JPH09137740A - Exhaust gas purifying device of internal combustion engine - Google Patents

Exhaust gas purifying device of internal combustion engine

Info

Publication number
JPH09137740A
JPH09137740A JP7295034A JP29503495A JPH09137740A JP H09137740 A JPH09137740 A JP H09137740A JP 7295034 A JP7295034 A JP 7295034A JP 29503495 A JP29503495 A JP 29503495A JP H09137740 A JPH09137740 A JP H09137740A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
supercharger
control
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7295034A
Other languages
Japanese (ja)
Inventor
Taiji Isobe
大治 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP7295034A priority Critical patent/JPH09137740A/en
Priority to US08/706,692 priority patent/US5845492A/en
Publication of JPH09137740A publication Critical patent/JPH09137740A/en
Priority to US09/168,321 priority patent/US5974792A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/03EGR systems specially adapted for supercharged engines with a single mechanically or electrically driven intake charge compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/39Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with two or more EGR valves disposed in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/71Multi-way valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To warm a catalyser by doubly using an exhaust gas circulating passage for a secondary air passage. SOLUTION: A part of supercharging air is made to flow backward in a channel of a passage 36 → a three-way valve 35 → an EGR passage 33 →an exhaust gas circulating port 31 by switching the three-way valve 35 over to the side of a surge tank 19 while a supercharger 18 is driven and it is supplied as secondary air to the upstream side of a catalyser 29 of an exhaust pipe 28 at the time of catalyser warming control. Thereafter, CO and HC in exhaust gas are increased by increasing and correcting fuel injection quantity, they are reacted with oxygen in secondary air by the catalyser 29, and the catalyser 29 is efficiently warmed by its heat of reaction. At the time of supercharging, the supercharger 18 is driven by closing a by-pass opening and closing valve 21, and exhaust gas circulating control is carried out by switching the three-way valve 35 over to the upstream side (passage 37 side) of the supercharger 18. At the time of non-supercharging, exhaust gas circulating control is carried out by switching the three-way valve 35 to the side of the Surge tank 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、吸気系に設けられ
た過給機を備えた内燃機関の排出ガス浄化装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine equipped with a supercharger provided in an intake system.

【0002】[0002]

【従来の技術】一般に、車両に搭載されている排出ガス
浄化用の三元触媒は、排出ガス中の有害成分(HC,C
O,NOx)を高温状態下で酸化/還元反応させて無害
化するものであり、その排出ガス浄化能力を有効に発揮
させるためには、触媒の温度を活性温度(一般的には3
00〜350℃)まで上昇させる必要がある。従って、
エンジン始動後に触媒温度が活性温度に上昇するまで
は、排出ガス浄化能力が低く、排出ガス中の有害成分の
排出量が多くなり、エミッションが悪化する。
2. Description of the Related Art Generally, a three-way catalyst for purifying exhaust gas mounted on a vehicle has a harmful component (HC, C) in the exhaust gas.
O, NOx) is made to be harmless by oxidation / reduction reaction under high temperature conditions, and in order to effectively exert its exhaust gas purification ability, the temperature of the catalyst is set to an activation temperature (generally 3
It is necessary to raise the temperature to 100 to 350 ° C. Therefore,
Until the catalyst temperature rises to the activation temperature after starting the engine, the exhaust gas purification capacity is low, the amount of harmful components in the exhaust gas is increased, and the emission is deteriorated.

【0003】この問題を解決するために、近年、エンジ
ン始動後に触媒を早期に活性温度にまで暖機するため
に、例えば特開平5−171973号公報に示すよう
に、触媒上流側の排気管に外部から二次空気(大気)を
導入しつつ、燃料噴射量をリッチ側に制御して排出ガス
中のCOを増加させ、これを触媒内で二次空気中の酸素
と反応させてその反応熱で触媒を暖機するようにしたも
のがある。しかし、エンジンから排出ガスが吐出される
排気管内の排気圧は大気圧よりも高くなるため、排気管
内に外部から多量の二次空気を導入するには、二次空気
を排気管内に圧送するエアポンプと、このエアポンプの
停止中に二次空気の流路を遮断する電磁弁とからなる二
次空気供給装置を必要とし、構成が複雑化してコスト高
になるという欠点がある。
In order to solve this problem, in recent years, in order to warm up the catalyst to the activation temperature early after the engine is started, for example, as shown in JP-A-5-171973, an exhaust pipe on the upstream side of the catalyst is provided. While introducing secondary air (atmosphere) from the outside, the fuel injection amount is controlled to the rich side to increase CO in the exhaust gas, and this reacts with oxygen in the secondary air in the catalyst to generate the reaction heat. There is one that warms up the catalyst. However, since the exhaust pressure in the exhaust pipe, where the exhaust gas is discharged from the engine, becomes higher than atmospheric pressure, in order to introduce a large amount of secondary air into the exhaust pipe from the outside, an air pump that pumps the secondary air into the exhaust pipe is used. In addition, the secondary air supply device including the electromagnetic valve that shuts off the flow path of the secondary air while the air pump is stopped is required, and there is a disadvantage that the configuration becomes complicated and the cost becomes high.

【0004】[0004]

【発明が解決しようとする課題】ところで、特開平5−
86847号公報に示すように、機械駆動型の過給機
(いわゆるスーパーチャージャ)を備えたエンジンにお
いて、排出ガス還流通路を二次空気通路に兼用し、設定
負荷以下の運転領域で、吸気圧が排気圧より高いとき
に、吸入空気の一部を排出ガス還流通路を逆流させて排
気管へ供給すると共に、排出ガスのNOxの低減を狙っ
て空燃比をリッチ側に制御することで、排出ガス浄化性
能を向上させるようにしたものがある。
SUMMARY OF THE INVENTION Incidentally, Japanese Patent Application Laid-Open No.
As disclosed in Japanese Patent No. 86847, in an engine equipped with a mechanical drive type supercharger (so-called supercharger), the exhaust gas recirculation passage is also used as a secondary air passage, and the intake pressure is reduced in an operating region below a set load. When the intake air pressure is higher than the exhaust pressure, a part of the intake air is made to flow backward in the exhaust gas recirculation passage to be supplied to the exhaust pipe, and the air-fuel ratio is controlled to the rich side aiming at reduction of NOx in the exhaust gas, Some have been designed to improve the purification performance.

【0005】この公知例は、排出ガス還流通路を二次空
気通路に兼用することで、従来の二次空気供給装置を必
要としない極めて合理的な構成となっているが、排出ガ
ス還流通路を二次空気通路として利用する領域が設定負
荷以下で吸気圧が排気圧より高い運転領域であり、触媒
の暖機具合を考慮した制御は全く行われない。要する
に、この公知例は、エンジン高温時に発生し易いNOx
の低減を狙って空燃比をリッチ側に制御して燃焼温度を
低下させると共に、リッチ側に制御することで発生する
CO、HCを触媒で二次空気中の酸素と反応させて排出
ガスを浄化するものである。従って、この公知例の制御
では、エンジン始動直後の未暖機時に必要とされる触媒
早期暖機を効果的に行うことは不可能である。
In this known example, the exhaust gas recirculation passage is also used as the secondary air passage, so that the conventional secondary air supply device is not required, but the exhaust gas recirculation passage is formed. The region used as the secondary air passage is the operating region where the intake pressure is lower than the set load and the exhaust pressure is higher than the exhaust pressure, and no control is performed in consideration of the warm-up condition of the catalyst. In short, this known example is likely to generate NOx when the engine temperature is high.
The exhaust gas is purified by controlling the air-fuel ratio to the rich side to reduce the combustion temperature and reducing the combustion temperature, and reacting CO and HC generated by the rich side with oxygen in the secondary air with a catalyst. To do. Therefore, with the control of this known example, it is impossible to effectively perform the catalyst early warm-up required when the engine is not warmed up immediately after the engine is started.

【0006】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、過給機による過給エ
アを利用して触媒暖機を効率良く行うことができる内燃
機関の排出ガス浄化装置を提供することにある。
The present invention has been made in consideration of such circumstances, and therefore an object thereof is to discharge an internal combustion engine capable of efficiently warming up a catalyst by utilizing supercharged air from the supercharger. It is to provide a gas purifier.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1の内燃機関の排出ガス浄化装置
は、触媒の暖機具合を触媒暖機判定手段により判定し、
触媒が未暖機状態と判定されているときには、触媒暖機
制御手段は、過給機の駆動中に排出ガス還流通路中の排
出ガス還流制御弁を開放し、過給機から吐出された過給
エアの一部を排出ガス還流通路を逆流させて排気系へ供
給すると共に、内燃機関への燃料噴射量をリッチ側に制
御し、排出ガス中のCO、HCを増加させて、それらを
触媒で二次空気中の酸素と反応させ、その反応熱で触媒
を効率良く暖機する。これにより、排出ガス還流通路を
二次空気通路に兼用して触媒暖機を効率良く行うことが
できる。
In order to achieve the above object, the exhaust gas purifying apparatus for an internal combustion engine according to claim 1 of the present invention determines the warm-up condition of the catalyst by the catalyst warm-up judging means,
When it is determined that the catalyst is not warmed up, the catalyst warm-up control means opens the exhaust gas recirculation control valve in the exhaust gas recirculation passage while the supercharger is being driven, and the catalyst discharged from the supercharger is opened. A part of the supply air is made to flow backward in the exhaust gas recirculation passage to be supplied to the exhaust system, and the amount of fuel injection to the internal combustion engine is controlled to the rich side to increase CO and HC in the exhaust gas to catalyze them. To react with oxygen in the secondary air, and heat the reaction to warm up the catalyst efficiently. As a result, the exhaust gas recirculation passage is also used as the secondary air passage, and the catalyst can be warmed up efficiently.

【0008】更に、請求項2では、過給機の駆動/停止
を制御する過給機制御手段は、触媒暖機判定手段により
触媒が未暖機状態と判定されたときに過給領域を拡大す
る。これにより、触媒が未暖機状態のときの触媒暖機制
御領域を拡大でき、触媒暖機能力を更に向上できる。
尚、過給領域を拡大する際に、内燃機関に加わる過給機
駆動負荷に対抗して機関回転数を上昇させるようにして
も良い。
Further, in claim 2, the supercharger control means for controlling the drive / stop of the supercharger expands the supercharging region when the catalyst warm-up determination means determines that the catalyst is not warmed up. To do. As a result, the catalyst warm-up control region can be expanded when the catalyst is not warmed up, and the catalyst warm-up functioning power can be further improved.
When expanding the supercharging region, the engine speed may be increased against the supercharger drive load applied to the internal combustion engine.

【0009】また、請求項3では、排出ガス還流通路を
過給機の上流側と下流側とに切り替える通路切替手段を
設け、触媒暖機制御時及び非過給時には切替制御手段に
よって前記通路切替手段を過給機の下流側に切り替え
る。これにより、触媒暖機制御時は、過給圧(過給機の
吐出圧)を排出ガス還流通路に有効に作用させて排気系
に供給する二次空気の流れを円滑にする。また、非過給
時には、排気系から還流してくる排出ガス(EGRガ
ス)を過給機の下流側に供給することで、排出ガスの還
流を円滑にする。一方、触媒暖機制御時以外の過給時に
は、前記通路切替手段を過給機の上流側に切り替えるこ
とで、過給機の吸入負圧を排出ガス還流通路に有効に作
用させて排出ガスの還流を促進し、排出ガス還流制御に
よる排出ガスの浄化率を高める。
Further, according to a third aspect of the present invention, passage switching means for switching the exhaust gas recirculation passage between the upstream side and the downstream side of the supercharger is provided, and the passage switching means is used by the switching control means during catalyst warm-up control and non-supercharging. Switch the means downstream of the supercharger. As a result, during catalyst warm-up control, the supercharging pressure (discharge pressure of the supercharger) is effectively applied to the exhaust gas recirculation passage to smooth the flow of secondary air supplied to the exhaust system. Further, at the time of non-supercharging, the exhaust gas (EGR gas) that recirculates from the exhaust system is supplied to the downstream side of the supercharger so that the exhaust gas recirculates smoothly. On the other hand, at the time of supercharging other than the catalyst warm-up control, the passage switching means is switched to the upstream side of the supercharger so that the suction negative pressure of the supercharger is effectively acted on the exhaust gas recirculation passage and the exhaust gas recirculation passage is discharged. The recirculation is promoted and the purification rate of the exhaust gas by the exhaust gas recirculation control is increased.

