JPH09133888A - Optical scanning device - Google Patents

Optical scanning device

Info

Publication number
JPH09133888A
JPH09133888A JP29103995A JP29103995A JPH09133888A JP H09133888 A JPH09133888 A JP H09133888A JP 29103995 A JP29103995 A JP 29103995A JP 29103995 A JP29103995 A JP 29103995A JP H09133888 A JPH09133888 A JP H09133888A
Authority
JP
Japan
Prior art keywords
lens
deflector
optical
optical scanning
scanned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29103995A
Other languages
Japanese (ja)
Other versions
JP3512538B2 (en
Inventor
Akihisa Itabashi
彰久 板橋
Yasutaka Izumi
康隆 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP29103995A priority Critical patent/JP3512538B2/en
Publication of JPH09133888A publication Critical patent/JPH09133888A/en
Application granted granted Critical
Publication of JP3512538B2 publication Critical patent/JP3512538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the degree of freedom of aberration compensation and improve image forming performance and speed equality by making at least one surface of a long-sized toroidal lens of a correction optical system aspherical. SOLUTION: Luminous flux from a light source 1 after passing through a condenser lens 2 passes through a linear image forming optical element to form a long linear image nearby the deflecting and reflecting surface of an optical deflector 4 along a horizontal scarining corresponding direction. The optical deflector 4 reflects this luminous flux and deflects the reflected luminous flux at an equal angular velocity. An fθ lens 5 and a long-sized optical element 6 are arranged between the optical deflector 4 and a scanned surface 7 and a composite system of respective lenses and a return mirror 8 bend the optical path to form an imaging spot on the scanned surface 7. The surface of this long-sized optical element 6 on the side of the deflector 4 consists of a barrel-shaped toroidal surface which gradually decreases in the radius of curvature in a vertical scanning direction with the distance in the horizontal scanning corresponding direction. In this case, the lens is made aspherical in the main scanning corresponding direction of the long-sized optical element 6 as the correction optical system, specially, in the horizontal scanning corresponding direction of the barrel-shaped toroidal surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光走査装置、特に
その光書込レンズ系に関するもので、レーザープリン
タ、レーザー複写機、レーザーファクシミリ等に適用可
能なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical scanning device, and more particularly to an optical writing lens system thereof, which is applicable to a laser printer, a laser copying machine, a laser facsimile and the like.

【0002】[0002]

【従来の技術】光ビームを光偏向装置により偏向させて
被走査面を光走査する光走査装置は、レーザープリン
タ、レーザー複写機、レーザーファクシミリ等における
光書込装置としてよく知られている。光ビームによって
被走査面を走査する際、光走査に伴って光ビームの結像
スポット径が変動したり、結像位置すなわち像高が変動
するようであれば、被走査面に書き込まれるドットの大
きさが不均一になるので、良好な画像を形成することが
できない。そこで、光ビームが被走査面上に形成する結
像スポットの径を安定させるための各種の工夫がなされ
ている。以下、本発明に関連のある光走査装置従来技術
について簡単に説明する。
2. Description of the Related Art An optical scanning device which deflects a light beam by an optical deflecting device to optically scan a surface to be scanned is well known as an optical writing device in laser printers, laser copying machines, laser facsimiles and the like. When scanning the surface to be scanned with the light beam, if the image forming spot diameter of the light beam fluctuates or the image forming position, that is, the image height fluctuates with the light scanning, the dots written on the surface to be scanned are Since the sizes are non-uniform, a good image cannot be formed. Therefore, various measures have been taken to stabilize the diameter of the image forming spot formed by the light beam on the surface to be scanned. A conventional optical scanning device related to the present invention will be briefly described below.

