼性の高い電池
として機能する。
According to the first aspect of the invention, in the non-aqueous electrolyte battery, at least the surface of the positive electrode constituent member in contact with the non-aqueous electrolyte is made of a pyridine-based polymer compound having excellent corrosion resistance to the non-aqueous electrolyte. It is covered with a film. That is, a pyridine-based polymer compound that acts as an inhibitor to the non-aqueous electrolyte solution and suppresses corrosion covers the surface of, for example, an outer can that also serves as a positive electrode terminal. Due to the action and effect of suppressing corrosion, the positive electrode constituent member contributes to maintaining and exhibiting a stable battery function, and functions as a highly reliable battery.

【0018】なお、前記正極構成部材の腐食が抑制され
るのは、次のような理由にによると考えられる。先ず、
第1には、被覆膜を形成するピリジン系高分子中の全ピ
リジン環のN原子の一部がプロトネーションを受けず、
N原子の孤立電子対による金属表面での化学的な吸着が
起こるためである。第2には、プロトネーションを受け
てN+ となったピリジン環のN原子によって、金属表面
のカソード部位に物理吸着し、その後、金属表面から電
子を供給され,還元されてからN原子の孤立電子対によ
る金属表面での化学的な吸着が起こるためである。
It is considered that the reason why the corrosion of the positive electrode constituent member is suppressed is as follows. First,
First, some of the N atoms of all pyridine rings in the pyridine-based polymer forming the coating film are not subjected to protonation,
This is because the lone electron pair of N atom causes chemical adsorption on the metal surface. Secondly, the N atom of the pyridine ring, which has undergone protonation to become N + , is physically adsorbed on the cathode site on the metal surface, and then the electron is supplied from the metal surface to reduce the N atom before it is isolated. This is because chemical adsorption occurs on the metal surface due to electron pairs.

【0019】請求項2の発明では、ピリジン系高分子化
合物が、ポリ -2-ビニルピリジン塩酸塩およびポリ -4-
ビニルピリジン塩酸塩の少なくとも1種としたことによ
り、前記正極構造部材の安定した電池機能化、高信頼性
化などが助長される。
In the invention of claim 2, the pyridine polymer compound is poly-2-vinylpyridine hydrochloride or poly-4-
The use of at least one vinylpyridine hydrochloride promotes stable battery functioning and high reliability of the positive electrode structural member.

【0020】請求項3の発明では、ピリジン系高分子化
合物が、粘度平均分子量 21000以上のポリ -2-ビニルピ
リジン塩酸塩およびポリ -4-ビニルピリジン塩酸塩の少
なくとも1種としたことにより、正極構造部材の腐食抑
制性能がさらに向上するので、電池の機能安定化、高信
頼性化などが容易に図られる。
In the third aspect of the invention, the pyridine polymer compound is at least one of poly-2-vinylpyridine hydrochloride and poly-4-vinylpyridine hydrochloride having a viscosity average molecular weight of 21,000 or more. Since the corrosion inhibiting performance of the structural member is further improved, the functional stability and high reliability of the battery can be easily achieved.

【0021】請求項4の発明では、少なくとも非水系電
解液に接する面が、非水電解液に対して腐食抑制化され
た正極構成部材を、容易に、かつ歩留まり良好に提供で
きるので、安定した電池機能を保持・発揮する信頼性の
高い電池の提供に大きく寄与する。
[0021] In the invention of claim 4, a positive electrode constituent member in which at least the surface in contact with the non-aqueous electrolytic solution is corrosion-inhibited with respect to the non-aqueous electrolytic solution can be provided easily and with good yield, so that it is stable. It will greatly contribute to the provision of highly reliable batteries that retain and exhibit battery functions.

【0022】請求項5の発明では、ピリジン系高分子化
合物の被覆層の形成において、溶液塗布後の加熱処理温
度を50〜 100℃に設定することにより、非水電解液に対
して腐食抑制化された正極構造部材を、より容易に、よ
り歩留まりよく提供できる。
According to the invention of claim 5, in the formation of the coating layer of the pyridine type polymer compound, the heat treatment temperature after application of the solution is set to 50 to 100 ° C. to suppress corrosion of the non-aqueous electrolyte. The positive electrode structural member thus prepared can be provided more easily and with higher yield.