【0010】また、請求項4では、機関始動後の経過時
間を計時手段により計時し、触媒暖機判定手段は、機関
始動後の経過時間によって触媒の暖機具合を判定する。
つまり、機関始動後の時間の経過に伴って、触媒が暖機
され、触媒温度が上昇するので、機関始動後の経過時間
によって触媒の暖機具合を判定すれば、機関始動後の経
過時間により間接的に触媒の温度上昇を推定した触媒暖
機制御が可能となる。
According to the present invention, the elapsed time after the engine is started is timed by the time measuring means, and the catalyst warm-up judging means judges the warm-up condition of the catalyst based on the elapsed time after the engine starts.
In other words, the catalyst warms up and the catalyst temperature rises with the passage of time after the engine is started.Therefore, if the warm-up condition of the catalyst is judged by the elapsed time after the engine is started, it is determined by the elapsed time after the engine is started. The catalyst warm-up control that indirectly estimates the temperature rise of the catalyst becomes possible.

【0011】また、請求項5では、触媒の温度又は触媒
温度を反映した温度情報を温度センサにより検出し、触
媒暖機判定手段は、前記温度センサにより直接又は間接
的に検出した触媒温度によって触媒の暖機具合を判定す
る。
Further, in the present invention, the temperature of the catalyst or the temperature information reflecting the catalyst temperature is detected by the temperature sensor, and the catalyst warm-up determination means is determined by the catalyst temperature detected directly or indirectly by the temperature sensor. Determine the warm-up condition of.

【0012】上述した請求項4の始動後の経過時間によ
る制御では、始動時の触媒温度によって触媒暖機効果が
影響を受けてしまうが、請求項5では、触媒温度を直接
又は間接的に検出して、触媒温度によって触媒暖機を制
御するので、触媒暖機効果が始動時の触媒温度の影響を
受けなくなり、安定した触媒暖機効果が得られる。
In the above-mentioned control according to the elapsed time after the start-up of claim 4, the catalyst warm-up effect is affected by the catalyst temperature at the start-up, but in claim 5, the catalyst temperature is detected directly or indirectly. Since the catalyst warm-up is controlled by the catalyst temperature, the catalyst warm-up effect is not affected by the catalyst temperature at the time of starting, and a stable catalyst warm-up effect can be obtained.

【0013】また、請求項6では、機械駆動型の過給機
と並列に設けられたバイパス吸気路と、前記過給機の停
止中に前記バイパス吸気路を開放して吸入空気を該バイ
パス吸気路を通して内燃機関に供給するバイパス開閉弁
と、排出ガス還流通路を前記過給機の上流側と下流側と
に切り替える通路切替手段とを備え、触媒暖機制御時
は、前記バイパス開閉弁を閉鎖して前記過給機を駆動す
ると共に前記通路切替手段を前記過給機の下流側に切り
替えて前記排出ガス還流制御弁を開放し、且つ内燃機関
への燃料噴射量をリッチ側に制御し、触媒暖機制御時以
外の過給時は、前記バイパス開閉弁を閉鎖して前記過給
機を駆動すると共に前記通路切替手段を前記過給機の上
流側に切り替えて排出ガス還流制御を行い、非過給時
は、前記過給機を停止して前記バイパス開閉弁を開放す
ると共に前記通路切替手段を前記過給機の下流側に切り
替えて排出ガス還流制御を行う。これにより、排出ガス
還流通路を利用して、触媒暖機制御時の二次空気の排
気系への供給、過給時の排出ガス還流制御、非過給
時の排出ガス還流制御の3つの制御モードを適宜切り替
えて円滑に行うことができる。
Further, according to a sixth aspect of the present invention, the bypass intake passage is provided in parallel with the mechanical drive type supercharger, and the bypass intake passage is opened while the supercharger is stopped so that the intake air is taken into the bypass intake air. A bypass opening / closing valve for supplying the internal combustion engine through a passage and a passage switching means for switching the exhaust gas recirculation passage between the upstream side and the downstream side of the supercharger, and the bypass opening / closing valve is closed during catalyst warm-up control. And driving the supercharger and switching the passage switching means to the downstream side of the supercharger to open the exhaust gas recirculation control valve, and control the fuel injection amount to the internal combustion engine to the rich side, During supercharging other than catalyst warm-up control, the bypass opening / closing valve is closed to drive the supercharger, and the passage switching means is switched to the upstream side of the supercharger to perform exhaust gas recirculation control, When not supercharged, stop the supercharger To discharge gas recirculation control by switching the passage switching means on the downstream side of the supercharger with opening the bypass opening and closing valve Te. Thus, by utilizing the exhaust gas recirculation passage, there are three controls: supply of secondary air to the exhaust system during catalyst warm-up control, exhaust gas recirculation control during supercharging, and exhaust gas recirculation control during non-supercharging. The mode can be appropriately changed to smoothly perform the operation.

【0014】また、請求項7では、触媒暖機判定手段に
より触媒が未暖機状態と判定されているときには、過給
機の駆動中に流量制御弁を開放して過給エアの一部を連
通路を介して触媒の上流へ供給するとともに内燃機関の
燃料噴射量をリッチ側に制御する。これにより、排出ガ
ス中のCO,HCの量を増加させて、それらを触媒で二
次空気中の酸素と反応させ、その反応熱で触媒を効率良
く暖機することができる。
Further, according to the present invention, when the catalyst warm-up determination means determines that the catalyst is not warmed up, the flow control valve is opened during driving of the supercharger so that a part of the supercharged air is discharged. The fuel is supplied to the upstream side of the catalyst through the communication passage and the fuel injection amount of the internal combustion engine is controlled to the rich side. As a result, the amounts of CO and HC in the exhaust gas can be increased, and these can be reacted with oxygen in the secondary air by the catalyst, and the heat of reaction can efficiently warm up the catalyst.

【0015】更に、請求項8では、暖機具合が排出ガス
浄化を促進させる下限温度未満のとき、触媒暖機制御手
段による制御を禁止する。つまり、触媒内でHC,CO
が酸素と反応し始める温度になってから触媒暖機制御を
実行するため、更に効率良く触媒を暖機することができ
る。
Further, in the eighth aspect, when the warm-up condition is lower than the lower limit temperature for promoting exhaust gas purification, the control by the catalyst warm-up control means is prohibited. That is, HC, CO in the catalyst
Since the catalyst warm-up control is executed after the temperature reaches the temperature at which the catalyst starts to react with oxygen, the catalyst can be warmed up more efficiently.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態の第1
実施例を図1乃至図14に基づいて説明する。まず、図
1に基づいてエンジン制御システム全体の概略構成を説
明する。内燃機関であるエンジン11の吸気管12の最
上流部にはエアクリーナ13が設けられ、このエアクリ
ーナ13には吸入空気温度THAを検出する吸気温セン
サ14が取り付けられている。このエアクリーナ13の
下流側には、吸入空気量QAを検出する吸入量センサ1
6と、スロットルバルブ16と、スロットル開度THを
検出するスロットル開度センサ17とが設けられてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION The first embodiment of the present invention will be described below.
An embodiment will be described with reference to FIGS. First, the schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of an intake pipe 12 of an engine 11 which is an internal combustion engine, and an intake air temperature sensor 14 that detects an intake air temperature THA is attached to the air cleaner 13. An intake air amount sensor 1 for detecting the intake air amount QA is provided downstream of the air cleaner 13.
6, a throttle valve 16, and a throttle opening sensor 17 for detecting the throttle opening TH.

【0017】また、吸気管12の下流側には機械駆動型
の過給機(以下「スーパーチャージャ」という)18が
設けられ、過給時にはこのスーパーチャージャ18から
吐出される圧縮空気がサージタンク19と吸気マニホー
ルド20を介してエンジン11の各気筒に充填される。
通常、このスーパーチャージャ18は、エンジン11か
らベルト伝達機構32を介して伝達されるエンジン回転
力によって駆動され、その駆動/停止がエンジン負荷に
応じてスーパーチャージャ18内の電磁クラッチ(以下
「S/Cクラッチ」という)によって切り替えられる。
このスーパーチャージャ18が駆動される過給領域は、
エンジン負荷(エンジン回転数NEや吸入空気量QA
等)が所定以上の運転領域であり、非過給領域であるア
イドル運転時、軽負荷時には上記S/Cクラッチが開放
されてスーパーチャージャ18の駆動が停止される。そ
して、非過給領域での吸気を確保するために、スーパー
チャージャ18と並列にバイパス吸気路20が設けら
れ、このバイパス吸気路20の途中には、スーパーチャ
ージャ18の停止中に開放されるバイパス開閉弁21
(電磁弁)が設けられている。
A mechanical drive type supercharger (hereinafter referred to as "supercharger") 18 is provided on the downstream side of the intake pipe 12, and the compressed air discharged from the supercharger 18 at the time of supercharging is surge tank 19. And each cylinder of the engine 11 is filled through the intake manifold 20.
Normally, this supercharger 18 is driven by the engine rotational force transmitted from the engine 11 via the belt transmission mechanism 32, and its driving / stopping depends on the engine load, and the electromagnetic clutch (hereinafter referred to as “S / It is switched by "C clutch".
The supercharging area where this supercharger 18 is driven is
Engine load (engine speed NE and intake air amount QA
Is a predetermined operation range or more, and during idle operation, which is a non-supercharging range, or when the load is light, the S / C clutch is released and the drive of the supercharger 18 is stopped. Then, in order to secure intake air in the non-supercharging region, a bypass intake passage 20 is provided in parallel with the supercharger 18, and a bypass opened in the middle of the bypass intake passage 20 while the supercharger 18 is stopped. On-off valve 21
(Solenoid valve) is provided.

【0018】各気筒の吸気マニホールド20には、それ
ぞれ燃料噴射弁22が取り付けられている。また、エン
ジン11には各気筒毎に点火プラグ23が取り付けら
れ、各点火プラグ23には、点火回路(図示せず)で発
生した高圧電流がディストリビュータ24を介して供給
される。このディストリビュータ24内には、エンジン
回転数NEに応じた周波数のパルス信号を出力する回転
角センサ25と、特定気筒を判別するための気筒判別信
号Gを出力する気筒判別センサ26とが設けられてい
る。また、エンジン11にはエンジン冷却水温THWを
検出する水温センサ27が取り付けられている。
A fuel injection valve 22 is attached to the intake manifold 20 of each cylinder. An ignition plug 23 is attached to each cylinder of the engine 11, and a high voltage current generated in an ignition circuit (not shown) is supplied to each ignition plug 23 via a distributor 24. The distributor 24 is provided with a rotation angle sensor 25 that outputs a pulse signal having a frequency corresponding to the engine speed NE and a cylinder discrimination sensor 26 that outputs a cylinder discrimination signal G for discriminating a specific cylinder. There is. A water temperature sensor 27 that detects the engine cooling water temperature THW is attached to the engine 11.

【0019】一方、エンジン11の排気管28の途中に
は、排出ガス中の有害成分(CO,HC,NOx等)を
低減させる三元触媒等の触媒29が設けられ、この触媒
29の上流側に、排出ガスの空燃比λに応じたリニアな
空燃比信号を出力する空燃比センサ30が設けられてい
る。また、触媒29の上流側には、排出ガス還流口31
が形成され、この排出ガス還流口31と吸気系との間が
排出ガス還流通路(以下「EGR通路」という)33で
接続され、このEGR通路33の途中には、電磁弁から
なる排出ガス還流制御弁(以下「EGR弁」という)3
4が設けられている。
On the other hand, in the middle of the exhaust pipe 28 of the engine 11, a catalyst 29 such as a three-way catalyst for reducing harmful components (CO, HC, NOx, etc.) in the exhaust gas is provided, and the upstream side of this catalyst 29. In addition, an air-fuel ratio sensor 30 that outputs a linear air-fuel ratio signal according to the air-fuel ratio λ of the exhaust gas is provided. Further, the exhaust gas recirculation port 31 is provided on the upstream side of the catalyst 29.
Is formed, and the exhaust gas recirculation port 31 and the intake system are connected by an exhaust gas recirculation passage (hereinafter referred to as “EGR passage”) 33. In the middle of the EGR passage 33, an exhaust gas recirculation valve including an electromagnetic valve is formed. Control valve (hereinafter referred to as "EGR valve") 3
4 are provided.

【0020】更に、EGR通路33の吸気系側には、通
路切替手段である電磁式の三方弁35が設けられ、この
三方弁35の1つのポートaが通路36を介してサージ
タンク19に接続され、他のポートbが通路37を介し
てスーパーチャージャ18の上流側の吸気管12に接続
されている。これにより、三方弁35を切り替えること
で、EGR通路33の吸気系側の連通先をサージタンク
19側(スーパーチャージャ18の下流側)とスーパー
チャージャ18の上流側とに切り替えることができるよ
うになっている。
Further, on the intake system side of the EGR passage 33, an electromagnetic three-way valve 35, which is a passage switching means, is provided, and one port a of the three-way valve 35 is connected to the surge tank 19 via a passage 36. The other port b is connected to the intake pipe 12 on the upstream side of the supercharger 18 via the passage 37. Thus, by switching the three-way valve 35, the communication destination on the intake system side of the EGR passage 33 can be switched between the surge tank 19 side (downstream side of the supercharger 18) and the upstream side of the supercharger 18. ing.

