JP2010251288A - Nonaqueous electrolyte primary battery - Google Patents

Nonaqueous electrolyte primary battery Download PDF

Info

Publication number
JP2010251288A
JP2010251288A JP2009220144A JP2009220144A JP2010251288A JP 2010251288 A JP2010251288 A JP 2010251288A JP 2009220144 A JP2009220144 A JP 2009220144A JP 2009220144 A JP2009220144 A JP 2009220144A JP 2010251288 A JP2010251288 A JP 2010251288A
Authority
JP
Japan
Prior art keywords
battery
volume
primary battery
nonaqueous electrolyte
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009220144A
Other languages
Japanese (ja)
Other versions
JP5449944B2 (en
Inventor
Atsushi Ogata
敦 尾形
Masanobu Takeuchi
正信 竹内
Hiroyuki Fujimoto
洋行 藤本
Yoshinori Kida
佳典 喜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009220144A priority Critical patent/JP5449944B2/en
Publication of JP2010251288A publication Critical patent/JP2010251288A/en
Application granted granted Critical
Publication of JP5449944B2 publication Critical patent/JP5449944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte primary battery capable of tremendously decreasing increase in inner resistance during storage while suppressing drop in high rate discharge characteristics. <P>SOLUTION: In the nonaqueous electrolyte primary battery including a positive electrode 1 using manganese dioxide as a main active material, a negative electrode 2 containing lithium or a lithium alloy, and a nonaqueous electrolyte containing a solvent and an electrolyte salt, 2-vinyl pyridine is contained in the nonaqueous electrolyte. The ratio of 2-vinyl pyridine to the total amount of the solvent is 0.01-1.5 volume%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は非水電解質一次電池に関し、特に保存特性を向上させることができる非水電解質一次電池に関する。   The present invention relates to a non-aqueous electrolyte primary battery, and more particularly to a non-aqueous electrolyte primary battery that can improve storage characteristics.

非水電解質一次電池は、電池容量が大きく、高率放電特性等に優れていることから、従来より、デジタルカメラ、メモリーバックアップ用電源、火災警報器用電源等に用いられているが、その用途の拡大とともに、10年保存等の過酷な条件化でも劣化が少ないものが求められるようになってきている。   Non-aqueous electrolyte primary batteries have been used for digital cameras, memory backup power supplies, fire alarm power supplies, etc., because of their large battery capacity and excellent high-rate discharge characteristics. Along with the expansion, there has been a demand for a product with little deterioration even under severe conditions such as storage for 10 years.

ここで、上記非水電解質一次電池の正極活物質としては、特に低温での放電特性の向上等を考慮して二酸化マンガンが主として用いられており、また、負極活物質としてはリチウム金属、リチウム合金等が用いられ、更に、電解液としては、プロピレンカーボネート等のカーボネート類と、1,2−ジメトキシエタン等の低沸点溶媒との混合溶媒に、LiClOまたはLiCFSO等の溶質を溶解したものが用いられている。 Here, manganese dioxide is mainly used as the positive electrode active material of the non-aqueous electrolyte primary battery, particularly in consideration of improvement of discharge characteristics at a low temperature, and as the negative electrode active material, lithium metal or lithium alloy is used. Further, as an electrolyte, a solute such as LiClO 4 or LiCF 3 SO 3 was dissolved in a mixed solvent of carbonates such as propylene carbonate and a low boiling point solvent such as 1,2-dimethoxyethane. Things are used.

しかしながら、上記の如く、正極活物質として二酸化マンガンを用いた非水電解質一次電池では、長期保存により、二酸化マンガンがマンガンイオンとして電解液中に溶出し、この溶出したマンガンイオンが負極材料であるリチウム金属上に析出する。このため、保存後の内部抵抗が上昇して、放電できなくなるという問題があった。この問題は、特に、放電途中で40℃〜80℃環境下に晒された場合には特に顕著に現れる。
そこで、正極活物質である二酸化マンガンに、ホウ素を添加する手法で保存特性を向上させるような提案がなされている。(下記特許文献1参照)
However, as described above, in the nonaqueous electrolyte primary battery using manganese dioxide as the positive electrode active material, manganese dioxide elutes into the electrolyte as manganese ions due to long-term storage, and the eluted manganese ions are lithium as the negative electrode material. Deposit on the metal. For this reason, there has been a problem that the internal resistance after storage increases and discharge becomes impossible. This problem is particularly prominent when exposed to a 40 ° C. to 80 ° C. environment during discharge.
Therefore, proposals have been made to improve the storage characteristics by adding boron to manganese dioxide, which is a positive electrode active material. (See Patent Document 1 below)

特開2007−134270号公報JP 2007-134270 A

しかしながら、特許文献1に開示された提案では、二酸化マンガンの表面全体を酸化ホウ素で被覆することができないので、マンガンイオン溶出を十分に抑制できない。その一方、二酸化マンガンの表面を酸化ホウ素で均一あるいは厚く被覆した場合には、電池反応が著しく阻害され、特に高負荷特性が低下するという課題がある。   However, in the proposal disclosed in Patent Document 1, since the entire surface of manganese dioxide cannot be covered with boron oxide, elution of manganese ions cannot be sufficiently suppressed. On the other hand, when the surface of manganese dioxide is uniformly or thickly coated with boron oxide, the battery reaction is remarkably inhibited, and there is a problem that particularly high load characteristics are lowered.

そこで、本発明は、高負荷特性の低下を抑制しつつ、保存時の内部抵抗上昇を飛躍的に低減することができる非水電解質一次電池を提供することを目的とする。   Therefore, an object of the present invention is to provide a non-aqueous electrolyte primary battery that can drastically reduce an increase in internal resistance during storage while suppressing a decrease in high load characteristics.

上記の目的を達成するために、本発明は、二酸化マンガンを主活物質とする正極と、リチウム又はリチウム合金を含む負極と、溶媒と電解質塩とを含む非水電解液とを備えた非水電解質一次電池において、上記非水電解液にはビニルピリジンが含まれていることを特徴とする。   In order to achieve the above object, the present invention provides a non-aqueous solution comprising a positive electrode containing manganese dioxide as a main active material, a negative electrode containing lithium or a lithium alloy, and a non-aqueous electrolyte solution containing a solvent and an electrolyte salt. In the electrolyte primary battery, the non-aqueous electrolyte contains vinyl pyridine.