【0003】特開平3−33712号公報には、複数枚
のfθレンズと長尺トロイダルレンズを有し、トロイダ
ルレンズは、副走査方向の曲率半径が光軸から主走査対
応方向に離れるに従い小さくなる樽型トロイダル面を凹
レンズ面として含んでなる走査光学系が記載されてい
る。特開昭61−175607号公報には、2枚の凸レ
ンズからなり、入射瞳に最も近い面が瞳面側に凹面を向
けた凸メニスカスレンズであるfθレンズを有してなる
光走査光学系中の結像レンズであって、結像レンズの走
査面側に主走査方向の屈折力が弱いアナモフィックレン
ズを配し、少なくともその1面を非球面化してなる走査
光学系が記載されている。特公平3−49407号公報
には、結像レンズ中の面倒れ補正効果を有する素子のう
ち、走査面に近い素子に、主走査断面内で非球面を含ん
でなる走査光学系が記載されている。
Japanese Unexamined Patent Publication (Kokai) No. 3-33712 has a plurality of fθ lenses and a long toroidal lens, and the toroidal lens has a curvature radius in the sub-scanning direction that becomes smaller as it goes away from the optical axis in the main scanning corresponding direction. A scanning optical system is described which comprises a barrel-shaped toroidal surface as a concave lens surface. Japanese Patent Application Laid-Open No. 61-175607 discloses an optical scanning optical system including an fθ lens which is a convex meniscus lens having two convex lenses, and the surface closest to the entrance pupil is concave on the pupil surface side. The imaging optical system described in (1), in which an anamorphic lens having a weak refracting power in the main scanning direction is disposed on the scanning surface side of the imaging lens, and at least one surface thereof is made aspheric. Japanese Examined Patent Publication (Kokoku) No. 3-49407 describes a scanning optical system including an aspherical surface in a main scanning section in an element near a scanning surface among elements having a surface tilt correction effect in an imaging lens. There is.

【0004】[0004]

【発明が解決しようとする課題】近年、光走査装置を用
いたレーザープリンタ、レーザー複写機、レーザーファ
クシミリ等の画像形成装置では、画像の高密度化、高画
質化が望まれており、そのためには、像面湾曲の低減に
よる結像性能の向上と、走査光の被走査面上での等速性
すなわちリニアリティの向上が必要となる。像面湾曲が
大きいと像高間でのビームスポット径が不均一になり、
画素サイズも不均一になり、解像度の低下へとつなが
る。リニアリティが悪いと被走査面上での部分部分での
画像の大きさに違いが発生し、図面などを出力した場合
などに特に問題になる。
In recent years, in image forming apparatuses such as laser printers, laser copying machines, and laser facsimiles that use an optical scanning device, there is a demand for higher density and higher image quality. It is necessary to improve the imaging performance by reducing the curvature of field and improve the uniform speed of the scanning light on the surface to be scanned, that is, the linearity. If the field curvature is large, the beam spot diameter between image heights becomes uneven,
The pixel size also becomes non-uniform, leading to a reduction in resolution. If the linearity is poor, the size of the image in the partial portion on the surface to be scanned will differ, which becomes a particular problem when a drawing or the like is output.

【0005】しかしながら、特開平3−33712号公
報、特開昭61−175607号公報及び特公平3−4
9407号公報に記載されているものは、何れも像面湾
曲、リニアリティが現在望まれている性能を満足してい
ない。
However, JP-A-3-33712, JP-A-61-175607 and JP-B-3-4.
Nothing disclosed in Japanese Patent No. 9407 satisfies the currently desired performances in field curvature and linearity.

【0006】本発明は、このような従来技術の問題点に
鑑みてなされたもので、高密度で高画質の画像を得るた
めに、請求項1記載の発明は、像面湾曲と等速性能の向
上を図った光走査装置を提供することを目的とする。
The present invention has been made in view of the above problems of the prior art. In order to obtain a high-density and high-quality image, the invention according to claim 1 is characterized by field curvature and constant velocity performance. It is an object of the present invention to provide an optical scanning device that is improved.

【0007】請求項2記載の発明は、補正光学系を構成
する長尺トロイダルレンズを主走査方向に非球面化する
ことにより、等速性の向上を図った光走査装置を提供す
ることを目的とする。
It is an object of the present invention to provide an optical scanning device in which constant velocity is improved by making a long toroidal lens constituting a correction optical system aspherical in the main scanning direction. And

【0008】請求項3記載の発明は、長尺トロイダルレ
ンズの非球面を、樽型トロイダル面を非球面化すること
により、反対側の面に通常のトロイダル面を使用するこ
とができるようにした光走査装置を提供することを目的
とする。
According to the third aspect of the present invention, by making the aspherical surface of the long toroidal lens the aspherical surface of the barrel-shaped toroidal surface, a normal toroidal surface can be used on the opposite surface. An object is to provide an optical scanning device.