【0023】[0023]

【発明の実施の形態】以下図1および図2を参照して本
発明の実施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0024】実施例1 図1はこの実施例に係る非水電解液電池の要部構成を示
す断面図、図2は図1の一部拡大断面図である。図1お
よび図2において、1は非水電解液(有機電解液)系の
電池発電要素2を内装した正極端子を兼ねたステンレス
鋼製の外装缶、3は前記電池発電要素2を内装した外装
缶1の開口を合成樹脂製の絶縁性パッキング材4を介し
てカシメ固定によって気密に封止する負極端子を兼ねた
ステンレス鋼製の封口体である。ここで、正極端子を兼
ねた外装缶1は、後述する電池発電要素2の一部を成す
多孔質金属体(もしくは集電体)2aおよび正極合剤(正
極)2bとともに正極構成部材として称する。
Example 1 FIG. 1 is a sectional view showing the structure of the main part of a non-aqueous electrolyte battery according to this example, and FIG. 2 is a partially enlarged sectional view of FIG. In FIGS. 1 and 2, reference numeral 1 denotes a stainless steel outer can that also serves as a positive electrode terminal in which a nonaqueous electrolytic solution (organic electrolytic solution) -based battery power generating element 2 is housed, and 3 denotes an outer case in which the battery power generating element 2 is housed. It is a stainless steel sealing body that also serves as a negative electrode terminal for airtightly sealing the opening of the can 1 by caulking and fixing it through an insulating packing material 4 made of synthetic resin. Here, the outer can 1 that also serves as a positive electrode terminal is referred to as a positive electrode constituent member together with a porous metal body (or current collector) 2a and a positive electrode mixture (positive electrode) 2b that form a part of a battery power generation element 2 described later.

【0025】上記構成において、正極端子を兼ねた外装
缶1の内壁面(側壁面および底面)には、たとえばポリ
-4-ビニルピリジン塩酸塩の薄膜(吸着膜)5が設けら
れている。すなわち、外装缶1を水平に回転させながら
外装缶1の底面周縁部に、粘度平均分子量 22000程度の
ポリ -4-ビニルピリジン塩酸塩20 ppmを溶解させたHClO
4 水溶液(HClO4 濃度1N)12μl 注入し、前記回転によ
る遠心力によって外装缶1の側壁面および底面へ、前記
ポリ -4-ビニルピリジン塩酸塩溶液を塗布した後、真空
乾燥機にて減圧しながら80℃で約 5時間加熱処理してポ
リ -4-ビニルピリジン塩酸塩の薄膜5が被覆形成されて
いる。
In the above structure, the inner wall surface (side wall surface and bottom surface) of the outer can 1 which also serves as the positive electrode terminal is made of, for example, poly.
A thin film (adsorption film) 5 of 4-vinylpyridine hydrochloride is provided. That is, while rotating the outer can 1 horizontally, HClO in which 20 ppm of poly-4-vinylpyridine hydrochloride having a viscosity average molecular weight of about 22000 was dissolved in the peripheral portion of the bottom surface of the outer can 1.
12 μl of 4 aqueous solution (HClO 4 concentration 1N) was injected, and the poly-4-vinylpyridine hydrochloride solution was applied to the side wall surface and the bottom surface of the outer can 1 by the centrifugal force by the rotation, and the pressure was reduced by a vacuum dryer. On the other hand, heat treatment is carried out at 80 ° C. for about 5 hours to form a thin film 5 of poly-4-vinylpyridine hydrochloride.

【0026】また、電池発電要素2は、非水電解液を含
浸保持する導電性の多孔質金属体(たとえばステンレス
鋼系の金属焼結体)2a、二酸化マンガン(正極活物
質),導電材および結着剤から成る正極合剤(正極)2
b、厚さ 0.025mmの微孔性のポリプロピレン樹脂フィル
ムから成るセパレータ2c、たとえば金属リチウム箔から
成る負極2dおよび非水電解液2eで構成されている。
Further, the battery power generating element 2 includes a conductive porous metal body (for example, a stainless steel-based metal sintered body) 2a impregnated with a non-aqueous electrolyte, manganese dioxide (a positive electrode active material), a conductive material and Positive electrode mixture (positive electrode) 2 made of a binder
b, a separator 2c made of a microporous polypropylene resin film having a thickness of 0.025 mm, a negative electrode 2d made of, for example, a metallic lithium foil, and a non-aqueous electrolyte 2e.