二酸化マンガンを主活物質とする正極を用いた電池では、保存中に二酸化マンガンからマンガンイオンが電解液中に溶解し、この溶解したマンガンイオンがリチウム負極上に析出し、電池の内部抵抗を上昇させることで電池特性が劣化する。そこで、二酸化マンガンの溶解を抑制する方法について種々検討した結果、非水電解液にビニルピリジンを添加した非水電解質一次電池では、非水電解液にビニルピリジンを添加しない電池に比べて、保存特性が大きく改良されることを見出した。この保存特性の向上は、添加したビニルピリジンがリチウム負極上で分解された後、その分解生成物が正極上で被膜の形成することに起因すると考えられる。   In batteries using a positive electrode with manganese dioxide as the main active material, manganese ions are dissolved from the manganese dioxide in the electrolyte during storage, and the dissolved manganese ions are deposited on the lithium negative electrode, increasing the internal resistance of the battery. By doing so, the battery characteristics deteriorate. Therefore, as a result of various investigations on methods for suppressing the dissolution of manganese dioxide, the nonaqueous electrolyte primary battery in which vinylpyridine is added to the nonaqueous electrolyte solution has storage characteristics compared to the battery in which vinylpyridine is not added to the nonaqueous electrolyte solution. Has been found to be greatly improved. This improvement in storage characteristics is considered to be due to the fact that after the added vinylpyridine is decomposed on the lithium negative electrode, the decomposition product forms a film on the positive electrode.

具体的には、非水電解液にビニルピリジンを添加した場合、先ず、リチウムを含む負極表面でビニルピリジンのビニル基が開裂する分解反応が生じ、分解生成物が非水電解液中に残存することになるが、この分解生成物が正極に達すると、二酸化マンガン表面で反応して、正極上に良質な被膜が形成されることになる。即ち、本発明において、特異的に正極上に良質な被膜が生成され、安定的に機能することにより保存特性を改善せしめるのは、リチウムを含む負極上で生成するビニルピリジン分解生成物と二酸化マンガン特有の電圧帯域と酸化力との組合せに起因していることがわかる。   Specifically, when vinylpyridine is added to the nonaqueous electrolyte, first, a decomposition reaction occurs in which the vinyl group of vinylpyridine is cleaved on the negative electrode surface containing lithium, and the decomposition product remains in the nonaqueous electrolyte. However, when this decomposition product reaches the positive electrode, it reacts on the surface of manganese dioxide, and a high-quality film is formed on the positive electrode. That is, in the present invention, a good-quality film is specifically produced on the positive electrode, and it improves the storage characteristics by functioning stably. The decomposition product of vinylpyridine and manganese dioxide produced on the negative electrode containing lithium It can be seen that this is caused by a combination of a specific voltage band and oxidizing power.

以上の如く、二酸化マンガンの表面全体に接する電解液を利用し、これによって正極表面に被膜を生成させることで、マンガンイオンが電解液中に溶出するのを抑制する(酸化ホウ素等の添加剤を、二酸化マンガンの表面に、物理的に均一あるいは厚く被覆することで、マンガンイオンの溶出を抑制するのではない)ので、電池反応が著しく阻害されるのを抑制できる。また、ビニルピリジンはリチウムと反応する際、ビニルピリジンの分解によるガス発生や、リチウムの腐食等の問題を生じることはない。
これらのことから、上記構成の非水電解質一次電池では、高負荷特性の低下を抑制しつつ保存時の内部抵抗上昇を飛躍的に低減することができる。
As described above, the electrolytic solution in contact with the entire surface of manganese dioxide is used, and thereby a film is formed on the surface of the positive electrode, thereby suppressing manganese ions from eluting into the electrolytic solution (additives such as boron oxide are added). Since the manganese dioxide surface is physically and uniformly or thickly coated, the elution of manganese ions is not suppressed), so that the battery reaction can be prevented from being significantly inhibited. Further, when vinylpyridine reacts with lithium, it does not cause problems such as gas generation due to decomposition of vinylpyridine and corrosion of lithium.
For these reasons, in the non-aqueous electrolyte primary battery having the above-described configuration, it is possible to drastically reduce an increase in internal resistance during storage while suppressing a decrease in high load characteristics.

尚、負極には金属リチウム又はリチウム合金が含まれていれば良いが、この場合、アルミニウムを含むリチウム合金が含まれているのが特に好ましい。金属リチウムは反応性が極めて高いが、アルミニウムを含むリチウム合金は金属リチウムに比べて反応性が低いからである。
また、二酸化マンガンを主活物質とする正極とは、正極における活物質の総量に対する二酸化マンガンの割合が50質量%以上の場合をいう。
The negative electrode only needs to contain metallic lithium or a lithium alloy. In this case, it is particularly preferable that a lithium alloy containing aluminum is included. This is because metallic lithium is extremely reactive, but a lithium alloy containing aluminum is less reactive than metallic lithium.
Moreover, the positive electrode which uses manganese dioxide as a main active material means the case where the ratio of manganese dioxide with respect to the total amount of the active material in a positive electrode is 50 mass% or more.

上記ビニルピリジンが2−ビニルピリジンであることが望ましく、上記溶媒の総量に対する上記ビニルピリジンの割合が、0.01体積%以上1.5体積%以下に規制されることが望ましい。
溶媒の総量に対するビニルピリジンの割合が0.01体積%未満では、ビニルピリジンの割合が少な過ぎて、保存特性の十分な向上を図ることができないことがある一方、溶媒の総量に対するビニルピリジンの割合が1.5体積%を超えると、生成する被膜が厚くなり過ぎて高負荷放電時、或いは、低温放電時に電圧降下が生じ、放電容量が減少することがあるからである。さらに、ビニルピリジンは高価であるため、添加量を多くすると、電池のコストアップを招来する。そこで、ビニルピリジンの添加量を上記の範囲に規制すれば、必要最低限の量(低コスト)で最大の効果を得ることができる。
The vinyl pyridine is desirably 2-vinyl pyridine, and the ratio of the vinyl pyridine to the total amount of the solvent is desirably regulated to 0.01 volume% or more and 1.5 volume% or less.
If the ratio of vinylpyridine to the total amount of the solvent is less than 0.01% by volume, the proportion of vinylpyridine is too small to sufficiently improve the storage characteristics. On the other hand, the ratio of vinylpyridine to the total amount of the solvent If the amount exceeds 1.5% by volume, the resulting coating becomes too thick, causing a voltage drop during high load discharge or low temperature discharge, which may reduce the discharge capacity. Furthermore, since vinylpyridine is expensive, increasing the amount of addition causes an increase in battery cost. Therefore, if the addition amount of vinylpyridine is regulated within the above range, the maximum effect can be obtained with the minimum necessary amount (low cost).