【0021】前述した水温センサ27等の各種のセンサ
の出力は電子制御回路38内に入力ポート39を介して
読み込まれる。この電子制御回路38は、CPU40、
ROM41,RAM42,バックアップRAM43等を
備えたマイクロコンピュータを主体にして構成され、R
OM41に記憶されている各種のエンジン制御プログラ
ムに従って燃料噴射量や点火時期を演算し、その演算結
果に応じて噴射信号TAUや点火信号を出力ポート44
から燃料噴射弁22や点火回路(図示せず)に出力して
エンジン11の運転を制御する。更に、電子制御回路3
8は、後述するようにエンジン負荷と触媒29の暖機具
合応じて過給領域、非過給領域、触媒暖機制御領域の3
つの制御領域に区分し、各制御領域毎にスーパーチャー
ジャ18、バイパス開閉弁21、三方弁35、EGR弁
34を次のように制御する。
The outputs of various sensors such as the water temperature sensor 27 described above are read in the electronic control circuit 38 through the input port 39. The electronic control circuit 38 includes a CPU 40,
It is mainly composed of a microcomputer including a ROM 41, a RAM 42, a backup RAM 43, and the like.
The fuel injection amount and the ignition timing are calculated according to various engine control programs stored in the OM 41, and the injection signal TAU and the ignition signal are output according to the calculation result.
From the fuel injection valve 22 or an ignition circuit (not shown) to control the operation of the engine 11. Further, the electronic control circuit 3
8 is a supercharging region, a non-supercharging region, and a catalyst warm-up control region depending on the engine load and the warming-up condition of the catalyst 29, as will be described later.
It is divided into two control regions, and the supercharger 18, the bypass opening / closing valve 21, the three-way valve 35, and the EGR valve 34 are controlled in each control region as follows.

【0022】(1)過給領域(触媒暖機制御領域を除
く) 過給領域は、エンジン負荷(例えばエンジン回転数N
E、吸入空気量QA)が所定以上となる運転領域であ
り、例えばエンジン回転数NE、吸入空気量QAをパラ
メータとする二次元マップにより過給領域と非過給領域
とが区分される。過給領域では、バイパス開閉弁21を
閉鎖してスーパーチャージャ18を駆動し、吸入空気を
圧縮して各気筒に送り込むと共に、三方弁35をスーパ
ーチャージャ18の上流側(通路37側)に切り替え
て、スーパーチャージャ18の吸入負圧をEGR通路3
3に作用させながらEGR弁34の開度を制御して排出
ガス還流制御を行う。この場合には、エンジン11から
排気管28内に吐出された排出ガスの一部が排出ガス還
流口31→EGR通路33→三方弁35→通路37→吸
気管12→スーパーチャージャ18の経路で還流する。
(1) Supercharging region (excluding catalyst warm-up control region) The supercharging region is the engine load (for example, engine speed N).
E, intake air amount QA) is a predetermined operating range or more, and for example, a supercharging region and a non-supercharging region are classified by a two-dimensional map having the engine speed NE and the intake air amount QA as parameters. In the supercharging region, the bypass opening / closing valve 21 is closed to drive the supercharger 18, compresses the intake air and sends it to each cylinder, and the three-way valve 35 is switched to the upstream side (passage 37 side) of the supercharger 18. , Suction negative pressure of the supercharger 18 to the EGR passage 3
The exhaust gas recirculation control is performed by controlling the opening degree of the EGR valve 34 while acting on No. 3. In this case, a part of the exhaust gas discharged from the engine 11 into the exhaust pipe 28 is recirculated in the route of the exhaust gas recirculation port 31 → EGR passage 33 → three-way valve 35 → passage 37 → intake pipe 12 → supercharger 18. To do.

【0023】(2)非過給領域 非過給領域となるアイドル運転時、軽負荷時には、エン
ジントルクが小さいため、スーパーチャージャ18を停
止してバイパス開閉弁21を開放し、吸気管12内を流
れる吸入空気をバイパス吸気路20を通してサージタン
ク19に流入させると共に、三方弁35をサージタンク
19側(スーパーチャージャ18の下流側)に切り替え
て、サージタンク19の吸入負圧をEGR通路33に作
用させながらEGR弁34の開度を制御して排出ガス還
流制御を行う。この場合には、排出ガスの一部が排出ガ
ス還流口31→EGR通路33→三方弁35→通路36
→サージタンク19の経路で還流する。
(2) Non-supercharging area During idle operation, which is in the non-supercharging area, and when the load is light, the engine torque is small. Therefore, the supercharger 18 is stopped and the bypass opening / closing valve 21 is opened to open the inside of the intake pipe 12. The flowing intake air is caused to flow into the surge tank 19 through the bypass intake passage 20, and the three-way valve 35 is switched to the surge tank 19 side (downstream side of the supercharger 18) so that the negative suction pressure of the surge tank 19 acts on the EGR passage 33. While controlling the exhaust gas recirculation control, the opening degree of the EGR valve 34 is controlled. In this case, part of the exhaust gas is exhaust gas recirculation port 31 → EGR passage 33 → three-way valve 35 → passage 36.
→ Return to the surge tank 19 route.

【0024】(3)触媒暖機制御領域 この触媒暖機制御領域は過給領域内において次のように
設定される。エンジン始動完了後の経過時間が所定時間
に達するまでは、触媒29が未暖機状態と判定される。
但し、未暖機状態と判定されても、非過給領域であれば
エンジントルクが小さいため、過給領域になるまで触媒
暖機制御を待機する。従って、過給領域内において触媒
29が未暖機状態と判定されている期間が触媒暖機制御
領域となる。
(3) Catalyst warm-up control area This catalyst warm-up control area is set as follows in the supercharging area. The catalyst 29 is determined to be in the unwarmed state until the elapsed time after the completion of the engine start reaches the predetermined time.
However, even if it is determined that the engine is not warmed up, the engine torque is small in the non-supercharging region, so the catalyst warm-up control is on standby until the supercharging region is reached. Therefore, the period in which the catalyst 29 is determined to be in the unwarmed state in the supercharging region is the catalyst warm-up control region.

【0025】この触媒暖機制御領域では、三方弁35を
サージタンク19側(スーパーチャージャ18の下流
側)に切り替えて、過給圧(スーパーチャージャ18の
吐出圧)をEGR通路33に作用させながらEGR弁3
4を開放する。これにより、EGR通路33の吸気系側
の圧力(過給圧)が排気管28側の圧力(排気圧)より
も高くなり、スーパーチャージャ18からサージタンク
19内に送り込まれる圧縮空気(過給エア)の一部が通
路36→三方弁35→EGR通路33→排出ガス還流口
31の経路で逆流し、二次空気として排気管28の触媒
29の上流側へ供給される。これと同時に、各燃料噴射
弁22の燃料噴射量を増量補正してエンジン11の各気
筒に供給する混合ガスの空燃比をリッチに制御し、排出
ガス中のCO、HCを増加させて、それらを触媒29で
二次空気中の酸素と反応させ、その反応熱で触媒29を
効率良く暖機する。尚、以下の説明において、触媒暖機
制御領域を除く過給領域と非過給領域とを通常制御領域
という。
In this catalyst warm-up control region, the three-way valve 35 is switched to the surge tank 19 side (downstream side of the supercharger 18) so that the supercharging pressure (discharge pressure of the supercharger 18) acts on the EGR passage 33. EGR valve 3
Open 4. As a result, the pressure (supercharging pressure) on the intake system side of the EGR passage 33 becomes higher than the pressure (exhaust pressure) on the exhaust pipe 28 side, and compressed air (supercharging air) sent from the supercharger 18 into the surge tank 19 is supplied. ) Partly flows back in the path of the passage 36, the three-way valve 35, the EGR passage 33, and the exhaust gas recirculation port 31, and is supplied as secondary air to the upstream side of the catalyst 29 in the exhaust pipe 28. At the same time, the fuel injection amount of each fuel injection valve 22 is increased and corrected, the air-fuel ratio of the mixed gas supplied to each cylinder of the engine 11 is controlled to be rich, and CO and HC in the exhaust gas are increased. Is reacted with oxygen in the secondary air by the catalyst 29, and the heat of the reaction efficiently warms up the catalyst 29. In the following description, the supercharging region and the non-supercharging region excluding the catalyst warm-up control region are called normal control regions.

【0026】以上説明した各領域の制御は、図2以降に
示す各プログラムによって実行される。図2に示すベー
スルーチンは例えば4ms毎に割込み処理にて実行され
る。電子制御回路38に電源が投入され、このベースル
ーチンが起動されると、まずステップ100にて初期化
処理し、RAM42等を初期化する。この初期化処理は
電源投入時のみ実行される。そして、次のステップ20
0にて、後述する図3の触媒暖機制御領域判定ルーチン
を実行し、現在の運転領域が触媒暖機制御領域か通常制
御領域かを判定する。この後、ステップ300にて、後
述する図5の燃料噴射制御ルーチンを実行し、燃料噴射
量TAUを算出する。この際、触媒暖機制御のための燃
料増量係数FSCも算出される。
The control of each area described above is executed by each program shown in FIG. 2 and subsequent figures. The base routine shown in FIG. 2 is executed by interrupt processing every 4 ms, for example. When the electronic control circuit 38 is powered on and this base routine is started, an initialization process is first performed in step 100 to initialize the RAM 42 and the like. This initialization process is executed only when the power is turned on. And the next step 20
At 0, the catalyst warm-up control region determination routine of FIG. 3 described later is executed to determine whether the current operating region is the catalyst warm-up control region or the normal control region. Then, in step 300, the fuel injection control routine of FIG. 5 described later is executed to calculate the fuel injection amount TAU. At this time, the fuel increase coefficient FSC for catalyst warm-up control is also calculated.

【0027】次のステップ400にて、後述する図7の
三方弁制御ルーチンを実行し、過給領域、非過給領域、
触媒暖機制御領域に合わせて三方弁35を切り替える。
その後、次のステップ500にて、後述する図9のEG
R弁制御ルーチンを実行し、上記ステップ400で三方
弁35を切り替えるのと同時にそのときの状態にあった
EGR弁34の開度に制御し、排出ガス還流量又は二次
空気量を制御する。そして、次のステップ600にて、
後述する図11のS/Cクラッチ制御ルーチンを実行
し、スーパーチャージャ18の電磁クラッチ(S/Cク
ラッチ)のON/OFFを制御する。その後、ステップ
700にて、後述する図12のバイパス開閉弁制御ルー
チンを実行し、バイパス開閉弁21の開閉を制御する。
At the next step 400, the three-way valve control routine of FIG. 7 to be described later is executed to execute the supercharging region, non-supercharging region,
The three-way valve 35 is switched according to the catalyst warm-up control region.
Then, in the next step 500, the EG of FIG.
The R valve control routine is executed to switch the three-way valve 35 in step 400, and at the same time, the opening degree of the EGR valve 34 in the state at that time is controlled to control the exhaust gas recirculation amount or the secondary air amount. Then, in the next step 600,
The S / C clutch control routine of FIG. 11 to be described later is executed to control ON / OFF of the electromagnetic clutch (S / C clutch) of the supercharger 18. Then, in step 700, a bypass opening / closing valve control routine of FIG. 12 described later is executed to control opening / closing of the bypass opening / closing valve 21.

【0028】次に、図2のステップ200で実行する触
媒暖機制御領域判定ルーチンの処理の流れを図3のフロ
ーチャートに従って説明する。本ルーチンは、特許請求
の範囲でいう触媒暖機判定手段及び低温暖機制御禁止手
段として機能し、例えば40ms毎に割込み処理にて実
行される。本ルーチンでは、まずステップ201にて、
水温センサ27により検出された冷却水温THWがスー
パーチャージャ18の駆動下限温度T1(例えば20
℃)以上か否かを判定する。ここで、駆動下限温度T1
は、これ以上の温度であればスーパーチャージャ18を
駆動してもドライバビリティの悪化を招かない下限温度
であり、冷却水温THWが駆動下限温度T1以上の場合
には、ステップ202に進み、冷却水温THWが完全暖
機温度T2より低いか否かを判定する。ここで、完全暖
機温度T2は、触媒29とエンジン11が共に完全暖機
状態と判断される温度であり、T2以上では触媒29の
暖機は不要である。
Next, the process flow of the catalyst warm-up control region determination routine executed in step 200 of FIG. 2 will be described with reference to the flowchart of FIG. This routine functions as catalyst warm-up determination means and low-warm engine control prohibition means in the claims, and is executed by interrupt processing every 40 ms, for example. In this routine, first in step 201,
The cooling water temperature THW detected by the water temperature sensor 27 is the drive lower limit temperature T1 of the supercharger 18 (for example, 20
° C) or more. Here, the drive lower limit temperature T1
Is a lower limit temperature at which the drivability is not deteriorated even if the supercharger 18 is driven if the temperature is higher than this temperature. It is determined whether THW is lower than the complete warm-up temperature T2. Here, the complete warm-up temperature T2 is a temperature at which both the catalyst 29 and the engine 11 are determined to be in the complete warm-up state, and above T2, it is not necessary to warm up the catalyst 29.