【0027】前記構成の非水電解液電池を60℃の温度下
で、 100日間保存して腐食発生個数を調べたところ、試
験に供した 100個の非水電解液電池はいずれも腐食の発
生が認められなかった。
The non-aqueous electrolyte battery having the above structure was stored at a temperature of 60 ° C. for 100 days and the number of corrosion occurrences was examined. All 100 non-aqueous electrolyte batteries used in the test showed corrosion occurrence. Was not recognized.

【0028】一方、比較のため、上記構成の非水電解液
電池において、外装缶1の内壁面へのポリ -4-ビニルピ
リジン塩酸塩薄膜5の被覆形成を省略した他は、同一条
件で構成した非水電解液電池 100個につき、同様の試験
を行ったところ、14個に腐食の発生が認められた。
On the other hand, for comparison, in the non-aqueous electrolyte battery having the above-described structure, the same condition is used except that the coating of the poly-4-vinylpyridine hydrochloride thin film 5 on the inner wall surface of the outer can 1 is omitted. When the same test was performed on 100 non-aqueous electrolyte batteries thus prepared, corrosion was found on 14 of them.

【0029】実施例2 この実施例は、前記実施例1の場合において、回転によ
る遠心力で外装缶1の側壁面および底面へ、ポリ -4-ビ
ニルピリジン塩酸塩溶液を塗布した後、真空乾燥機にて
減圧しながら加熱処理してポリ -4-ビニルピリジン塩酸
塩の薄膜5を被覆形成するときの、加熱処理の影響を示
したものである。
Example 2 In this example, in the case of Example 1 described above, the side wall and the bottom of the outer can 1 were coated with a solution of poly-4-vinylpyridine hydrochloride by centrifugal force due to rotation, and then vacuum dried. It shows the effect of the heat treatment when the heat treatment is carried out while reducing the pressure in the machine to form the coating of the poly-4-vinylpyridine hydrochloride thin film 5.

【0030】すなわち、加熱処理温度を45℃,50℃,80
℃, 100℃もしくは 105℃に設定して、それぞれ外装缶
1の内壁面へ所要のポリ -4-ビニルピリジン塩酸塩薄膜
5を被覆形成したポリ -4-ビニルピリジン塩酸塩薄膜5
付き外装缶1を用いて、上記図1に図示したと同様の非
水電解液電池各 100個につき、同様の試験を行った結果
を表1に示す。
That is, the heat treatment temperature is 45 ° C., 50 ° C., 80
℃, 100 ℃ or 105 ℃, and set the required poly-4-vinylpyridine hydrochloride thin film 5 on the inner wall of the outer can 1, respectively.
Table 1 shows the results of the same test using the attached outer can 1 for each 100 non-aqueous electrolyte batteries similar to those shown in FIG.

【0031】 表1 加熱処理温度(℃) 腐食発生個数 非水電解液電池2a 45 7 非水電解液電池2b 50 0 非水電解液電池2c 80 0 非水電解液電池2d 100 0 非水電解液電池2e 105 6 表1から分かるように、加熱処理温度を45℃もしくは 1
05℃に設定した場合には、外装缶1に十分な腐食抑制な
いし防止効果を付与できなかったが、加熱処理温度を50
℃もしくは 100℃に設定したときは、腐食発生など認め
られず安定した電池機能を呈することが確認された。
Table 1 Heat treatment temperature (° C) Number of corrosion occurrences Non-aqueous electrolyte battery 2a 45 7 Non-aqueous electrolyte battery 2b 50 0 Non-aqueous electrolyte battery 2c 80 0 Non-aqueous electrolyte battery 2d 100 0 Non-aqueous electrolyte Battery 2e 105 6 As can be seen from Table 1, the heat treatment temperature is 45 ° C or 1
When the temperature was set to 05 ° C, sufficient corrosion inhibition or prevention effect could not be added to the outer can 1, but the heat treatment temperature was 50%.
It was confirmed that when the temperature was set to ℃ or 100 ℃, stable battery function was exhibited without the occurrence of corrosion.