上記非水電解液にはビニレンカーボネートが含まれていることが望ましい。
上述の如く、非水電解液にビニルピリジンを添加することにより正極に被膜が形成されていても、電池の保存時には、正極からはある程度マンガンが溶出することがある。このため、負極上に十分な被膜形成がなされていない場合には、溶出したマンガンが負極上で還元されて析出し、その際に電解液が分解する結果、電池の内部抵抗が上昇することがある。
そこで、上記構成の如く、非水電解液にビニレンカーボネートを添加すれば、負極上で、ビニレンカーボネートの分解生成物を主体とする被膜が生じるため、例え電池の保存時に、正極からある程度マンガンが溶出しても、溶出したマンガンが負極上で還元され析出することに起因する電解液の分解を抑止できる。
The non-aqueous electrolyte preferably contains vinylene carbonate.
As described above, even if a coating film is formed on the positive electrode by adding vinylpyridine to the non-aqueous electrolyte, manganese may be eluted from the positive electrode to some extent during battery storage. For this reason, when sufficient film formation is not performed on the negative electrode, the eluted manganese is reduced and deposited on the negative electrode, and as a result, the electrolytic solution is decomposed, thereby increasing the internal resistance of the battery. is there.
Therefore, if vinylene carbonate is added to the non-aqueous electrolyte as in the above configuration, a film mainly composed of the decomposition products of vinylene carbonate is formed on the negative electrode. For example, when the battery is stored, some manganese is eluted from the positive electrode. Even so, it is possible to suppress decomposition of the electrolytic solution due to reduction and precipitation of the eluted manganese on the negative electrode.

加えて、正極においては、ビニルピリジンの分解生成物を主体とする被膜が生じるが、この被膜中にはビニレンカーボネートの分解生成物が取り込まれる。このような構成であれば、理由は定かではないが、リチウムイオン導電性に優れた良質な被膜となる。
一方、負極においては、ビニレンカーボネートの分解生成物を主体とする被膜が生じるが、この被膜中にはビニルピリジンの分解生成物が取り込まれる。このような構成であれば、理由は定かではないが、リチウムイオン導電性に優れた良質な被膜となる。
In addition, a film mainly composed of a decomposition product of vinylpyridine is formed in the positive electrode, and a decomposition product of vinylene carbonate is taken into this film. If it is such a structure, although a reason is not certain, it will become a high quality film excellent in lithium ion conductivity.
On the other hand, in the negative electrode, a film mainly composed of a decomposition product of vinylene carbonate is formed, and a decomposition product of vinylpyridine is taken into this film. If it is such a structure, although a reason is not certain, it will become a high quality film excellent in lithium ion conductivity.

以上のように、正負両極において良質の被膜が生じる結果、優れた低温放電特性を維持したまま、電池保存時に、電池の内部抵抗が上昇するのを飛躍的に抑制するという効果が得られる。
尚、負極上での被膜生成が効果は、非水電解液にビニレンカーボネートの添加した場合の他、フルオロエチレンカーボネート等の反応性の高い置換基を有する環状カーボネートを非水電解液に添加した場合であっても発揮できるものと考えられる。
As described above, a good quality film is formed in both positive and negative electrodes. As a result, an effect of drastically suppressing an increase in the internal resistance of the battery during battery storage while maintaining excellent low-temperature discharge characteristics can be obtained.
In addition, the effect of the film formation on the negative electrode is the effect of adding cyclic carbonate having a highly reactive substituent such as fluoroethylene carbonate to the non-aqueous electrolyte in addition to the addition of vinylene carbonate to the non-aqueous electrolyte. Even so, it is thought that it can be demonstrated.

上記溶媒の総量に対する上記ビニレンカーボネートの割合が、0.1体積%以上2.0体積%以下に規制されることが望ましい。
ビニレンカーボネートの添加量が0.1体積%未満であると、その添加効果が十分に得られない一方、添加量が2.0体積%を超えると、生成する被膜が厚くなり過ぎて、放電時(特に、0〜−20℃等の低温放電時)に著しく電圧降下が生じて、放電容量が減少することがある。更に、ビニレンカーボネートは高価であるため、添加量を多くすると、電池のコストアップを招来する。そこで、ビニレンカーボネートの添加量を上記の範囲に規制すれば、必要最低限の量(低コスト)で最大の効果を得ることができる。
It is desirable that the ratio of the vinylene carbonate with respect to the total amount of the solvent is regulated to 0.1 volume% or more and 2.0 volume% or less.
When the addition amount of vinylene carbonate is less than 0.1% by volume, the effect of addition cannot be sufficiently obtained. On the other hand, when the addition amount exceeds 2.0% by volume, the resulting coating becomes too thick, and during discharge. A voltage drop may occur remarkably (particularly during low temperature discharge such as 0 to -20 ° C.), and the discharge capacity may be reduced. Furthermore, since vinylene carbonate is expensive, an increase in the amount added causes an increase in the cost of the battery. Therefore, if the addition amount of vinylene carbonate is regulated within the above range, the maximum effect can be obtained with the minimum necessary amount (low cost).

上記二酸化マンガンには酸化ホウ素が含まれていることが望ましい。
理由は定かではないが、上記非水電解液にビニルピリジンが添加され、且つ、二酸化マンガンには酸化ホウ素が含まれていれば、酸化ホウ素を核としてより緻密な被膜が正極表面に生成し、上述した作用効果が一層発揮されるからである。
It is desirable that the manganese dioxide contains boron oxide.
The reason is not clear, but if vinyl pyridine is added to the non-aqueous electrolyte, and manganese dioxide contains boron oxide, a denser film is formed on the positive electrode surface with boron oxide as the nucleus, This is because the above-described effects are further exhibited.

上記酸化ホウ素と上記二酸化マンガンとの総量に対する酸化ホウ素の割合が、0.1質量%以上1.0質量%以下に規制されることが望ましい。
酸化ホウ素の割合が0.1質量%未満であると、その十分な添加効果が得られない一方、添加量が1.0質量%を超えると、生成する被膜が厚くなり過ぎるため、放電容量が減少するからである。
It is desirable that the ratio of boron oxide to the total amount of boron oxide and manganese dioxide is regulated to 0.1% by mass or more and 1.0% by mass or less.
When the proportion of boron oxide is less than 0.1% by mass, the sufficient addition effect cannot be obtained. On the other hand, when the addition amount exceeds 1.0% by mass, the resulting coating becomes too thick, so that the discharge capacity is reduced. This is because it decreases.