【0029】従って、T1≦THW<T2の場合のみ、
触媒暖機制御領域を判定するため、ステップ203に進
み、エンジン回転数NEが500rpmに到達したか否
かで始動完了か否かを判定する。もし、始動完了(NE
≧500rpm)であれば、ステップ204で、始動後
経過時間カウンタCSTA(計時手段に相当)をインク
リメントし、続くステップ205,206で、始動後経
過時間カウンタCSTAの値がα1<CSTA≦α2で
あるか否かを判定する。ここで、α1は、排出ガスの熱
により触媒温度が排出ガス中のCO,HCと二次空気の
酸素との反応を促進させるための下限温度TG1に上昇
するまでに必要な時間である。また、α2は、触媒暖機
制御により触媒温度が活性化温度TG2にに上昇するま
でに必要な時間である。
Therefore, only when T1≤THW <T2,
In order to determine the catalyst warm-up control region, the routine proceeds to step 203, where it is determined whether or not the start is completed depending on whether or not the engine speed NE has reached 500 rpm. If the start is completed (NE
≧ 500 rpm), the post-start elapsed time counter CSTA (corresponding to the time counting means) is incremented in step 204, and in the following steps 205 and 206, the value of the post-start elapsed time counter CSTA is α1 <CSTA ≦ α2. Or not. Here, α1 is the time required for the catalyst temperature to rise to the lower limit temperature TG1 for promoting the reaction between CO and HC in the exhaust gas and oxygen in the secondary air due to the heat of the exhaust gas. Further, α2 is the time required for the catalyst temperature to rise to the activation temperature TG2 by the catalyst warm-up control.

【0030】以上の処理により、T1≦THW<T
2、NE≧500rpm、α1<CSTA≦α2の
条件を全て満たす時にのみ、ステップ207に進み、触
媒未暖機判定フラグFLG1を触媒未暖機区間を示す
「1」にセットする。上記条件が1つでも成立しなけれ
ば、ステップ214にて、触媒未暖機判定フラグFLG
1を「0」にリセットする。尚、THW<T1の場合、
又はNE<500rpmの場合には、ステップ213
で、始動後経過時間カウンタCSTAを「0」にリセッ
トする。また、THW≧T2の場合、又はCSTA>α
2の場合には、始動後経過時間カウンタCSTAのオー
バーフローを防止するため、ステップ217で、始動後
経過時間カウンタCSTAの値を「α2+1」にセット
する。
By the above processing, T1≤THW <T
2. Only when all the conditions of NE ≧ 500 rpm and α1 <CSTA ≦ α2 are satisfied, the routine proceeds to step 207, where the catalyst non-warm determination flag FLG1 is set to “1” indicating the catalyst non-warm section. If any of the above conditions is not satisfied, at step 214, the catalyst non-warm-up determination flag FLG
1 is reset to "0". If THW <T1,
Or, if NE <500 rpm, then step 213
Then, the post-start elapsed time counter CSTA is reset to "0". If THW ≧ T2, or CSTA> α
In the case of 2, in order to prevent the post-start elapsed time counter CSTA from overflowing, the value of the post-start elapsed time counter CSTA is set to "α2 + 1" in step 217.

【0031】触媒未暖機判定フラグFLG1=1(触媒
未暖機区間)の場合には、ステップ208,209に進
み、回転角センサ25と吸気量センサ14からそれぞれ
出力されるエンジン回転数NEと吸入空気量QAを読み
込み、続くステップ210で、上記NE、QA情報を基
に、触媒未暖機時のS/CクラッチON/OFF指令値
CSCを算出する(つまり運転領域が過給領域か非過給
領域かを判定する)。ここでは、通常制御のCSCマッ
プと異なる触媒未暖機時専用のCSCマップ(図4参
照)を用い、この触媒未暖機時専用のCSCマップは過
給領域を低負荷側(吸入空気量小側及びエンジン回転数
小側)に拡大されている。尚、S/CクラッチON/O
FF指令値CSCの値はS/CクラッチONを意味する
「1」又はS/CクラッチOFFを意味する「0」のい
ずれかである。
When the catalyst non-warm-up determination flag FLG1 = 1 (catalyst non-warm-up section), the routine proceeds to steps 208 and 209, and the engine speed NE output from the rotation angle sensor 25 and the intake air amount sensor 14 respectively. The intake air amount QA is read, and in the following step 210, the S / C clutch ON / OFF command value CSC when the catalyst is not warmed up is calculated based on the NE and QA information (that is, whether the operating region is the supercharging region or the non-charging region). Determine whether it is a supercharging area) Here, a CSC map dedicated to catalyst non-warming (see Fig. 4) different from the CSC map for normal control is used. This CSC map dedicated to catalyst non-warming is used on the low load side (small intake air amount) in the supercharging region. Side and engine speed lower side). In addition, S / C clutch ON / O
The value of the FF command value CSC is either "1" which means S / C clutch ON or "0" which means S / C clutch OFF.

【0032】そして、次のステップ211で、CSCが
S/CクラッチONを意味する「1」であるか否かを判
定し、CSC=1であれば、過給領域と判定して、ステ
ップ212に進み、触媒暖機制御実行フラグFLG2を
触媒暖機制御実行を示す「1」にセットして本ルーチン
を終了する。これに対し、ステップ211で、CSC=
0(S/CクラッチOFF)のときには、非過給領域と
判定し、触媒暖機制御実行フラグFLG2を触媒暖機制
御禁止を示す「0」にセットして本ルーチンを終了す
る。
Then, in the next step 211, it is determined whether or not CSC is "1" which means S / C clutch ON, and if CSC = 1, it is determined to be in the supercharging region, and step 212 Then, the catalyst warm-up control execution flag FLG2 is set to "1" indicating the catalyst warm-up control execution, and this routine ends. On the other hand, in step 211, CSC =
When it is 0 (S / C clutch OFF), it is determined to be in the non-supercharging region, the catalyst warm-up control execution flag FLG2 is set to "0" indicating the catalyst warm-up control prohibition, and this routine is ended.

【0033】一方、触媒未暖機判定フラグFLG1が
「0」の場合には、ステップ215に進み、触媒暖機制
御実行フラグFLG2を触媒暖機制御禁止を示す「0」
にセットし、続くステップ216で、通常のS/Cクラ
ッチ制御を実行し、エンジン回転数NEと吸入空気量Q
Aを基に、S/CクラッチON/OFF指令値CSCを
算出する(つまり運転領域が過給領域か非過給領域かを
判定する)。このときのCSCの算出は通常制御のCS
Cマップ(図示せず)を用いる。
On the other hand, when the catalyst non-warm-up determination flag FLG1 is "0", the routine proceeds to step 215, where the catalyst warm-up control execution flag FLG2 is set to "0" indicating the catalyst warm-up control prohibition.
In step 216, the normal S / C clutch control is executed to set the engine speed NE and the intake air amount Q.
Based on A, the S / C clutch ON / OFF command value CSC is calculated (that is, it is determined whether the operating region is the supercharging region or the non-supercharging region). At this time, the calculation of CSC is CS for normal control.
A C map (not shown) is used.

【0034】次に、図2のステップ300で実行する燃
料噴射制御ルーチンの処理の流れを図5のフローチャー
トに従って説明する。本ルーチンは例えば180℃A毎
に実行され、まずステップ301,302で、エンジン
回転数NEと吸入空気量QAを読み込み、次のステップ
303で、上記NE、QAを基に基本燃料噴射量TPを
算出する。この後、ステップ304で、触媒暖機制御実
行フラグFLG2が触媒暖機制御実行を示す「1」にセ
ットされているか否かを判定し、FLG2=1(触媒暖
機制御実行)であれば、ステップ305に進み、触媒暖
機増量係数FSCを算出する。この触媒暖機増量係数F
SCは図6に示すFSC算出テーブルにより算出され、
エンジン回転数NEが高くなるほど触媒暖機増量係数F
SCが大きくなる。
Next, the processing flow of the fuel injection control routine executed in step 300 of FIG. 2 will be described with reference to the flowchart of FIG. This routine is executed, for example, every 180 ° C. First, in steps 301 and 302, the engine speed NE and the intake air amount QA are read, and in the next step 303, the basic fuel injection amount TP is calculated based on the NE and QA. calculate. Thereafter, in step 304, it is determined whether the catalyst warm-up control execution flag FLG2 is set to "1" indicating the catalyst warm-up control execution, and if FLG2 = 1 (catalyst warm-up control execution), Proceeding to step 305, the catalyst warm-up increase coefficient FSC is calculated. This catalyst warm-up increase factor F
SC is calculated by the FSC calculation table shown in FIG.
As the engine speed NE increases, the catalyst warm-up increase factor F
SC becomes large.

【0035】そして、次のステップ306で、空燃比セ
ンサ30からの信号に応じて空燃比を理論空燃比(空気
過剰率λ=1)にフィードバック制御するためのフィー
ドバック補正係数FAFを「1.0」にセットし、次の
ステップ307で、最終噴射量TAUを次式により算出
して本ルーチンを終了する。 TAU=TP×FSC×FC×FAF+TV ここで、TPは基本噴射量、FSCは触媒暖機増量係
数、FCは基本噴射量補正係数、FAFはフィードバッ
ク補正係数、TVは無効噴射時間である。
Then, in the next step 306, the feedback correction coefficient FAF for feedback controlling the air-fuel ratio to the stoichiometric air-fuel ratio (excess air ratio λ = 1) according to the signal from the air-fuel ratio sensor 30 is set to "1.0". , And in the next step 307, the final injection amount TAU is calculated by the following equation and the present routine is ended. TAU = TP * FSC * FC * FAF + TV Here, TP is a basic injection amount, FSC is a catalyst warm-up increase coefficient, FC is a basic injection quantity correction coefficient, FAF is a feedback correction coefficient, and TV is an invalid injection time.

【0036】一方、上記ステップ304で、触媒暖機制
御実行フラグFLG2=0(触媒暖機制御禁止)であれ
ば、ステップ308に進み、触媒暖機増量係数FSCを
「1.0」にセットして、最終噴射量TAUを上式によ
り算出し、本ルーチンを終了する。
On the other hand, if the catalyst warm-up control execution flag FLG2 = 0 (catalyst warm-up control prohibited) in step 304, the process proceeds to step 308, and the catalyst warm-up increase coefficient FSC is set to "1.0". Then, the final injection amount TAU is calculated by the above equation, and this routine is ended.

【0037】次に、図2のステップ400で実行する三
方弁制御ルーチンの処理の流れを図7のフローチャート
に従って説明する。本ルーチンは、特許請求の範囲でい
う切替制御手段として機能し、例えば40ms毎に割込
み処理にて実行される。本ルーチンでは、まずステップ
401で、S/CクラッチON/OFF指令値CSCが
S/CクラッチONを示す「1」であるか否かを判定
し、CSC=1(過給領域)の場合には、ステップ40
2に進み、触媒暖機制御実行フラグFLG2が触媒暖機
制御実行を示す「1」であるか否か判定する。もし、F
LG2=1(触媒暖機制御実行)であれば、ステップ4
03に進み、三方弁制御フラグSVALを「1」にセッ
トして、三方弁35をサージタンク19側(ポートa,
c連通)に切り替え、スーパーチャージャ18の下流側
と排気管28側とをEGR通路33を通して連通させ
る。これにより、過給圧(スーパーチャージャ18の吐
出圧)がサージタンク19からEGR通路33に作用し
て、EGR通路33の吸気系側の圧力が排気管28側の
圧力(排気圧)よりも高くなり、過給エアの一部が図8
に実線矢印で示すようにサージタンク19から通路3
6、三方弁35のポートa,cを通ってEGR通路33
を逆流し、二次空気として排気管28の触媒29の上流
側へ供給される。
Next, the processing flow of the three-way valve control routine executed in step 400 of FIG. 2 will be described with reference to the flowchart of FIG. This routine functions as a switching control unit in the claims and is executed by interrupt processing every 40 ms, for example. In this routine, first, at step 401, it is judged if the S / C clutch ON / OFF command value CSC is “1” indicating the S / C clutch ON, and if CSC = 1 (supercharging region). Step 40
In step 2, it is determined whether the catalyst warm-up control execution flag FLG2 is "1" indicating the catalyst warm-up control execution. If F
If LG2 = 1 (execution of catalyst warm-up control), step 4
03, set the three-way valve control flag SVAL to "1", and set the three-way valve 35 to the surge tank 19 side (port a,
c communication), and the downstream side of the supercharger 18 and the exhaust pipe 28 side are communicated with each other through the EGR passage 33. As a result, the supercharging pressure (the discharge pressure of the supercharger 18) acts on the EGR passage 33 from the surge tank 19, so that the pressure on the intake system side of the EGR passage 33 is higher than the pressure on the exhaust pipe 28 side (exhaust pressure). And part of the supercharged air is shown in Fig. 8.
From the surge tank 19 to the passage 3 as indicated by the solid arrow.
6, EGR passage 33 through the ports a and c of the three-way valve 35
Is supplied to the upstream side of the catalyst 29 in the exhaust pipe 28 as secondary air.