【0032】実施例3 この実施例は、前記実施例1の場合において、回転によ
る遠心力で外装缶1の側壁面および底面へ、ポリ -4-ビ
ニルピリジン塩酸塩溶液を塗布した後、真空乾燥機にて
減圧しながら加熱処理してポリ -4-ビニルピリジン塩酸
塩の薄膜5を被覆形成するときの、ポリ -4-ビニルピリ
ジン塩酸塩溶液の濃度,塗布量,加熱処理条件(温度お
よび時間)の影響を示したものである。
Example 3 In this example, in the case of Example 1, the poly-4-vinylpyridine hydrochloride solution was applied to the side wall surface and the bottom surface of the outer can 1 by centrifugal force due to rotation and then vacuum dried. Concentration of the poly-4-vinylpyridine hydrochloride solution, coating amount, and heat treatment conditions (temperature and time) when the thin film 5 of poly-4-vinylpyridine hydrochloride is coated by heat treatment under reduced pressure with a machine. ) Shows the effect of.

【0033】すなわち、溶液濃度を 5 ppm〜20 ppm,塗
布量 5〜20μl ,加熱処理温度を50〜 100℃,加熱処理
時間 1〜20時間にそれぞれ設定して、外装缶1の内壁面
へ所要のポリ -4-ビニルピリジン塩酸塩薄膜5を被覆形
成したポリ -4-ビニルピリジン塩酸塩薄膜5付き外装缶
1を用いて、上記図1に図示したと同様の非水電解液電
池各 100個につき、同様の試験を行った結果を表2に示
す。
That is, the solution concentration is set to 5 ppm to 20 ppm, the coating amount is 5 to 20 μl, the heat treatment temperature is set to 50 to 100 ° C., and the heat treatment time is set to 1 to 20 hours. Using the outer can 1 with the poly-4-vinylpyridine hydrochloride thin film 5 coated with the poly-4-vinylpyridine hydrochloride thin film 5 described above, 100 non-aqueous electrolyte batteries similar to those shown in FIG. Table 2 shows the results of the same test.

【0034】 表2 溶液濃度 塗布量 加熱処理時間 腐食発生 (ppm) (μl) 温度(℃),時間(h) 個数 非水電解液電池3a 5 10 100 1 0 非水電解液電池3b 20 5 50 20 0 非水電解液電池3c 10 15 90 5 0 非水電解液電池3d 5 25 70 10 0 非水電解液電池3e 5 20 90 5 0 表2から分かるように、ポリ -4-ビニルピリジン塩酸塩
溶液の濃度,塗布量,加熱時間などを変えても、腐食発
生など認められず安定した電池機能を呈することが確認
された。
Table 2 Solution concentration Coating amount Heat treatment time Corrosion generation (ppm) (μl) Temperature (° C), time (h) Number Non-aqueous electrolyte battery 3a 5 10 100 1 0 Non-aqueous electrolyte battery 3b 20 5 50 20 0 Non-aqueous electrolyte battery 3c 10 15 90 5 0 Non-aqueous electrolyte battery 3d 5 25 70 10 0 Non-aqueous electrolyte battery 3e 5 20 90 5 0 As can be seen from Table 2, poly-4-vinylpyridine hydrochloride It was confirmed that even if the concentration of the solution, the coating amount, the heating time, etc. were changed, the occurrence of corrosion was not observed and a stable battery function was exhibited.

【0035】上記では、ピリジン系高分子化合物とし
て、ポリ -4-ビニルピリジン塩酸塩を使用した非水電解
液一次電池について例示したが、ポリ -4-ビニルピリジ
ン塩酸塩の代わりにポリ -2-ビニルピリジン塩酸塩を用
いても、あるいはポリ -4-ビニルピリジン塩酸塩とリ -
2-ビニルピリジン塩酸塩との混合系を用いても、同様の
作用効果が得られる。また、非水電解液二次電池におい
ても、同様の作用効果が得られる。
In the above, the non-aqueous electrolyte primary battery using poly-4-vinylpyridine hydrochloride as the pyridine-based polymer compound has been exemplified, but poly-2-vinylpyridine hydrochloride is used instead of poly-2-vinylpyridine hydrochloride. With vinyl pyridine hydrochloride, or with poly-4-vinyl pyridine hydrochloride
Similar effects can be obtained by using a mixed system with 2-vinylpyridine hydrochloride. In addition, similar effects can be obtained in the non-aqueous electrolyte secondary battery.