本発明によれば、高負荷特性の低下を抑制しつつ、保存時の内部抵抗上昇を飛躍的に低減することができるといった優れた効果を奏する。   According to the present invention, there is an excellent effect that an increase in internal resistance during storage can be drastically reduced while suppressing a decrease in high load characteristics.

本発明を実施するための形態に係る試験電池の断面図である。It is sectional drawing of the test battery which concerns on the form for implementing this invention. 2-VP(2−ビニルピリジン)添加量と45日保存後の抵抗値との関係を示すグラフである。It is a graph which shows the relationship between 2-VP (2-vinyl pyridine) addition amount and the resistance value after a 45-day preservation | save.

以下、この発明に係る非水電解質一次電池を、図1に基づいて説明する。なお、この発明における非水電解質一次電池は、下記の形態に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, a nonaqueous electrolyte primary battery according to the present invention will be described with reference to FIG. In addition, the nonaqueous electrolyte primary battery in this invention is not limited to what was shown to the following form, In the range which does not change the summary, it can change suitably and can implement.

〔正極の作製〕
先ず、酸化ホウ素(B)と二酸化マンガンとの総量に対するホウ素量の割合が0.5質量%となるように酸化ホウ素を添加した二酸化マンガンを、空気中にて375℃で20時間熱処理(焼成)し、粉砕することにより、正極活物質としてのホウ素含有二酸化マンガンを得た。
次に、上記ホウ素含有二酸化マンガンの粉末と、導電剤としてのカーボンブラックの粉末と、結着剤としてのフッ素樹脂の粉末とを、質量比85:10:5の割合で混合して正極合剤を得た後、この正極合剤をSUSメッシュに圧着し、更に、真空中にて250℃で2時間乾燥することにより正極を作製した。
[Production of positive electrode]
First, manganese dioxide to which boron oxide is added so that the ratio of the amount of boron to the total amount of boron oxide (B 2 O 3 ) and manganese dioxide is 0.5% by mass is heat-treated in air at 375 ° C. for 20 hours. (Baking) and pulverization gave boron-containing manganese dioxide as a positive electrode active material.
Next, the boron-containing manganese dioxide powder, the carbon black powder as the conductive agent, and the fluororesin powder as the binder are mixed at a mass ratio of 85: 10: 5 to mix the positive electrode mixture. After that, this positive electrode mixture was pressure-bonded to a SUS mesh, and further dried in vacuum at 250 ° C. for 2 hours to produce a positive electrode.

〔負極の作製〕
アルミニウムを0.5質量%添加したリチウム合金(Li−Al合金)を、シート状に加工し、負極を作製した。
(Production of negative electrode)
A lithium alloy (Li-Al alloy) to which 0.5% by mass of aluminum was added was processed into a sheet shape to produce a negative electrode.

〔非水電解液の調製〕
エチレンカーボネート(EC)と、ブチレンカーボネート(BC)と、1,2−ジメトキシエタン(DME)とを、体積比で15:15:70の割合で混合した混合溶媒に、支持電解質塩としてのトリフルオロメタンスルホン酸リチウム(LiCFSO)を0.6モル/リットル溶かし、更に、添加剤として2−ビニルピリジン(以下、2−VPと記載することがある)を上記混合溶媒に対して、0.1体積%添加することにより非水電解液を調製した。
(Preparation of non-aqueous electrolyte)
Trifluoromethane as a supporting electrolyte salt in a mixed solvent in which ethylene carbonate (EC), butylene carbonate (BC), and 1,2-dimethoxyethane (DME) are mixed at a volume ratio of 15:15:70. 0.6 mol / liter of lithium sulfonate (LiCF 3 SO 3 ) was dissolved, and 2-vinylpyridine (hereinafter sometimes referred to as 2-VP) as an additive was added to the above mixed solvent in an amount of 0. A non-aqueous electrolyte was prepared by adding 1% by volume.

〔電池の組立〕
先ず、上記正極1と負極2との間に、ポリエチレン製の微多孔膜からなるセパレータ3を配置した後、これを渦巻状に巻回して巻取電極体5を作製し、図1に示すように、この巻取電極体5を、上部に開口部を有する有底円筒状の負極缶4の収納空間内に配置した。次いで、負極集電タブ6を負極缶4の缶底に、正極集電タブ7を正極端子10にそれぞれ溶接した。これにより、電池内部に生じた化学エネルギーを正極端子10及び負極缶4の両端子から電気エネルギーとして外部へ取り出し得るようになっている。この後、負極缶4内に電解液を注入し、封口部をかしめて、直径17.0mm、高さ45.0mmの円筒形のリチウム一次電池(定格放電容量:2500mAh)を作製した。なお、図1において、8は正極端子10と負極缶4との間に介装されて正極端子10と負極缶4とを絶縁する絶縁パッキング、9は巻取電極体5の下面を覆う絶縁板、11はPTC素子である。
[Battery assembly]
First, a separator 3 made of a polyethylene microporous film is disposed between the positive electrode 1 and the negative electrode 2, and then wound into a spiral shape to produce a wound electrode body 5, as shown in FIG. In addition, the wound electrode body 5 was placed in a storage space of a bottomed cylindrical negative electrode can 4 having an opening at the top. Next, the negative electrode current collecting tab 6 was welded to the bottom of the negative electrode can 4, and the positive electrode current collecting tab 7 was welded to the positive electrode terminal 10. Thereby, chemical energy generated inside the battery can be taken out from both terminals of the positive electrode terminal 10 and the negative electrode can 4 as electric energy. Thereafter, an electrolytic solution was poured into the negative electrode can 4 and the sealing portion was caulked to produce a cylindrical lithium primary battery (rated discharge capacity: 2500 mAh) having a diameter of 17.0 mm and a height of 45.0 mm. In FIG. 1, 8 is an insulating packing that is interposed between the positive electrode terminal 10 and the negative electrode can 4 to insulate the positive electrode terminal 10 from the negative electrode can 4, and 9 is an insulating plate that covers the lower surface of the winding electrode body 5. , 11 are PTC elements.

〔第1実施例〕
(実施例1)
上記発明を実施するための形態と同様にして電池を作製した。
このようにして作製した電池を、以下、本発明電池A1と称する。
[First embodiment]
Example 1
A battery was produced in the same manner as in the embodiment for carrying out the invention.
The battery thus produced is hereinafter referred to as the present invention battery A1.