【0009】請求項4記載の発明は、長尺トロイダルレ
ンズの1面のみを非球面とすることにより、加工の容易
性を上げることができる光走査装置を提供することを目
的とする。
It is an object of the present invention to provide an optical scanning device capable of improving the easiness of processing by forming only one surface of the long toroidal lens as an aspherical surface.

【0010】請求項5記載の発明は、上記非球面の変化
量を所定の範囲内に規制することにより、像面湾曲の補
正及び走査等速性の向上をバランス良く図ることができ
る光走査装置を提供することを目的とする。
According to a fifth aspect of the present invention, by controlling the amount of change of the aspherical surface within a predetermined range, it is possible to achieve a good balance between correction of field curvature and improvement of scanning constant velocity. The purpose is to provide.

【0011】請求項6記載の発明は、作製の容易なレン
ズ構成で、かつ、最小枚数のレンズ枚数で、高性能を維
持することができる光学系を構成することができる光走
査装置を提供することを目的とする。
According to a sixth aspect of the present invention, there is provided an optical scanning device capable of constructing an optical system having a lens configuration which is easy to manufacture and which can maintain high performance with a minimum number of lenses. The purpose is to

【0012】請求項7記載の発明は、請求項6記載の発
明よりさらに高性能化し、色消し化を図りながら、最少
レンズ構成枚数で光学系を構成することができる光走査
装置を提供することを目的とする。
According to a seventh aspect of the present invention, there is provided an optical scanning device capable of constructing an optical system with a minimum number of lens components while achieving higher performance than that of the sixth aspect and achieving achromatization. With the goal.

【0013】請求項8記載の発明は、光源装置から出射
される光束を平行光束とすることにより、光源装置の取
り扱いを容易にすることができる光走査装置を提供する
ことを目的とする。
It is an object of the present invention to provide an optical scanning device capable of facilitating the handling of the light source device by converting the light beam emitted from the light source device into a parallel light beam.

【0014】請求項9記載の発明は、偏向器を回転多面
鏡とすることにより、偏向器の回転数を下げることがで
きる光走査装置を提供することを目的とする。
It is an object of the present invention to provide an optical scanning device in which the number of revolutions of the deflector can be lowered by using the deflector as a rotary polygon mirror.

【0015】請求項10記載の発明は、光源を半導体レ
ーザとすることにより、光源装置の小型化を図ることが
できる光走査装置を提供することを目的とする。
It is an object of the present invention to provide an optical scanning device capable of downsizing the light source device by using a semiconductor laser as the light source.

【0016】[0016]

【課題を解決するための手段】上記の目的を達成するた
めに請求項1記載の発明は、偏向器と被走査面との間
に、偏向器により偏向された光束を被走査面上に光スポ
ットとして結像させ、また副走査方向に関して、偏向器
の偏向反射面と被走査面とを幾何光学的に略共役な関係
とする光学系を設け、この光学系は、偏向器により偏向
された光束を被走査面上を略等速度的に走査させかつ被
走査面上に結像させる光走査用レンズと面倒れ補正光学
系とで構成し、上記光走査用レンズは複数枚で構成し、
上記補正光学系は光走査用レンズと被走査面との間に配
置され、副走査方向の曲率半径が光軸から主走査対応方
向に離れるに従い小さくなる樽型トロイダル面を凹レン
ズ面として有する長尺トロイダルレンズとし、この長尺
トロイダルレンズは少なくともその1つの面を非球面化
したことを特徴とする。
In order to achieve the above object, the invention according to claim 1 provides a light beam deflected by the deflector between the deflector and the surface to be scanned onto the surface to be scanned. An optical system is provided that forms an image as a spot, and has a deflective reflection surface of the deflector and a surface to be scanned in a geometrically-optically substantially conjugate relationship with respect to the sub-scanning direction. The optical system is deflected by the deflector. It is composed of an optical scanning lens that scans the light beam on the surface to be scanned at a substantially constant speed and forms an image on the surface to be scanned, and a surface tilt correction optical system, and the optical scanning lens is composed of a plurality of lenses.
The correction optical system is arranged between the optical scanning lens and the surface to be scanned, and has a long barrel-shaped toroidal surface as a concave lens surface whose radius of curvature in the sub-scanning direction becomes smaller as it goes away from the optical axis in the main scanning corresponding direction. The long toroidal lens is a toroidal lens, and at least one surface of the long toroidal lens is aspherical.