【0036】[0036]

【発明の効果】上記説明したように、本発明に係る非水
電解液電池によれば、非水電解液によって溶出し易い正
極構成部材の少なくとも非水電解液と接触する面が、ピ
リジン系高分子化合物層で被覆したしたことにより、非
水電解液に対してすぐれた耐蝕性が付与される。ステン
レス鋼などの正極構成部材は、非水電解液によって腐食
・損傷などされず、したがって負極面への金属析出によ
る電池内部の抵抗増大の現象なども回避され、長期間に
亘って安定した放電特性が確保されるため、信頼性の高
い非水電解液電池として機能する。
As described above, according to the non-aqueous electrolyte battery of the present invention, at least the surface of the positive electrode constituent member, which is easily eluted by the non-aqueous electrolyte solution, in contact with the non-aqueous electrolyte solution has a high pyridine content. The coating with the molecular compound layer imparts excellent corrosion resistance to the non-aqueous electrolyte. The positive electrode components such as stainless steel are not corroded or damaged by the non-aqueous electrolyte, so that the phenomenon of resistance increase inside the battery due to metal deposition on the negative electrode surface is also avoided and stable discharge characteristics over a long period of time. Is ensured, it functions as a highly reliable non-aqueous electrolyte battery.

【0037】また、本発明に係る非水電解液電池用正極
構成部材の製造方法によれば、非水電解液に対して安定
した正極構成部材を容易に、かつ歩留まりよく提供でき
るので、前記信頼性の高い非水電解液電池の実用化に大
きく寄与する。
Further, according to the method for producing a positive electrode constituent member for a non-aqueous electrolyte battery according to the present invention, a stable positive electrode constituent member for a non-aqueous electrolyte solution can be easily provided with a good yield. It greatly contributes to the practical application of a non-aqueous electrolyte battery having high properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例に係る非水電解液電池の要部構成例を
示す縦断面図。
FIG. 1 is a vertical cross-sectional view showing a configuration example of a main part of a non-aqueous electrolyte battery according to an embodiment.

【図2】図1に図示した非水電解液電池の一部拡大縦断
面図。
FIG. 2 is a partially enlarged vertical sectional view of the non-aqueous electrolyte battery shown in FIG.

【符号の説明】[Explanation of symbols]

1……外装缶 2……電池発電要素 2a……多孔質体(集電体) 2b……正極 2c……セパレーター 2d……負極 2e……非水電解液 3……封口体 4……絶縁性パッキング材 5……吸着膜(ピリジン系高分子化合物層) 1 ... Outer can 2 ... Battery power generating element 2a ... Porous body (current collector) 2b ... Positive electrode 2c ... Separator 2d ... Negative electrode 2e ... Non-aqueous electrolyte 3 ... Sealing body 4 ... Insulation Packing material 5 ... Adsorption film (pyridine-based polymer compound layer)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 負極構成部材、正極構成部材、および非
水系電解液を電池発電要素として備えた非水電解液電池
において、 前記正極構成部材のうち、少なくとも非水系電解液に接
する正極構成部材面がピリジン系高分子化合物の膜で被
覆されていることを特徴とする非水電解液電池。
1. A non-aqueous electrolyte battery comprising a negative electrode constituent member, a positive electrode constituent member, and a non-aqueous electrolyte solution as a battery power generating element, wherein at least one of the positive electrode constituent members is in contact with the non-aqueous electrolyte solution. Is covered with a film of a pyridine polymer compound.
【請求項2】 ピリジン系高分子化合物が、ポリ -2-ビ
ニルピリジン塩酸塩およびポリ -4-ビニルピリジン塩酸
塩の少なくとも1種であることを特徴とする請求項1記
載の非水電解液電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein the pyridine polymer compound is at least one of poly-2-vinylpyridine hydrochloride and poly-4-vinylpyridine hydrochloride. .
【請求項3】 ピリジン系高分子化合物が、粘度平均分
子量 21000以上のポリ -2-ビニルピリジン塩酸塩および
ポリ -4-ビニルピリジン塩酸塩の少なくとも1種である
ことを特徴とする請求項1もしくは請求項2記載の非水
電解液電池。
3. The pyridine polymer compound is at least one of poly-2-vinylpyridine hydrochloride and poly-4-vinylpyridine hydrochloride having a viscosity average molecular weight of 21,000 or more. The non-aqueous electrolyte battery according to claim 2.
【請求項4】 非水電解液電池用正極構成部材の製造方
法において、 前記正極構成部材の少なくとも非水系電解液に接する面
に、ピリジン系高分子化合物溶液を塗布し、加熱処理を
施してピリジン系高分子化合物から成る吸着層を形成す
ることを特徴とする非水電解液電池用正極構成部材の製
造方法。
4. A method for producing a positive electrode constituent member for a non-aqueous electrolyte battery, wherein a pyridine-based polymer compound solution is applied to at least a surface of the positive electrode constituent member that is in contact with the non-aqueous electrolyte solution, and heat treatment is performed to obtain pyridine. A method for manufacturing a positive electrode constituent member for a non-aqueous electrolyte battery, which comprises forming an adsorption layer made of a polymer compound.
【請求項5】 加熱処理温度が、50〜 100℃であること
を特徴とする請求項4記載の非水電解液電池用正極構成
部材の製造方法。
5. The method for producing a positive electrode constituent member for a non-aqueous electrolyte battery according to claim 4, wherein the heat treatment temperature is 50 to 100 ° C.
JP7298505A 1995-11-16 1995-11-16 Manufacture of non-aqueous electrolyte battery and positive pole component member for non-aqueous electrolyte battery Withdrawn JPH09139200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7298505A JPH09139200A (en) 1995-11-16 1995-11-16 Manufacture of non-aqueous electrolyte battery and positive pole component member for non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7298505A JPH09139200A (en) 1995-11-16 1995-11-16 Manufacture of non-aqueous electrolyte battery and positive pole component member for non-aqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPH09139200A true JPH09139200A (en) 1997-05-27