(実施例2)
混合溶媒に対する2−VPの添加量(以下、単に、2−VPの添加量と称する)を1.0体積%とした以外は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、本発明電池A2と称する。
(Example 2)
A battery was fabricated in the same manner as in Example 1 except that the amount of 2-VP added to the mixed solvent (hereinafter simply referred to as the amount of 2-VP added) was 1.0% by volume.
The battery thus produced is hereinafter referred to as the present invention battery A2.

(比較例)
混合溶媒に2−VPを添加しない以外は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池Xと称する。
(Comparative example)
A battery was fabricated in the same manner as in Example 1 except that 2-VP was not added to the mixed solvent.
The battery thus produced is hereinafter referred to as comparative battery X.

(実験1)
上記本発明電池A1、A2及び比較電池Xを下記の条件で放電と保存とを行った後、下記の測定方法で保存後の抵抗値を調べたので、その結果を表1及び図2に示す。
・放電条件、保存条件
深い放電深度では、マンガンの溶出がより顕著にあらわれることを考慮して、電流3mAで667時間定電流放電を行った後、40℃環境下で45日間保存を行った。
・保存後の抵抗値の測定方法
交流四端子法にて1kHzでのインピーダンスを測定し、その値を内部抵抗とした。
(Experiment 1)
After discharging and storing the present invention batteries A1 and A2 and the comparative battery X under the following conditions, the resistance values after storage were examined by the following measurement method, and the results are shown in Table 1 and FIG. .
-Discharge conditions and storage conditions Considering that manganese elution appears more prominently at deeper discharge depths, constant current discharge was performed at a current of 3 mA for 667 hours, and then stored at 40 ° C for 45 days.
-Measuring method of resistance value after storage The impedance at 1 kHz was measured by the AC four-terminal method, and the value was used as the internal resistance.

Figure 2010251288
Figure 2010251288

上記表1及び図2から明らかなように、2−VPを添加した非水電解液を用いた本発明電池A1、A2では、45日保存後の抵抗値が、各々0.687Ω、0.536Ωであるのに対して、2−VPを添加していない比較電池Xでは、45日保存後の抵抗値が、1.074Ωであることから、本発明電池A1、A2は比較電池Xに比べて、抵抗値の増加が抑制されていることが認められる。   As is apparent from Table 1 and FIG. 2, the batteries A1 and A2 of the present invention using the non-aqueous electrolyte added with 2-VP had resistance values of 0.687Ω and 0.536Ω after 45 days storage, respectively. On the other hand, in the comparative battery X to which 2-VP is not added, the resistance value after storage for 45 days is 1.074Ω, so that the batteries A1 and A2 of the present invention are compared with the comparative battery X. It can be seen that the increase in resistance is suppressed.

但し、表1には示していないが、2−VPの添加量が少なくなり過ぎると(具体的には、0.01体積%未満になると)、保存後の内部抵抗が大きくなることがある。したがって、保存後の内部抵抗上昇を十分に抑制するという観点からは、2−VPの添加量は0.01体積%以上であることが望ましい。   However, although not shown in Table 1, if the amount of 2-VP added is too small (specifically, less than 0.01% by volume), the internal resistance after storage may increase. Therefore, from the viewpoint of sufficiently suppressing an increase in internal resistance after storage, the amount of 2-VP added is desirably 0.01% by volume or more.

(実験2)
上記本発明電池A1、A2及び比較電池Xを下記の条件で放電して、高負荷放電時の放電容量を調べたので、その結果を表2に示す。
・放電条件
電池作製直後の各電池を、25℃の条件下、電流値500mAで電池電圧2Vまで放電するという条件である。
(Experiment 2)
The invention batteries A1 and A2 and the comparative battery X were discharged under the following conditions, and the discharge capacity during high load discharge was examined. Table 2 shows the results.
-Discharge condition It is the conditions that each battery immediately after battery preparation is discharged to a battery voltage of 2 V at a current value of 500 mA under a condition of 25 ° C.

Figure 2010251288
Figure 2010251288

表2から明らかなように、非水電解液中に2−VPを添加していない比較電池Xでは放電容量が1379mAhであるのに対して、2−VPを添加した本発明電池A1、A2では、各々、1384mAh、1348mAhであって、3つの電池の放電容量は略同一であると考えられる。したがって、2−VPを添加しても放電容量は低下しないことがわかる。   As is clear from Table 2, the discharge capacity of the comparative battery X in which 2-VP is not added to the non-aqueous electrolyte is 1379 mAh, whereas in the present invention batteries A1 and A2 to which 2-VP is added, the discharge capacity is 1379 mAh. 1384 mAh and 1348 mAh, respectively, and the discharge capacities of the three batteries are considered to be substantially the same. Therefore, it can be seen that the discharge capacity does not decrease even when 2-VP is added.

但し、図2に示すように、2−VPの添加量を余り多くしても抵抗値は低下せず、しかも、2−VPの添加量が多くなり過ぎると(具体的には、1.5体積%を超えると)、生成する被膜が厚くなりすぎて高負荷放電時の電圧降下が起こり、放電容量が減少することがある。したがって、放電容量の減少を抑制するという観点からは、2−VPの添加量は1.5体積%以下であることが望ましい。   However, as shown in FIG. 2, even if the addition amount of 2-VP is increased too much, the resistance value does not decrease, and when the addition amount of 2-VP becomes too large (specifically, 1.5 When the volume% is exceeded, the resulting coating may be too thick, causing a voltage drop during high-load discharge and reducing the discharge capacity. Therefore, from the viewpoint of suppressing a decrease in discharge capacity, the amount of 2-VP added is preferably 1.5% by volume or less.