【0038】一方、CSC=1(S/CクラッチON:
過給領域)で、且つFLG2=0(触媒暖機制御禁止)
の場合には、ステップ404に進み、三方弁制御フラグ
SVALを「0」にセットして、三方弁35をスーパー
チャージャ18の上流側(ポートb,c連通)に切り替
え、スーパーチャージャ18の上流側と排気管28側と
をEGR通路33を通して連通させる。これにより、ス
ーパーチャージャ18の吸入負圧がEGR通路33に作
用して、図8に一点鎖線矢印で示すように排気管28側
からEGR通路33と通路37を通って排気還流ガス
(EGRガス)がスーパーチャージャ18に吸い込まれ
る。
On the other hand, CSC = 1 (S / C clutch ON:
Supercharging area) and FLG2 = 0 (catalyst warm-up control prohibited)
In the case of, the process proceeds to step 404, the three-way valve control flag SVAL is set to “0”, the three-way valve 35 is switched to the upstream side of the supercharger 18 (communication with ports b and c), and the upstream side of the supercharger 18 is connected. And the exhaust pipe 28 side are communicated with each other through the EGR passage 33. As a result, the negative suction pressure of the supercharger 18 acts on the EGR passage 33, and the exhaust gas recirculation gas (EGR gas) passes from the exhaust pipe 28 side through the EGR passage 33 and the passage 37 as shown by the one-dot chain line arrow in FIG. Is sucked into the supercharger 18.

【0039】また、上記ステップ401で、CSC=0
(S/CクラッチOFF:非過給領域)の場合には、ス
テップ403に進み、三方弁制御フラグSVALを
「1」にセットして、三方弁35をサージタンク19側
(ポートa,c連通)に切り替え、スーパーチャージャ
18の下流側のサージタンク19と排気管28側とをE
GR通路33を通して連通させる。この非過給時には、
スーパーチャージャ18が停止状態でサージタンク19
内が負圧になっているため、EGR通路33の吸気系側
の圧力が排気管28側の圧力(排気圧)よりも低くな
り、EGR弁34を開弁すると、図8に点線矢印で示す
ように排気管28側からEGR通路33と通路36を通
ってEGRガスがサージタンク19内に導入される。
In step 401, CSC = 0
In the case of (S / C clutch OFF: non-supercharging region), the routine proceeds to step 403, where the three-way valve control flag SVAL is set to "1" and the three-way valve 35 is connected to the surge tank 19 side (ports a and c communication). ), And the surge tank 19 on the downstream side of the supercharger 18 and the exhaust pipe 28 side are set to E
Communication is made through the GR passage 33. During this non-supercharge,
Surge tank 19 with supercharger 18 stopped
Since the inside is negative pressure, the pressure on the intake system side of the EGR passage 33 becomes lower than the pressure on the exhaust pipe 28 side (exhaust pressure), and when the EGR valve 34 is opened, it is shown by a dotted arrow in FIG. Thus, the EGR gas is introduced into the surge tank 19 from the exhaust pipe 28 side through the EGR passage 33 and the passage 36.

【0040】次に、図2のステップ500で実行するE
GR弁制御ルーチンの処理の流れを図9のフローチャー
トに従って説明する。本ルーチンは例えば4ms毎に割
込み処理にて実行され、まずステップ501,502
で、エンジン回転数NEと吸入空気量QAを読み込む。
続くステップ503で、触媒暖機制御実行フラグFLG
2が触媒暖機制御実行を示す「1」であるか否か判定
し、FLG2=1であればステップ504に進み、図1
0に示す二次空気制御マップを検索し、そのマップよ
り、エンジン回転数NEと吸入空気量QAを基に、要求
される二次空気量tSAirを算出する(ステップ50
5)。
Next, E executed in step 500 of FIG.
The processing flow of the GR valve control routine will be described with reference to the flowchart of FIG. This routine is executed by interrupt processing every 4 ms, for example, and first, steps 501 and 502 are executed.
Then, the engine speed NE and the intake air amount QA are read.
In the following step 503, the catalyst warm-up control execution flag FLG
2 is "1" indicating execution of catalyst warm-up control, and if FLG2 = 1, the process proceeds to step 504, and FIG.
The secondary air control map shown in 0 is searched, and the required secondary air amount tSAir is calculated from the map based on the engine speed NE and the intake air amount QA (step 50).
5).

【0041】つまり、触媒暖機制御実行中は、燃料噴射
量を増量して混合ガスの空燃比をリッチ制御し、排出ガ
ス中のCO,HCを増加させるため、このCO,HCを
触媒29内で酸化反応させるのに必要な酸素を含む二次
空気量tSAirをエンジン回転数NEと吸入空気量Q
Aを基にEGR弁34の開度に換算して算出し(ステッ
プ505)、このEGR弁開度tSAirを目標EGR
弁開度SEGRのメモリにストアする(ステップ50
6)。この後、ステップ507で、目標EGR弁開度S
EGRの信号をEGR弁34に出力し、EGR弁34を
目標EGR弁開度SEGRの位置まで駆動する。
That is, during execution of the catalyst warm-up control, the fuel injection amount is increased to richly control the air-fuel ratio of the mixed gas to increase CO and HC in the exhaust gas. The secondary air amount tSAir containing oxygen required for the oxidation reaction at the engine speed NE and the intake air amount Q
It is calculated by converting the opening of the EGR valve 34 based on A (step 505), and this EGR valve opening tSAir is calculated as the target EGR.
The valve opening degree SEGR is stored in the memory (step 50).
6). Thereafter, in step 507, the target EGR valve opening degree S
The EGR signal is output to the EGR valve 34, and the EGR valve 34 is driven to the position of the target EGR valve opening degree SEGR.

【0042】一方、上記ステップ503でFLG2=0
(触媒暖機制御禁止)であれば、ステップ508,50
9に進み、触媒未暖機判定フラグFLG1=1(触媒未
暖機区間)の場合、或はFLG1=0で冷却水温THW
<完全暖機温度T2の場合には、EGR制御を行うとド
ライバビリティ不良を発生する領域と判断して、ステッ
プ517に進み、目標EGR弁開度SEGRのメモリに
「0」をストアし、EGR弁34を全閉して(ステップ
507)、EGR制御を禁止する。
On the other hand, FLG2 = 0 in step 503.
If (catalyst warm-up control is prohibited), steps 508 and 50
9. If the catalyst non-warm-up determination flag FLG1 = 1 (catalyst non-warm-up section), or if FLG1 = 0, the cooling water temperature THW is reached.
<In the case of the complete warm-up temperature T2, it is determined that the driveability failure occurs when the EGR control is performed, and the process proceeds to step 517, where “0” is stored in the memory of the target EGR valve opening SEGR, and the EGR is performed. The valve 34 is fully closed (step 507) to prohibit the EGR control.

【0043】これに対し、FLG1=0で冷却水温TH
W≧完全暖機温度T2の場合には、ステップ510に進
み、CSC=1(S/CクラッチON)か否かで過給領
域であるか否かを判定し、過給領域であれば、ステップ
511に進み、図10と同様の過給時EGRマップ(図
示せず)を検索し、そのマップより、過給時EGR量を
最適EGR量(ドライバビリティやエミッションを悪化
させずにNOX 低減効果を最大にするEGR量)に制御
するためのEGR弁開度tPEgrを算出し(ステップ
512)、このEGR弁開度tPEgrを目標EGR弁
開度SEGRのメモリにストアする(ステップ51
3)。
On the other hand, when FLG1 = 0, the cooling water temperature TH
When W ≧ full warm-up temperature T2, the routine proceeds to step 510, where it is determined whether or not the supercharging region is based on whether CSC = 1 (S / C clutch is ON). In step 511, a supercharging EGR map (not shown) similar to that in FIG. 10 is searched, and the EGR amount during supercharging is calculated from the map to the optimum EGR amount (NO X reduction without deteriorating drivability and emission. The EGR valve opening degree tPEgr for controlling the EGR amount to maximize the effect) is calculated (step 512), and this EGR valve opening degree tPEgr is stored in the memory of the target EGR valve opening degree SEGR (step 51).
3).

【0044】また、上記ステップ510で、CSC=0
(S/CクラッチOFF:非過給領域)と判定された場
合には、ステップ514に進み、図10と同様の非過給
時EGRマップ(図示せず)を検索し、そのマップよ
り、非過給時EGR量を最適EGR量に制御するための
EGR弁開度tNEgrを算出し(ステップ515)、
このEGR弁開度tNEgrを目標EGR弁開度SEG
Rのメモリにストアする(ステップ516)。
In step 510, CSC = 0
If it is determined that (S / C clutch OFF: non-supercharging region), the process proceeds to step 514, where a non-supercharging EGR map (not shown) similar to that in FIG. The EGR valve opening tNEgr for controlling the EGR amount during supercharging to the optimum EGR amount is calculated (step 515),
This EGR valve opening tNEgr is set to the target EGR valve opening SEG
Store in R's memory (step 516).

【0045】以上のようにして、各制御領域毎に目標E
GR弁開度SEGRをストアした後、この目標EGR弁
開度SEGRの信号をEGR弁34に出力し、EGR弁
34を目標EGR弁開度SEGRの位置まで駆動して
(ステップ507)、本ルーチンを終了する。
As described above, the target E is set for each control area.
After storing the GR valve opening degree SEGR, the signal of the target EGR valve opening degree SEGR is output to the EGR valve 34, and the EGR valve 34 is driven to the position of the target EGR valve opening degree SEGR (step 507), and this routine is executed. To finish.

【0046】次に、図2のステップ600で実行するS
/Cクラッチ制御ルーチンの処理の流れを図11のフロ
ーチャートに従って説明する。本ルーチンは特許請求の
範囲でいう過給機制御手段として機能し、例えば40m
s毎に割込み処理にて実行される。本ルーチンでは、ま
ずステップ601にて、CSC=1(S/CクラッチO
N)か否かで過給領域であるか否かを判定し、過給領域
であれば、ステップ602に進み、S/CクラッチをO
Nしてスーパーチャージャ18を駆動する。一方、CS
C=0(S/CクラッチOFF:非過給領域)であれ
ば、ステップ603に進み、S/CクラッチをOFFし
てスーパーチャージャ18を停止する。
Next, S executed in step 600 of FIG.
The processing flow of the / C clutch control routine will be described with reference to the flowchart of FIG. This routine functions as supercharger control means in the claims, and is 40 m, for example.
It is executed by interrupt processing every s. In this routine, first, at step 601, CSC = 1 (S / C clutch O
N), it is determined whether or not it is in the supercharging region. If it is in the supercharging region, the process proceeds to step 602 and the S / C clutch is turned on.
N to drive the supercharger 18. Meanwhile, CS
If C = 0 (S / C clutch OFF: non-supercharging region), the routine proceeds to step 603, where the S / C clutch is turned OFF and the supercharger 18 is stopped.

【0047】次に、図2のステップ700で実行するバ
イパス開閉弁制御ルーチンの処理の流れを図12のフロ
ーチャートに従って説明する。本ルーチンは例えば40
ms毎に割込み処理にて実行され、まずステップ701
で、CSC=1(S/CクラッチON)か否かで過給領
域であるか否かを判定し、過給領域であれば、ステップ
702に進み、バイパス開閉弁制御信号VBYを閉鎖を
示す「0」に設定し、続くステップ703で、バイパス
開閉弁21を閉鎖する。一方、CSC=0(S/Cクラ
ッチOFF:非過給領域)であれば、ステップ704に
進み、バイパス開閉弁制御信号VBYを開放を示す
「1」に設定し、続くステップ705で、バイパス開閉
弁21を開放する。
Next, the flow of processing of the bypass opening / closing valve control routine executed in step 700 of FIG. 2 will be described with reference to the flowchart of FIG. This routine is, for example, 40
It is executed by interrupt processing every ms, and first, step 701.
Then, it is determined whether CSC = 1 (S / C clutch is ON) or not in the supercharging region. If it is in the supercharging region, the routine proceeds to step 702, where the bypass on-off valve control signal VBY is closed. The bypass on-off valve 21 is closed in step 703. On the other hand, if CSC = 0 (S / C clutch OFF: non-supercharging region), the routine proceeds to step 704, where the bypass opening / closing valve control signal VBY is set to “1” indicating opening, and at the following step 705, bypass opening / closing is performed. Open the valve 21.