Family

ID=17860588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7298505A Withdrawn JPH09139200A (en) 1995-11-16 1995-11-16 Manufacture of non-aqueous electrolyte battery and positive pole component member for non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH09139200A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030718A (en) * 1998-05-01 2000-01-28 Toshiba Battery Co Ltd Flat type nonaqueous electrolyte battery
JP2010251288A (en) * 2009-03-27 2010-11-04 Sanyo Electric Co Ltd Nonaqueous electrolyte primary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030718A (en) * 1998-05-01 2000-01-28 Toshiba Battery Co Ltd Flat type nonaqueous electrolyte battery
JP2010251288A (en) * 2009-03-27 2010-11-04 Sanyo Electric Co Ltd Nonaqueous electrolyte primary battery

Similar Documents

Publication Publication Date Title
US5753389A (en) Organic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US8053108B2 (en) Organic electrolytic solution and lithium battery employing the same
KR100838932B1 (en) Nonaqueous electrolyte secondary battery
US6350542B1 (en) Sulfite additives for nonaqueous electrolyte rechargeable cells
US6350546B1 (en) Sulfate additives for nonaqueous electrolyte rechargeable cells
US8323839B2 (en) Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery
US7410731B2 (en) Organic electrolytic solution and lithium battery employing the same
US20060035155A1 (en) Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery
JP2001085058A (en) Nonaqueous electrolyte and lithium primary battery, lithium secondary battery and electrochemical capacitor using this and high polymer electrolyte and polymer secondary battery using this
US11876177B2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
US6210839B1 (en) Nitrite additives for nonaqueous electrolyte rechargeable electrochemical cells
JP2002025622A (en) Gel-like polyelectrolyte and lithium battery using the same
US20050238956A1 (en) Negative electrode for lithium battery and lithium battery comprising same
JPH09320568A (en) Nonaqueous electrolyte secondary battery
US20120064412A1 (en) Lithium primary battery
JPH09139200A (en) Manufacture of non-aqueous electrolyte battery and positive pole component member for non-aqueous electrolyte battery
JP2001357838A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP3157152B2 (en) Non-aqueous electrolyte battery
JP2994705B2 (en) Non-aqueous electrolyte battery
JPH0495362A (en) Nonaqueous electrolytic battery
JP3223035B2 (en) Non-aqueous electrolyte secondary battery
CA2299102C (en) Sulfite additives for nonaqueous electrolyte rechargeable cells
JP2002063906A (en) Flat nonaqueous electrolyte secondary battery
JP2001297762A (en) Secondary cell with nonaqueous electrolyte

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204