(実験3)
2−VP分解物が正極活物質表面に被膜を形成しているということを確認すべく、以下のような実験を行った。
先ず、上記本発明電池A1について、負極缶の一部に切り込みを行った上で、本発明電池A1で用いた電解液と同一組成の電解液で満たされたビーカー中に本発明電池A1を浸漬した。次に、同じビーカー内にリチウム金属を浸漬した後、本発明電池A1の正負極缶に電流を流し、正極及びリチウム金属間で電圧測定を行い、交流四端子法で1kHzでの正極のインピーダンスを測定した。さらに、本発明電池A1の正負極缶に電流を流し、負極及びリチウム金属間で電圧測定を行い、交流四端子法で1kHzでの負極のインピーダンスを測定した。
その結果、本発明電池A1の正極と負極の抵抗成分の割合は69:31となった。
(Experiment 3)
In order to confirm that the 2-VP decomposition product forms a film on the surface of the positive electrode active material, the following experiment was performed.
First, with respect to the battery A1 of the present invention, a part of the negative electrode can was cut, and the battery A1 of the present invention was immersed in a beaker filled with an electrolytic solution having the same composition as the electrolytic solution used in the battery A1 of the present invention. did. Next, after immersing lithium metal in the same beaker, current was passed through the positive and negative electrode cans of the present invention battery A1, voltage measurement was performed between the positive electrode and lithium metal, and the impedance of the positive electrode at 1 kHz was measured by the AC four-terminal method. It was measured. Furthermore, current was passed through the positive and negative electrode cans of the battery A1 of the present invention, voltage measurement was performed between the negative electrode and lithium metal, and the impedance of the negative electrode at 1 kHz was measured by the AC four-terminal method.
As a result, the ratio of the resistance component of the positive electrode and the negative electrode of the present battery A1 was 69:31.

また、上記比較電池Xについても、上記本発明電池A1と同様にして、比較電池Xの正極の抵抗成分と負極の抵抗成分との割合を測定したところ、41:58となった。
上記本発明電池A1と比較電池Xとの実験結果より、2−VPを添加した本発明電池A1では正極側のインピーダンスの割合が増大している。したがって、2−VP分解物が正極活物質表面に被膜を形成している可能性が高いことが明らかになった。
Further, the ratio of the resistance component of the positive electrode and the resistance component of the negative electrode of the comparative battery X was also measured for the comparative battery X in the same manner as the battery A1 of the present invention, and the ratio was 41:58.
From the experimental results of the present invention battery A1 and the comparative battery X, the ratio of the impedance on the positive electrode side is increased in the present invention battery A1 to which 2-VP is added. Therefore, it was revealed that the 2-VP decomposition product is highly likely to form a film on the surface of the positive electrode active material.

〔第2実施例〕
(実施例1)
非水電解液の調製の際、上記2−VPの他に、上記混合溶媒に対して0.10体積%のビニレンカーボネート(VC)を添加した他は、前記第1実施例の実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、本発明電池B1と称する。
[Second Embodiment]
Example 1
In the preparation of the non-aqueous electrolyte, in addition to the above-mentioned 2-VP, 0.10% by volume of vinylene carbonate (VC) was added to the above mixed solvent. A battery was produced in the same manner.
The battery thus produced is hereinafter referred to as the present invention battery B1.

(実施例2、3)
上記混合溶媒に対するVCの添加量(以下、単にVCの添加量と称する)を、それぞれ、0.5体積%、1.0体積%とした他は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下それぞれ、本発明電池B2、B3と称する。
(Examples 2 and 3)
A battery was fabricated in the same manner as in Example 1 except that the amount of VC added to the mixed solvent (hereinafter simply referred to as the amount of VC added) was 0.5% by volume and 1.0% by volume, respectively. did.
The batteries thus produced are hereinafter referred to as invention batteries B2 and B3, respectively.

(実施例4、5)
2−VPの添加量を、それぞれ、0.05体積%、0.30体積%とした他は、前記第1実施例の実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下それぞれ、本発明電池B4、B5と称する。
(Examples 4 and 5)
A battery was fabricated in the same manner as in Example 1 of the first example except that the amount of 2-VP added was 0.05% by volume and 0.30% by volume, respectively.
The batteries thus produced are hereinafter referred to as invention batteries B4 and B5, respectively.

(実施例6、7)
2−VPの添加量を、それぞれ、0.05体積%、0.30体積%とした他は、上記実施例3と同様にして電池を作製した。
このようにして作製した電池を、以下それぞれ、本発明電池B6、B7と称する。
(Examples 6 and 7)
A battery was fabricated in the same manner as in Example 3 except that the addition amount of 2-VP was 0.05% by volume and 0.30% by volume, respectively.
The batteries thus produced are hereinafter referred to as present invention batteries B6 and B7, respectively.

(比較例)
VCを前記混合溶媒に対して、0.1体積%添加した他は、前記第1実施例の比較例と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池Yと称する。
(Comparative example)
A battery was fabricated in the same manner as in the comparative example of the first example except that 0.1% by volume of VC was added to the mixed solvent.
The battery thus produced is hereinafter referred to as comparative battery Y.

(実験1)
上記本発明電池A1、B1〜B7及び上記比較電池X、Yにおける保存後の抵抗値を調べたので、その結果を表3に示す。実験条件および測定方法については、保存期間を50日とした他は、前記第1実施例の実施例1と同様にして行った。尚、表3の括弧内は、比較電池Xの内部抵抗上昇量を100とした場合に、各電池の内部抵抗上昇量を指数で表したものである。
(Experiment 1)
Since the resistance values after storage in the present invention batteries A1, B1 to B7 and the comparative batteries X and Y were examined, the results are shown in Table 3. The experimental conditions and measurement method were the same as those in Example 1 of the first example except that the storage period was 50 days. The parentheses in Table 3 indicate the amount of increase in internal resistance of each battery as an index when the amount of increase in internal resistance of the comparative battery X is 100.

Figure 2010251288
Figure 2010251288

表3から明らかなように、2−VPとVCとを共に添加していない比較電池Xでは内部抵抗上昇量が1.64Ωである。また、VCのみを0.1体積%添加した比較電池Yでは内部抵抗上昇量が1.64Ωであり、上記比較電池Xと同等となっている。これに対して、2−VPのみを0.10体積%添加した本発明電池A1では内部抵抗上昇量が0.90Ωであり、上記比較電池Xと比べて内部抵抗上昇量が飛躍的に減少している(比較電池Xを100とした場合の指数〔以下、単に指数と称する〕は54.9)。更に、2−VPを0.10体積%添加し、且つVCを0.1体積%添加した本発明電池B1では内部抵抗上昇量が0.75Ωであり、上記比較電池Xと比べて内部抵抗上昇量が飛躍的に減少している(指数は45.7)。したがって、内部抵抗上昇を抑制するには2−VPを添加することが必須であり、特に、2−VPに加えてVCを添加するのが好ましいことがわかる。このように、2−VPとVCとを添加するのがより好ましいのは、両者を添加した場合には、正負両極の表面にリチウムイオン導電性に優れた良質な被膜が形成されるからである。   As is apparent from Table 3, in the comparative battery X in which neither 2-VP nor VC is added, the increase in internal resistance is 1.64Ω. Further, in the comparative battery Y to which only 0.1% by volume of VC is added, the increase in internal resistance is 1.64Ω, which is equivalent to the comparative battery X. On the other hand, in the battery A1 of the present invention to which only 2-VP is added at 0.10 volume%, the increase in internal resistance is 0.90Ω, and the increase in internal resistance is drastically reduced compared to the comparative battery X. (The index when the comparative battery X is 100 (hereinafter simply referred to as the index) is 54.9). Furthermore, in the battery B1 of the present invention to which 0.10% by volume of 2-VP was added and 0.1% by volume of VC was added, the increase in internal resistance was 0.75Ω, which was an increase in internal resistance compared to the comparative battery X. The amount has decreased dramatically (index is 45.7). Therefore, it is indispensable to add 2-VP in order to suppress the increase in internal resistance, and it is particularly preferable to add VC in addition to 2-VP. Thus, it is more preferable to add 2-VP and VC because, when both are added, a high-quality film excellent in lithium ion conductivity is formed on the surfaces of both positive and negative electrodes. .