【0048】以上説明した制御を行った場合の一例を図
13及び図14のタイムチャートに従って説明する。ま
ず、図13は、エンジン始動から触媒暖機制御が終了す
るまでの動作をタイムチャートで表したものである。エ
ンジン始動後、エンジン回転数NEが500rpmに到
達すると、始動完了と判定し、その時点から始動後経過
時間カウンタCSTAをインクリメントしていく。そし
て、触媒温度が第1の所定温度TG1に到達すると推定
される時間α1から、第2の所定温度TG2に到達する
と推定される時間α2までの期間(α1<CSTA≦α
2)では、触媒未暖機状態と判定し、触媒未暖機判定フ
ラグFLG1を「1」にセットする。ここで、TG1は
触媒暖機制御を有効に働かせるための触媒暖機制御下限
温度であり、TG2は触媒29の活性化温度である。
An example of performing the above-described control will be described with reference to the time charts of FIGS. 13 and 14. First, FIG. 13 is a time chart showing the operation from the engine start to the end of the catalyst warm-up control. After the engine starts, when the engine speed NE reaches 500 rpm, it is determined that the start is completed, and the post-start elapsed time counter CSTA is incremented from that point. Then, a period from a time α1 estimated that the catalyst temperature reaches the first predetermined temperature TG1 to a time α2 estimated to reach the second predetermined temperature TG2 (α1 <CSTA ≦ α
In 2), it is determined that the catalyst is not warmed up, and the catalyst non-warm determination flag FLG1 is set to "1". Here, TG1 is the catalyst warm-up control lower limit temperature for effectively operating the catalyst warm-up control, and TG2 is the activation temperature of the catalyst 29.

【0049】次に、触媒未暖機状態(FLG1=1)に
おいて、スーパーチャージャ18を動作させても、ドラ
イバビリティやエミッションを損なわない領域、つまり
過給領域であるか否かを判定し、過給領域であれば、触
媒暖機制御実行フラグFLG2を「1」にセットする。
これにより、バイパス開閉弁21を閉鎖してスーパーチ
ャージャ18を駆動し、三方弁35をサージタンク19
側に切り替えて触媒暖機制御を実行する。この触媒暖機
制御中は、過給エアの一部がサージタンク19から通路
36を通ってEGR通路33を逆流し、二次空気として
排気管28の触媒29の上流側へ供給される。これと同
時に、触媒暖機増量係数FSCを1.0より大きな値に
設定して燃料噴射量をリッチ制御し、排出ガス中のC
O、HCを増加させて、それらを触媒29で二次空気中
の酸素と反応させ、その反応熱で触媒29を効率良く暖
機する。この触媒暖機制御中は、排出ガスの空燃比がλ
=1となるように二次空気量を算出し、EGR弁34の
開度を制御する。
Next, when the catalyst is not warmed up (FLG1 = 1), it is determined whether or not the driveability and emission are not impaired even if the supercharger 18 is operated; If it is in the supply range, the catalyst warm-up control execution flag FLG2 is set to "1".
As a result, the bypass opening / closing valve 21 is closed to drive the supercharger 18, and the three-way valve 35 is closed.
Switch to the side to execute catalyst warm-up control. During the catalyst warm-up control, a part of the supercharged air flows backward from the surge tank 19 through the passage 36 in the EGR passage 33 and is supplied as secondary air to the upstream side of the catalyst 29 in the exhaust pipe 28. At the same time, the catalyst warm-up increase coefficient FSC is set to a value larger than 1.0 to richly control the fuel injection amount, and C in the exhaust gas is controlled.
O and HC are increased, and they are reacted with oxygen in the secondary air by the catalyst 29, and the heat of reaction heats the catalyst 29 efficiently. During this catalyst warm-up control, the air-fuel ratio of the exhaust gas is λ
The secondary air amount is calculated so that = 1 and the opening degree of the EGR valve 34 is controlled.

【0050】その後、始動後経過時間カウンタCSTA
の値がα2に到達すると、触媒暖機完了と判定し、FL
G1及びFLG2を共に「0」にリセットし、以後、通
常制御を行う。
Thereafter, the post-start elapsed time counter CSTA
When the value of α reaches α2, it is determined that the catalyst warm-up is complete, and FL
Both G1 and FLG2 are reset to "0", and then normal control is performed.

【0051】一方、図14は、触媒暖機制御時及び過給
/非過給時の三方弁35、バイパス開閉弁21、EGR
弁34の動作を表したタイムチャートであり、以下、こ
れについて説明する。
On the other hand, FIG. 14 shows a three-way valve 35, a bypass opening / closing valve 21, an EGR valve during catalyst warm-up control and during supercharging / non-supercharging.
6 is a time chart showing the operation of the valve 34, which will be described below.

【0052】エンジン始動直後は、スーパーチャージャ
18が駆動されず、バイパス開閉弁21が開放されると
共に、三方弁35がスーパーチャージャ18の下流側
(サージタンク19側)に切り替えられるが、EGR弁
34が全閉され、EGR通路33が遮断される。その
後、触媒暖機制御実行フラグFLG2が「1」にセット
されると、バイパス開閉弁21が閉鎖され、スーパーチ
ャージャ18が駆動されて触媒暖機制御が開始され、E
GR弁41が開放され、その開度を制御することで排気
管28側に供給する二次空気量が制御される。
Immediately after starting the engine, the supercharger 18 is not driven, the bypass opening / closing valve 21 is opened, and the three-way valve 35 is switched to the downstream side of the supercharger 18 (the surge tank 19 side). Is fully closed and the EGR passage 33 is shut off. After that, when the catalyst warm-up control execution flag FLG2 is set to "1", the bypass opening / closing valve 21 is closed, the supercharger 18 is driven, and the catalyst warm-up control is started.
By opening the GR valve 41 and controlling the opening thereof, the amount of secondary air supplied to the exhaust pipe 28 side is controlled.

【0053】その後、触媒暖機が完了し、FLG1及び
FLG2が共に「0」にリセットされると、通常制御に
移行する。このとき、S/CクラッチがON(CSC=
1)でスーパーチャージャ18が駆動されているため、
三方弁35をスーパーチャージャ18の上流側(通路3
7側)に切り替える。しかし、この時点では、冷却水温
THWが完全暖機温度T2以下であるため、EGR弁3
4を全閉する。これはTHW≦T2ではドライバビリテ
ィやエミッションが悪化しないようにEGR制御が禁止
されているためである。その後、冷却水温THWが完全
暖機温度T2以上になると、EGR制御が許可され、過
給時EGR制御に基づいてEGR弁34の開度を制御す
る。このとき、EGRガスはスーパーチャージャ18の
上流側へ導入される。
After that, when the catalyst warm-up is completed and both FLG1 and FLG2 are reset to "0", the control shifts to the normal control. At this time, the S / C clutch is ON (CSC =
Since the supercharger 18 is driven in 1),
Set the three-way valve 35 on the upstream side of the supercharger 18 (passage 3
7 side). However, since the cooling water temperature THW is equal to or lower than the complete warm-up temperature T2 at this point, the EGR valve 3
Fully close 4. This is because EGR control is prohibited so that drivability and emission do not deteriorate when THW ≦ T2. After that, when the cooling water temperature THW becomes equal to or higher than the complete warm-up temperature T2, the EGR control is permitted, and the opening degree of the EGR valve 34 is controlled based on the supercharging EGR control. At this time, the EGR gas is introduced upstream of the supercharger 18.

【0054】その後、S/CクラッチがOFF(CSC
=0)に切り替えられ、スーパーチャージャ18が停止
すると、自然吸気のエンジンと同じ制御となり、バイパ
ス開閉弁21を開放し、吸気管12内を流れる吸入空気
をバイパス吸気路20を通してサージタンク19に流入
させると共に、三方弁35をスーパーチャージャ18の
下流側に切り替え、EGRガスをEGR通路33→三方
弁35→通路36→サージタンク19の経路で還流させ
る。
After that, the S / C clutch is turned off (CSC
= 0) and the supercharger 18 is stopped, the control becomes the same as that of the naturally aspirated engine, the bypass opening / closing valve 21 is opened, and the intake air flowing through the intake pipe 12 flows into the surge tank 19 through the bypass intake passage 20. At the same time, the three-way valve 35 is switched to the downstream side of the supercharger 18, and the EGR gas is recirculated through the EGR passage 33 → three-way valve 35 → passage 36 → surge tank 19.

【0055】以上説明した第1実施例によれば、触媒暖
機制御時にスーパーチャージャ18の過給圧とEGR通
路33を利用して過給エアの一部をEGR通路33を逆
流させて二次空気として排気管28側に供給できるの
で、従来のような専用の二次空気供給装置が不要とな
り、構成が複雑化することなく触媒暖機を効率良く行う
ことができる。しかも、触媒が未暖機状態と判定された
ときに過給領域を拡大するようにしたので、触媒暖機制
御領域を拡大できて、触媒暖機能力を向上できる。
According to the first embodiment described above, at the time of catalyst warm-up control, the supercharging pressure of the supercharger 18 and the EGR passage 33 are used to cause a part of the supercharging air to flow backward through the EGR passage 33 so as to be secondary. Since air can be supplied to the exhaust pipe 28 side, a dedicated secondary air supply device as in the prior art is unnecessary, and catalyst warm-up can be efficiently performed without complicating the configuration. Moreover, since the supercharging region is expanded when it is determined that the catalyst has not been warmed up, the catalyst warming control region can be expanded and the catalyst warming function can be improved.

【0056】尚、過給領域を拡大する際に、エンジン1
1に加わるスーパーチャージャ18の駆動負荷に対抗し
てエンジン回転数を上昇させるようにしても良く、例え
ば、触媒が未暖機状態のときは、アイドル回転数を上昇
させることでアイドル時も過給領域(触媒暖機制御領
域)となるようにしても良い。しかしながら、本発明は
過給領域を変えない構成としても良く、この場合でも本
発明の所期の目的を十分に達成できる。
When expanding the supercharging area, the engine 1
The engine speed may be increased against the drive load of the supercharger 18 applied to the engine 1. For example, when the catalyst is not warmed up, the idle speed is increased to increase supercharging even during idling. It may be set to a region (catalyst warm-up control region). However, the present invention may be configured such that the supercharging region is not changed, and even in this case, the intended purpose of the present invention can be sufficiently achieved.

【0057】上記第1実施例では、始動後経過時間カウ
ンタCSTAによって計時した始動後の経過時間によっ
て触媒暖機制御領域を判定するようにしているため、エ
ンジン始動時の触媒温度によって触媒暖機制御完了時の
触媒温度が多少変わってくることは避けられない。
In the first embodiment, the catalyst warm-up control region is determined based on the elapsed time after the start, which is measured by the post-start elapsed time counter CSTA. Therefore, the catalyst warm-up control is performed according to the catalyst temperature at the engine start. It is inevitable that the catalyst temperature at the time of completion will change somewhat.

【0058】そこで、図15及び図16に示す本発明の
実施の形態の第2実施例では、触媒29に触媒温度セン
サ45を取り付け、この触媒温度センサ45によって直
接触媒温度を検出し、その検出温度に基づいて触媒未暖
機状態を判定するようにしている。この触媒未暖機状態
の判定は図16に示すフローチャートに従って行われ
る。図16は、前記第1実施例で用いた図3の変更点を
示し、図3におけるステップ205,206の処理を2
05a、206aの処理に変更し、始動後経過時間カウ
ンタCSTAの処理を行うステップ204,213,2
17の処理を削除したものであり、これ以外のステップ
は図3と同じである。
Therefore, in the second example of the embodiment of the present invention shown in FIGS. 15 and 16, a catalyst temperature sensor 45 is attached to the catalyst 29, and the catalyst temperature sensor 45 directly detects the catalyst temperature and detects it. The catalyst unwarmed state is determined based on the temperature. The determination of the catalyst non-warm state is performed according to the flowchart shown in FIG. FIG. 16 shows the changes of FIG. 3 used in the first embodiment, and the processing of steps 205 and 206 in FIG.
Steps 204, 213 and 2 for changing to the processing of 05a and 206a and processing of the post-start elapsed time counter CSTA
17 is deleted, and the other steps are the same as those in FIG.