また、VCの添加量については、VCの添加量が多くなるほど内部抵抗上昇量が減少していることが認められる(2−VPの添加量は全て0.10体積%で同じとなっているが、VCの添加量が異なる本発明電池A1、B1〜B3参照)。
更に、2−VPの添加量については、2−VPの添加量が多くなるほど内部抵抗上昇量が減少していることが認められる(VCは全て添加されていないが2−VPの添加量が異なる本発明電池A1、B4、B5、及び、VCの添加量は全て1.0体積%で同じとなっているが、2−VPの添加量が異なる本発明電池B3、B6、B7参照)。
Further, regarding the amount of VC added, it is recognized that the amount of increase in internal resistance decreases as the amount of VC added increases (although the amount of 2-VP added is the same at 0.10% by volume). Inventive batteries A1 and B1 to B3 with different amounts of VC.
Furthermore, with respect to the addition amount of 2-VP, it is recognized that the amount of increase in internal resistance decreases as the addition amount of 2-VP increases (VC is not added, but the addition amount of 2-VP is different. The addition amounts of the present invention batteries A1, B4, B5, and VC are all the same at 1.0% by volume, but the addition amount of 2-VP is different (see the present invention batteries B3, B6, and B7).

(実験2)
上記本発明電池A1、B3、B6、B7及び上記比較電池Xを下記の条件で放電して、低温放電時の放電容量を調べたので、その結果を表4に示す。
・放電条件
電池作製直後の各電池を、0℃にて電流値300mAで電池電圧2Vまで放電するという条件である。
(Experiment 2)
The invention batteries A1, B3, B6, B7 and the comparative battery X were discharged under the following conditions, and the discharge capacity at low temperature discharge was examined. The results are shown in Table 4.
-Discharge condition It is the conditions that each battery immediately after battery preparation is discharged to 0V at a current value of 300 mA to a battery voltage of 2V.

Figure 2010251288
Figure 2010251288

上記表4から明らかなように、2−VPを0.05体積%添加した本発明電池B6より、2−VPを0.10体積%添加した本発明電池B3の方が、放電容量が低下しており、更に、本発明電池B3より、2−VPを0.30体積%添加した本発明電池B7の方が、放電容量が低下していることが認められる。また、2−VPを添加していない比較電池Xより、2−VPを0.10体積%添加した本発明電池A1の方が、放電容量が低下していることが認められる。これは、2−VPの添加量が多くなると、生成する被膜が厚<なり過ぎることに起因するものと考えられる。   As is apparent from Table 4 above, the discharge capacity of the present invention battery B3 added with 0.10 vol% of 2-VP is lower than that of the present invention battery B6 added with 0.05 vol% of 2-VP. Furthermore, it can be seen that the discharge capacity of the present invention battery B7 to which 0.30% by volume of 2-VP is added is lower than that of the present invention battery B3. Moreover, it is recognized that the discharge capacity of the battery A1 of the present invention to which 0.10% by volume of 2-VP is added is lower than that of the comparative battery X to which 2-VP is not added. This is considered to be due to the fact that when the amount of 2-VP added increases, the resulting coating becomes too thick.

また、VCを添加していない本発明電池A1より、VCを1.0体積%の本発明電池B3の方が、放電容量が低下していることが認められる。これは、VCの添加量が多くなると、生成する被膜が厚<なり過ぎることに起因するものと考えられる。   Moreover, it is recognized that the discharge capacity of the present invention battery B3 having 1.0% by volume VC is lower than that of the present invention battery A1 to which VC is not added. This is considered to be due to the fact that when the amount of VC added increases, the resulting coating becomes too thick.

上記第1実施例の実験1、実験2の結果、及び、上記第1実施例の実験1、実験2の結果を考慮しつつ本発明者らが鋭意検討したところ、VCの添加量は、0.1体積%以上2.0体積%以下、特に、0.5体積%以上1.0体積%以下に規制することが望ましいく、また、2−VPの添加量は、0.01体積%以上1.5体積%以下、特に、0.05体積%以上0.10体積%以下に規制することが望ましいことがわかった。尚、上記VCや2−VPの添加量は、使用環境(電池が低温或いは高負荷条件下で使用されるか否か、また、使用される場合にはその頻度)等を考慮して規制するのが好ましい。   When the present inventors diligently studied in consideration of the results of Experiment 1 and Experiment 2 of the first embodiment and the results of Experiment 1 and Experiment 2 of the first embodiment, the amount of VC added was 0. It is desirable to regulate to 1 volume% or more and 2.0 volume% or less, especially 0.5 volume% or more and 1.0 volume% or less, and the addition amount of 2-VP is 0.01 volume% or more. It has been found that it is desirable to regulate the amount to 1.5% by volume or less, particularly 0.05% by volume or more and 0.10% by volume or less. The amount of VC or 2-VP added is regulated in consideration of the usage environment (whether the battery is used under low temperature or high load conditions, and the frequency when used). Is preferred.

本発明は、例えばデジタルカメラ、メモリーバックアップ用電源、火災警報器用電源等に適用することができる。   The present invention can be applied to, for example, a digital camera, a memory backup power source, a fire alarm power source, and the like.