【0059】本ルーチンでは、ステップ201〜203
で、冷却水温THWがT1以上T2未満でエンジン回転
数NEが500rpm以上になったときに、ステップ2
05aに進み、触媒温度センサ45により検出した触媒
温度THGが触媒暖機制御を有効に働かせるための触媒
暖機制御下限温度TG1より高いか否かを判定する。も
し、THG≦TG1であれば、触媒暖機制御を禁止する
ために、ステップ214に進み、触媒未暖機判定フラグ
FLG1を「0」にリセットする。上記ステップステッ
プ205aで、THG>TG1と判定されれば、ステッ
プ206aに進み、触媒温度THGが活性化温度TG2
以下であるか否かを判定する。もし、THG>TG2で
あれば、触媒暖機完了と判定して、ステップ214に進
み、触媒未暖機判定フラグFLG1を「0」にリセット
する。上記ステップ206aで、THG≦TG2と判定
されれば、触媒未暖機状態と判定して、ステップ207
に進み、触媒未暖機判定フラグFLG1を「1」にセッ
トする。以後の処理は前記図3の処理と同じである。
In this routine, steps 201-203
When the cooling water temperature THW is T1 or more and less than T2 and the engine speed NE is 500 rpm or more, step 2
In step 05a, it is determined whether the catalyst temperature THG detected by the catalyst temperature sensor 45 is higher than the catalyst warm-up control lower limit temperature TG1 for effectively operating the catalyst warm-up control. If THG ≦ TG1, in order to prohibit catalyst warm-up control, the routine proceeds to step 214, where the catalyst non-warm determination flag FLG1 is reset to “0”. If THG> TG1 is determined in step 205a, the process proceeds to step 206a, where the catalyst temperature THG is the activation temperature TG2.
It is determined whether or not: If THG> TG2, it is determined that the catalyst warm-up is completed, the process proceeds to step 214, and the catalyst non-warm-up determination flag FLG1 is reset to "0". If it is determined in step 206a that THG ≦ TG2, it is determined that the catalyst is not warmed up, and step 207
Then, the catalyst non-warm-up determination flag FLG1 is set to "1". The subsequent processing is the same as the processing shown in FIG.

【0060】以上説明した第2実施例では、触媒温度を
触媒温度センサ45により検出するため、触媒暖機制御
領域の触媒温度がエンジン始動時の触媒温度の影響を受
けず、安定した触媒暖機効果が得られる。
In the second embodiment described above, since the catalyst temperature is detected by the catalyst temperature sensor 45, the catalyst temperature in the catalyst warm-up control region is not affected by the catalyst temperature at the engine start, and the catalyst warm-up is stable. The effect is obtained.

【0061】尚、上記第2実施例では、触媒温度を触媒
温度センサ45により直接検出するようにしたが、触媒
温度を反映した温度情報、例えばエンジン冷却水温、排
気温度、空燃比センサ30の素子温度やヒータ温度等を
検出する各種の温度センサ(水温センサ27、排気温度
センサ、素子温度センサ、ヒータ温度センサ等)の出力
信号に基づいて触媒温度を間接的に検出するようにして
も良い。
In the second embodiment, the catalyst temperature is directly detected by the catalyst temperature sensor 45, but temperature information reflecting the catalyst temperature, for example, engine cooling water temperature, exhaust temperature, air-fuel ratio sensor 30 element is used. The catalyst temperature may be indirectly detected based on the output signals of various temperature sensors (water temperature sensor 27, exhaust gas temperature sensor, element temperature sensor, heater temperature sensor, etc.) that detect temperature, heater temperature, and the like.

【0062】また、第1実施例において触媒未暖機区間
を決めるための所定時間α1、α2をエンジン始動時の
冷却水温に応じて補正するようにしても良い。このよう
にすれば、始動後の経過時間に基づく触媒温度の推定を
精度よく行うことができる。
Further, in the first embodiment, the predetermined times α1 and α2 for determining the catalyst non-warm section may be corrected according to the cooling water temperature at the engine start. With this configuration, it is possible to accurately estimate the catalyst temperature based on the elapsed time after the start.

【0063】次に、本発明の実施の形態の第3実施例と
して、図17に示すようなスーパーチャージャ18の下
流と触媒29の上流とを連通する連通路46を介して、
触媒未暖機時に過給エアの一部を触媒29に供給する例
を説明する。
Next, as a third example of the embodiment of the present invention, as shown in FIG. 17, via a communication passage 46 that connects the downstream of the supercharger 18 and the upstream of the catalyst 29.
An example of supplying a part of the supercharged air to the catalyst 29 when the catalyst is not warmed up will be described.

【0064】以下に、過給領域(触媒暖機制御時を除
く)、非過給領域、触媒暖機制御領域の3つの運転領域
での流量制御弁47及びバイパス開閉弁21の作動につ
いて説明する。
The operation of the flow control valve 47 and the bypass opening / closing valve 21 in the three operating regions of the supercharging region (excluding the catalyst warm-up control), the non-supercharging region and the catalyst warm-up control region will be described below. .

【0065】まず、触媒暖機制御時を除く過給領域では
バイパス開閉弁21及び流量制御弁47を閉じるととも
にスーパーチャージャ18を駆動し、吸入空気を圧縮し
て各気筒に送り込む。次に非過給領域ではスーパーチャ
ージャ18の駆動を停止させるとともにバイパス開閉弁
21を開放し、流量制御弁47を閉じる。このとき、吸
入空気はバイパス開閉弁21を通ってサージタンク19
に流入する。
First, in the supercharging region except during the catalyst warm-up control, the bypass opening / closing valve 21 and the flow rate control valve 47 are closed and the supercharger 18 is driven to compress the intake air and send it to each cylinder. Next, in the non-supercharging region, the drive of the supercharger 18 is stopped, the bypass opening / closing valve 21 is opened, and the flow rate control valve 47 is closed. At this time, the intake air passes through the bypass opening / closing valve 21 and the surge tank 19
Flows into.

【0066】最後に触媒暖機制御領域ではスーパーチャ
ージャ18を駆動するとともにバイパス開閉弁21を閉
じ、流量制御弁47を開放する。これにより、過給され
た空気の一部が2次エアとして連通路46を介して触媒
上流に供給され、触媒29の暖機が促進される。なお、
このときには上記各実施例と同じように連通路46を介
して供給された空気量に応じて燃料噴射量を増量する。
なお、この触媒暖機制御は第1実施例と同様に、触媒2
9の暖機具合が排出ガス浄化を促進させる下限温度まで
上昇してから活性化温度となるまで実行される。
Finally, in the catalyst warm-up control area, the supercharger 18 is driven, the bypass opening / closing valve 21 is closed, and the flow rate control valve 47 is opened. As a result, a part of the supercharged air is supplied as secondary air to the upstream side of the catalyst via the communication passage 46, and the warm-up of the catalyst 29 is promoted. In addition,
At this time, the fuel injection amount is increased in accordance with the amount of air supplied through the communication passage 46 as in the above-described embodiments.
It should be noted that this catalyst warm-up control is similar to that of the first embodiment.
The warm-up condition of 9 is executed until the activation temperature is reached after the temperature has risen to the lower limit temperature for promoting exhaust gas purification.

【0067】このように、過給エアの一部を2次エアと
して供給するための流路がEGR通路37でなくとも、
スーパーチャージャ下流と触媒上流とを連通する連通路
46と流量制御弁47とがあれば、第1,第2実施例と
同様の制御を実行でき、同様の効果を得ることができ
る。
As described above, even if the flow path for supplying a part of the supercharged air as the secondary air is not the EGR passage 37,
If the communication passage 46 that connects the downstream side of the supercharger and the upstream side of the catalyst and the flow rate control valve 47 are provided, the same control as in the first and second embodiments can be executed, and the same effect can be obtained.

【0068】また、この流量制御弁47は連通路46を
開放/遮断する開閉弁でも開度をリニアに制御できる弁
であっても良い。
The flow rate control valve 47 may be an open / close valve that opens / closes the communication passage 46 or a valve that can linearly control the opening.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の第1実施例を示すエンジ
ン制御システムの概略構成図
FIG. 1 is a schematic configuration diagram of an engine control system showing a first example of an embodiment of the present invention.

【図2】ベースルーチンの処理の流れを示すフローチャ
ート
FIG. 2 is a flowchart showing a flow of processing of a base routine.

【図3】触媒暖機制御領域判定ルーチンの処理の流れを
示すフローチャート
FIG. 3 is a flowchart showing a processing flow of a catalyst warm-up control region determination routine.

【図4】触媒未暖機時CSCマップを概念的に示す図FIG. 4 is a diagram conceptually showing a CSC map when the catalyst is not warmed up.

【図5】燃料噴射制御ルーチンの処理の流れを示すフロ
ーチャート
FIG. 5 is a flowchart showing a flow of processing of a fuel injection control routine.

【図6】エンジン回転数NEから触媒暖機増量係数FS
Cを算出するテーブルを概念的に示す図
FIG. 6 is a graph showing the engine speed NE to the catalyst warm-up increase coefficient FS.
The figure which shows notionally the table which calculates C

【図7】三方弁制御ルーチンの処理の流れを示すフロー
チャート
FIG. 7 is a flowchart showing a processing flow of a three-way valve control routine.

【図8】各制御領域におけるEGRガス又は二次空気の
流れを説明する図
FIG. 8 is a diagram illustrating the flow of EGR gas or secondary air in each control region.

【図9】EGR弁制御ルーチンの処理の流れを示すフロ
ーチャート
FIG. 9 is a flowchart showing a processing flow of an EGR valve control routine.

【図10】エンジン回転数NEと吸入空気量QAから二
次空気量tSAirを算出するマップを概念的に示す図
FIG. 10 is a diagram conceptually showing a map for calculating a secondary air amount tSAir from an engine speed NE and an intake air amount QA.

【図11】S/Cクラッチ制御ルーチンの処理の流れを
示すフローチャート
FIG. 11 is a flowchart showing a processing flow of an S / C clutch control routine.

【図12】バイパス開閉弁制御ルーチンの処理の流れを
示すフローチャート
FIG. 12 is a flowchart showing a processing flow of a bypass opening / closing valve control routine.

【図13】触媒暖機制御の挙動を示すタイムチャートFIG. 13 is a time chart showing the behavior of catalyst warm-up control.

【図14】三方弁、バイパス開閉弁、EGR弁の挙動を
示すタイムチャート
FIG. 14 is a time chart showing the behavior of a three-way valve, a bypass opening / closing valve, and an EGR valve.

【図15】本発明の実施の形態の第2実施例を示すエン
ジン制御システムの概略構成図
FIG. 15 is a schematic configuration diagram of an engine control system showing a second example of the embodiment of the present invention.

【図16】第2実施例の触媒暖機制御領域判定ルーチン
の主要部の処理の流れを示すフローチャート
FIG. 16 is a flowchart showing the flow of processing of the main part of the catalyst warm-up control region determination routine of the second embodiment.

【図17】本発明の実施の形態の第3実施例を示すエン
ジン制御システムの概略構成図
FIG. 17 is a schematic configuration diagram of an engine control system showing a third example of the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…エンジン(内燃機関)、12…吸気管、15…吸
気量センサ、18…スーパーチャージャ(過給機)、1
9…サージタンク、20…バイパス吸気路、21…バイ
パス開閉弁、25…回転角センサ、27…水温センサ、
28…排気管、29…触媒、30…空燃比センサ、31
…排出ガス還流口、33…EGR通路(排出ガス還流通
路)、34…EGR弁(排出ガス還流制御弁)、35…
三方弁(通路切替手段)、36,37…通路、38…電
子制御回路(過給機制御手段,触媒暖機判定手段,触媒
暖機制御手段,切替制御手段,計時手段)、45…触媒
温度センサ、46…連通路、47…流量制御弁。
11 ... Engine (internal combustion engine), 12 ... Intake pipe, 15 ... Intake amount sensor, 18 ... Supercharger (supercharger), 1
9 ... Surge tank, 20 ... Bypass intake passage, 21 ... Bypass opening / closing valve, 25 ... Rotation angle sensor, 27 ... Water temperature sensor,
28 ... Exhaust pipe, 29 ... Catalyst, 30 ... Air-fuel ratio sensor, 31
Exhaust gas recirculation port, 33 ... EGR passage (exhaust gas recirculation passage), 34 ... EGR valve (exhaust gas recirculation control valve), 35 ...
Three-way valve (passage switching means), 36, 37 ... Passage, 38 ... Electronic control circuit (supercharger control means, catalyst warm-up determination means, catalyst warm-up control means, switching control means, timing means), 45 ... Catalyst temperature Sensor, 46 ... Communication passage, 47 ... Flow control valve.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02D 43/00 301 F02D 43/00 301N 301H 45/00 360 45/00 360C F02M 25/07 550 F02M 25/07 550R 570 570P ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location F02D 43/00 301 F02D 43/00 301N 301H 45/00 360 45/00 360C F02M 25/07 550 F02M 25/07 550R 570 570P

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 排気系に設けられた排出ガス浄化用の触
媒と、排出ガスの一部を前記触媒の上流側から吸気系へ
還流させる排出ガス還流通路と、この排出ガス還流通路
を流れる排出ガスの量を調整する排出ガス還流制御弁
と、吸気系に設けられた過給機とを備えた内燃機関の排
出ガス浄化装置において、 前記内燃機関の運転状態が過給領域か否かを判定して前
記過給機の駆動/停止を制御する過給機制御手段と、 前記触媒の暖機具合を判定する触媒暖機判定手段と、 前記触媒暖機判定手段により前記触媒が未暖機状態と判
定されているときには前記過給機の駆動中に前記排出ガ
ス還流制御弁を開放して過給エアの一部を前記排出ガス
還流通路を逆流させて排気系へ供給すると共に前記内燃
機関への燃料噴射量をリッチ側に制御する触媒暖機制御
手段とを備えたことを特徴とする内燃機関の排出ガス浄
化装置。
1. A catalyst for purifying exhaust gas provided in an exhaust system, an exhaust gas recirculation passage for recirculating a part of exhaust gas from an upstream side of the catalyst to an intake system, and an exhaust gas flowing through the exhaust gas recirculation passage. In an exhaust gas purifying apparatus for an internal combustion engine, comprising an exhaust gas recirculation control valve for adjusting the amount of gas and a supercharger provided in an intake system, it is determined whether or not the operating state of the internal combustion engine is in a supercharging region. A supercharger control means for controlling the drive / stop of the supercharger, a catalyst warm-up determination means for determining the warm-up state of the catalyst, and a catalyst warm-up state determined by the catalyst warm-up determination means. When it is determined that the exhaust gas recirculation control valve is opened while the supercharger is being driven, a part of the supercharged air is supplied to the exhaust system by flowing back through the exhaust gas recirculation passage and to the internal combustion engine. Catalyst warm-up control that controls the fuel injection amount of fuel to the rich side An exhaust gas purifying apparatus for an internal combustion engine, comprising: a control means.
【請求項2】 前記過給機制御手段は、前記触媒暖機判
定手段により前記触媒が未暖機状態と判定されたときに
前記過給領域を拡大することを特徴とする請求項1に記
載の内燃機関の排出ガス浄化装置。
2. The supercharger control means expands the supercharge region when the catalyst warm-up determination means determines that the catalyst is not warmed up. Exhaust gas purification device for internal combustion engine.
【請求項3】 前記排出ガス還流通路を前記過給機の上
流側と下流側とに切り替える通路切替手段と、触媒暖機
制御時及び非過給時は前記通路切替手段を前記過給機の
下流側に切り替え、触媒暖機制御時以外の過給時は前記
通路切替手段を前記過給機の上流側に切り替える切替制
御手段とを備えたことを特徴とする請求項1又は2に記
載の内燃機関の排出ガス浄化装置。
3. A passage switching means for switching the exhaust gas recirculation passage between an upstream side and a downstream side of the supercharger, and the passage switching means for the supercharger during catalyst warm-up control and non-supercharging. 3. The switching control means for switching to the downstream side and switching the passage switching means to the upstream side of the supercharger during supercharging other than during catalyst warm-up control. Exhaust gas purification device for internal combustion engine.
【請求項4】 機関始動後の経過時間を計時する計時手
段を備え、 前記触媒暖機判定手段は、前記計時手段の計時時間によ
って前記触媒の暖機具合を判定することを特徴とする請
求項1乃至3のいずれかに記載の内燃機関の排出ガス浄
化装置。
4. The catalyst warm-up determining means comprises a clocking means for clocking an elapsed time after the engine is started, and the catalyst warm-up determining means determines the warm-up condition of the catalyst based on the clocking time of the clocking means. The exhaust gas purifying apparatus for an internal combustion engine according to any one of 1 to 3.
【請求項5】 前記触媒の温度又は触媒温度を反映した
温度情報を検出する温度センサを備え、 前記触媒暖機判定手段は、前記温度センサにより直接又
は間接的に検出した触媒温度によって前記触媒の暖機具
合を判定することを特徴とする請求項1乃至3のいずれ
かに記載の内燃機関の排出ガス浄化装置。
5. A temperature sensor for detecting the temperature of the catalyst or temperature information reflecting the catalyst temperature, wherein the catalyst warm-up determination means determines whether the catalyst temperature of the catalyst is directly or indirectly detected by the temperature sensor. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the degree of warm-up is determined.
【請求項6】 排気系に設けられた排出ガス浄化用の触
媒と、 排出ガスの一部を前記触媒の上流側から吸気系へ還流さ
せる排出ガス還流通路と、 前記排出ガス還流通路中に設けられた排出ガス還流制御
弁と、 吸気系に設けられた過給機と、 前記過給機と並列に設けられたバイパス吸気路と、 前記バイパス吸気路中に設けられ、前記過給機の停止中
に該バイパス吸気路を開放して吸入空気を該バイパス吸
気路を通して前記内燃機関に供給するバイパス開閉弁
と、 前記排出ガス還流通路を前記過給機の上流側と下流側と
に切り替える通路切替手段とを備え、 触媒暖機制御時は、前記バイパス開閉弁を閉鎖して前記
過給機を駆動すると共に前記通路切替手段を前記過給機
の下流側に切り替えて前記排出ガス還流制御弁を開放し
て過給エアの一部を前記排出ガス還流通路を逆流させて
前記排気系へ供給し、且つ前記内燃機関への燃料噴射量
をリッチ側に制御し、 触媒暖機制御時以外の過給時は、前記バイパス開閉弁を
閉鎖して前記過給機を駆動すると共に前記通路切替手段
を前記過給機の上流側に切り替えて排出ガス還流制御を
行い、 非過給時は、前記過給機を停止して前記バイパス開閉弁
を開放すると共に前記通路切替手段を前記過給機の下流
側に切り替えて排出ガス還流制御を行うことを特徴とす
る内燃機関の排出ガス浄化装置。
6. A catalyst for purifying exhaust gas provided in an exhaust system, an exhaust gas recirculation passage for returning a part of exhaust gas from an upstream side of the catalyst to an intake system, and provided in the exhaust gas recirculation passage. The exhaust gas recirculation control valve, the supercharger provided in the intake system, the bypass intake passage provided in parallel with the supercharger, the bypass intake passage provided in the bypass intake passage to stop the supercharger. A bypass opening / closing valve for opening the bypass intake passage to supply intake air to the internal combustion engine through the bypass intake passage, and a passage switching for switching the exhaust gas recirculation passage between an upstream side and a downstream side of the supercharger Means for controlling the catalyst warm-up, the bypass opening / closing valve is closed to drive the supercharger, and the passage switching means is switched to the downstream side of the supercharger to operate the exhaust gas recirculation control valve. Open and part of the supercharged air The exhaust gas recirculation passage is reversely flown to supply to the exhaust system, the fuel injection amount to the internal combustion engine is controlled to the rich side, and the bypass opening / closing valve is closed at the time of supercharging other than catalyst warm-up control To drive the supercharger and switch the passage switching means to the upstream side of the supercharger for exhaust gas recirculation control.When not supercharging, the supercharger is stopped and the bypass opening / closing valve is opened. And an exhaust gas recirculation control by switching the passage switching means to the downstream side of the supercharger to perform exhaust gas recirculation control.
【請求項7】 排気系に設けられた排出ガス浄化用の触
媒と、吸気系に設けられた過給機とを備えた内燃機関の
排出ガス浄化装置において、 前記過給機の下流と前記触媒の上流とを連通する連通路
と、 前記連通路の流量を制御する流量制御弁と、 前記内燃機関の運転状態が過給領域か否かを判定して前
記過給機の駆動/停止を制御する過給機制御手段と、 前記触媒の暖機具合を判定する触媒暖機判定手段と、 前記触媒暖機判定手段により前記触媒が未暖機状態と判
定されているときには前記過給機の駆動中に前記流量制
御弁を開放して過給エアの一部を前記連通路を介して前
記触媒の上流へ供給するとともに前記内燃機関の燃料噴
射量をリッチ側に制御する触媒暖機制御手段とを備えた
ことを特徴とする内燃機関の排出ガス浄化装置。
7. An exhaust gas purifying apparatus for an internal combustion engine, comprising: an exhaust gas purifying catalyst provided in an exhaust system; and a supercharger provided in an intake system, wherein a downstream side of the supercharger and the catalyst are provided. A communication passage communicating with an upstream of the communication passage, a flow rate control valve controlling a flow rate of the communication passage, and determining whether the operating state of the internal combustion engine is in a supercharging region to control driving / stopping of the supercharger. And a catalyst warm-up determining means for determining the warm-up state of the catalyst, and driving the supercharger when the catalyst warm-up determining means determines that the catalyst is not warmed up. And a catalyst warm-up control means for opening the flow rate control valve to supply a part of the supercharged air to the upstream side of the catalyst through the communication passage and controlling the fuel injection amount of the internal combustion engine to the rich side. An exhaust gas purifying apparatus for an internal combustion engine, comprising:
【請求項8】 前記触媒暖機判定手段により前記触媒の
暖機具合が排出ガス浄化を促進させる下限温度未満のと
き、前記触媒暖機制御手段による制御を禁止する低温暖
機制御禁止手段を備えることを特徴とする請求項1乃至
7のいずれかに記載の内燃機関の排出ガス浄化装置。
8. A low-warm engine control inhibiting means for inhibiting the control by the catalyst warm-up control means when the catalyst warm-up determination means determines that the catalyst warm-up condition is lower than a lower limit temperature for promoting exhaust gas purification. An exhaust gas purifying apparatus for an internal combustion engine according to any one of claims 1 to 7, characterized in that.
JP7295034A 1995-09-18 1995-11-14 Exhaust gas purifying device of internal combustion engine Pending JPH09137740A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7295034A JPH09137740A (en) 1995-11-14 1995-11-14 Exhaust gas purifying device of internal combustion engine
US08/706,692 US5845492A (en) 1995-09-18 1996-09-06 Internal combustion engine control with fast exhaust catalyst warm-up
US09/168,321 US5974792A (en) 1995-09-18 1998-10-08 Internal combustion engine control with fast exhaust catalyst warm-up

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7295034A JPH09137740A (en) 1995-11-14 1995-11-14 Exhaust gas purifying device of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH09137740A true JPH09137740A (en) 1997-05-27

Family

ID=17815468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7295034A Pending JPH09137740A (en) 1995-09-18 1995-11-14 Exhaust gas purifying device of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH09137740A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005273651A (en) * 2004-02-25 2005-10-06 Usui Kokusai Sangyo Kaisha Ltd Supercharging system for internal combustion engine
JP2006169968A (en) * 2004-12-13 2006-06-29 Nissan Motor Co Ltd Control system for spark-ignition internal combustion engine of direct injection type
JP2009002286A (en) * 2007-06-22 2009-01-08 Toyota Motor Corp Exhaust recirculating device of internal combustion engine
KR20170062580A (en) * 2015-11-27 2017-06-08 현대중공업 주식회사 Engine having Controlling Temperature of Exhaust Gas Function

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005273651A (en) * 2004-02-25 2005-10-06 Usui Kokusai Sangyo Kaisha Ltd Supercharging system for internal combustion engine
JP4526395B2 (en) * 2004-02-25 2010-08-18 臼井国際産業株式会社 Internal combustion engine supercharging system
JP2006169968A (en) * 2004-12-13 2006-06-29 Nissan Motor Co Ltd Control system for spark-ignition internal combustion engine of direct injection type
JP2009002286A (en) * 2007-06-22 2009-01-08 Toyota Motor Corp Exhaust recirculating device of internal combustion engine
KR20170062580A (en) * 2015-11-27 2017-06-08 현대중공업 주식회사 Engine having Controlling Temperature of Exhaust Gas Function

Similar Documents

Publication Publication Date Title
US5974792A (en) Internal combustion engine control with fast exhaust catalyst warm-up
US5617720A (en) Method for controlling the fuel supply for an internal combustion engine with a heatable catalytic converter
JP4075706B2 (en) Exhaust gas purification device
US4376426A (en) Split type internal combustion engine
JP2589214B2 (en) Fuel supply control device for internal combustion engine with supercharger
JPH09137740A (en) Exhaust gas purifying device of internal combustion engine
JPH04284147A (en) Exhaust gas recirculating device for engine
US5946907A (en) Engine catalyst activation determining device and engine controller related thereto
JP3622290B2 (en) Control device for internal combustion engine
JP2000130221A (en) Fuel injection control device of internal combustion engine
JP2004346917A (en) Internal combustion engine control device
JP3533891B2 (en) Diesel engine intake control device
JP3219259B2 (en) Catalyst warm-up device
JP3700221B2 (en) Exhaust gas purification device for internal combustion engine
JP2001159361A (en) White smoke exhaust restraining device for internal combustion engine
JP3123438B2 (en) Exhaust gas purification device for internal combustion engine
JPH09203314A (en) Exhaust gas purifying device for engine
JP3601209B2 (en) Failure diagnosis device for intake control device of internal combustion engine
JP3436173B2 (en) Intake control device for internal combustion engine
JPH08254145A (en) Exhaust purifying device for internal combustion engine
JP2002013429A (en) Exhaust emission control device of internal combustion engine
JP2024089280A (en) Engine with EGR device
KR0156761B1 (en) Control device of internal combustion engine
JP3536580B2 (en) Internal combustion engine
US20020062640A1 (en) Device and method for controlling air-fuel ratio of internal combustion engine