1:正極
2:負極
3:セパレータ
4:負極缶
5:巻取電極体
10:正極端子
1: Positive electrode 2: Negative electrode 3: Separator 4: Negative electrode can 5: Winding electrode body 10: Positive electrode terminal

Claims (7)

二酸化マンガンを主活物質とする正極と、リチウム又はリチウム合金を含む負極と、溶媒と電解質塩とを含む非水電解液とを備えた非水電解質一次電池において、
上記非水電解液にはビニルピリジンが含まれていることを特徴とする非水電解質一次電池。
In a non-aqueous electrolyte primary battery comprising a positive electrode comprising manganese dioxide as a main active material, a negative electrode containing lithium or a lithium alloy, and a non-aqueous electrolyte solution containing a solvent and an electrolyte salt,
A non-aqueous electrolyte primary battery, wherein the non-aqueous electrolyte contains vinylpyridine.
上記ビニルピリジンが2−ビニルピリジンである、請求項1に記載の非水電解質一次電池。   The non-aqueous electrolyte primary battery according to claim 1, wherein the vinyl pyridine is 2-vinyl pyridine. 上記溶媒の総量に対する上記ビニルピリジンの割合が、0.01体積%以上1.5体積%以下に規制される、請求項1又は2に記載の非水電解質一次電池。   The nonaqueous electrolyte primary battery according to claim 1 or 2, wherein a ratio of the vinyl pyridine to a total amount of the solvent is regulated to 0.01 volume% or more and 1.5 volume% or less. 上記非水電解液にはビニレンカーボネートが含まれている、請求項1〜3の何れか1項に記載の非水電解質一次電池。   The nonaqueous electrolyte primary battery according to any one of claims 1 to 3, wherein the nonaqueous electrolyte contains vinylene carbonate. 上記溶媒の総量に対する上記ビニレンカーボネートの割合が、0.1体積%以上2.0体積%以下に規制される、請求項4に記載の非水電解質一次電池。   The non-aqueous electrolyte primary battery according to claim 4, wherein a ratio of the vinylene carbonate to the total amount of the solvent is regulated to 0.1 volume% or more and 2.0 volume% or less. 上記二酸化マンガンには酸化ホウ素が含まれている、請求項1〜5の何れか1項に記載の非水電解質一次電池。   The nonaqueous electrolyte primary battery according to any one of claims 1 to 5, wherein the manganese dioxide contains boron oxide. 上記酸化ホウ素と上記二酸化マンガンとの総量に対する酸化ホウ素の割合が、0.1質量%以上1.0質量%以下に規制される、請求項6に記載の非水電解質一次電池。   The nonaqueous electrolyte primary battery according to claim 6, wherein a ratio of boron oxide to a total amount of the boron oxide and the manganese dioxide is regulated to 0.1% by mass or more and 1.0% by mass or less.
JP2009220144A 2009-03-27 2009-09-25 Nonaqueous electrolyte primary battery Active JP5449944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009220144A JP5449944B2 (en) 2009-03-27 2009-09-25 Nonaqueous electrolyte primary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009078849 2009-03-27
JP2009078849 2009-03-27
JP2009220144A JP5449944B2 (en) 2009-03-27 2009-09-25 Nonaqueous electrolyte primary battery

Publications (2)

Publication Number Publication Date
JP2010251288A true JP2010251288A (en) 2010-11-04
JP5449944B2 JP5449944B2 (en) 2014-03-19

Family

ID=43313381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009220144A Active JP5449944B2 (en) 2009-03-27 2009-09-25 Nonaqueous electrolyte primary battery

Country Status (1)

Country Link
JP (1) JP5449944B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283157A (en) * 1992-09-14 1994-10-07 Canon Inc Secondary battery
JPH087924A (en) * 1994-06-16 1996-01-12 Yuasa Corp Cell employing ion conductive highpolymer compound
JPH09139200A (en) * 1995-11-16 1997-05-27 Toshiba Battery Co Ltd Manufacture of non-aqueous electrolyte battery and positive pole component member for non-aqueous electrolyte battery
JP2005322417A (en) * 2004-05-06 2005-11-17 Yuasa Corp Fire retardant for nonaqueous electrolyte, its using method, nonaqueous electrolyte, and nonaqueous electrolyte cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283157A (en) * 1992-09-14 1994-10-07 Canon Inc Secondary battery
JPH087924A (en) * 1994-06-16 1996-01-12 Yuasa Corp Cell employing ion conductive highpolymer compound
JPH09139200A (en) * 1995-11-16 1997-05-27 Toshiba Battery Co Ltd Manufacture of non-aqueous electrolyte battery and positive pole component member for non-aqueous electrolyte battery
JP2005322417A (en) * 2004-05-06 2005-11-17 Yuasa Corp Fire retardant for nonaqueous electrolyte, its using method, nonaqueous electrolyte, and nonaqueous electrolyte cell

Also Published As

Publication number Publication date
JP5449944B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP4794893B2 (en) Non-aqueous electrolyte secondary battery
CN101964420B (en) Positive electrode active material, positive electrode, and nonaqueous electrolyte cell
US6153338A (en) Nonaqueous organic electrolytes for low temperature discharge of rechargeable electrochemical cells
CN106558733A (en) Rechargeable nonaqueous electrolytic battery
JP4798964B2 (en) Nonaqueous electrolyte secondary battery
WO2005076391A1 (en) Electrode additives coated with electro conductive material and lithium secondary comprising the same
JP2006066341A (en) Nonaqueous electrolyte secondary cell
JP2007265668A (en) Cathode for nonaqueous electrolyte secondary battery and its manufacturing method
WO2015136922A1 (en) Non-aqueous electrolyte secondary cell
JP2008147153A (en) Lithium secondary battery
US10862108B2 (en) Positive electrode for a lithium electrochemical cell
WO2019167581A1 (en) Non-aqueous electrolyte secondary battery
JP2009211822A (en) Nonaqueous electrolyte secondary battery
WO2007148888A1 (en) Electrolyte for improving life characteristics at high temperature and lithium secondary battery comprising the same
JP2011181427A (en) Lithium secondary battery
JP2007250440A (en) Nonaqueous electrolyte secondary battery
US20110250506A1 (en) Non-aqueous electrolyte secondary battery
JP2009110886A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP3177299B2 (en) Non-aqueous electrolyte secondary battery
JP2010533960A (en) Lithium battery
JP5789744B2 (en) Lithium primary battery
JP5405238B2 (en) Nonaqueous electrolyte primary battery
JP4795019B2 (en) Nonaqueous electrolyte secondary battery
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP7079687B2 (en) Active material layer, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131225

R150 Certificate of patent or registration of utility model

Ref document number: 5449944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350