【0017】請求項2記載の発明のように、長尺トロイ
ダルレンズは主走査方向において非球面化されるとよい
し、請求項3記載の発明のように、長尺トロイダルレン
ズの非球面は樽型トロイダル面を非球面化したものであ
るとよく、また、請求項4記載の発明のように、長尺ト
ロイダル面はその1つの面のみ非球面化したものである
となおよい。
It is preferable that the long toroidal lens is aspherical in the main scanning direction as in the second aspect of the invention, and the aspherical surface of the long toroidal lens is the barrel in the third aspect of the invention. It is preferable that the mold toroidal surface is an aspherical surface, and it is more preferable that only one of the long toroidal surfaces is an aspherical surface as in the invention of claim 4.

【0018】請求項4記載の発明のように長尺トロイダ
ル面はその1つの面のみ非球面化した場合、請求項5記
載の発明のように、偏向走査される光束の最大画角光線
が非球面と交差する位置における、非球面の非球面変化
量ΔXは、主走査方向の全系の焦点距離をfmとし、偏
向器から被走査面方向を+とするするとき、 −0.0015<ΔX/fm<0.01 を満足するとなおよい。
When only one of the long toroidal surfaces is made aspherical as in the fourth aspect of the invention, the maximum angle-of-view ray of the light beam deflectively scanned is non-spherical as in the fifth aspect of the invention. The aspherical surface variation ΔX of the aspherical surface at the position intersecting the spherical surface is −0.0015 <ΔX, where fm is the focal length of the entire system in the main scanning direction and + is the scanning surface direction from the deflector. It is more preferable to satisfy /fm<0.01.

【0019】請求項5記載の発明において、請求項6記
載の発明のように、走査用レンズを2枚のレンズで構成
し、偏向器側のレンズは偏向器側に凹面を向けたメニス
カスレンズ、被走査側のレンズは凸レンズで構成すると
よく、また、請求項7記載の発明のように、走査用レン
ズを3枚のレンズで構成し、偏向器側のレンズは凹レン
ズ、残りの2枚のレンズは凸レンズで構成すればなおよ
い。
In the invention described in claim 5, as in the invention described in claim 6, the scanning lens is composed of two lenses, and the lens on the deflector side is a meniscus lens having a concave surface facing the deflector side, The lens on the scanned side may be composed of a convex lens, and the scanning lens may be composed of three lenses, and the lens on the deflector side may be a concave lens and the remaining two lenses. It is more preferable to use a convex lens.

【0020】請求項8記載の発明のように、光源装置か
ら射出される光束は略平行光束としてもよく、請求項9
記載の発明のように、光ビームを偏向する偏向器は回転
多面鏡で構成してもよく、請求項10記載の発明のよう
に、光源装置における光源は半導体レーザであってもよ
い。
According to the invention described in claim 8, the light beam emitted from the light source device may be a substantially parallel light beam.
As in the invention described above, the deflector for deflecting the light beam may be constituted by a rotating polygon mirror, and as in the invention described in claim 10, the light source in the light source device may be a semiconductor laser.

【0021】[0021]

【発明の実施の形態】以下、図面を参照しながら本発明
にかかる光走査装置の実施の形態について説明する。図
1において、符号1は光源を示している。この例におい
ては光源1は半導体レーザであり、発散性の光束を放射
する。光源1としてはほかにLED等を用いることがで
きる。光源1からの光束は集光レンズ2を通ったのち、
シリンドリカルレンズからなる線像結像光学素子3を通
り、光偏向器4の偏向反射面近傍に主走査対応方向に長
い線像が結像される。光偏向器4は入射してくる光束を
反射し、反射光束を等角速度的に偏向する。光偏向器4
として、この例では回転多面鏡(ポリゴンミラー)が用
いられている。光偏向器4と被走査面7との間にfθレ
ンズ5と長尺光学素子6が配置され、それらのレンズの
合成系により、また、折り返しミラー8で光路を曲げら
れ、被走査面7上に結像スポットが形成される。前記偏
向器4の回転によって上記結像スポットは、被走査面7
上を走査する。図1において符号100は、光走査の同
期を取るための同期信号検知系を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of an optical scanning device according to the present invention will be described with reference to the drawings. In FIG. 1, reference numeral 1 indicates a light source. In this example, the light source 1 is a semiconductor laser and emits a divergent light beam. As the light source 1, an LED or the like can be used instead. After the light flux from the light source 1 passes through the condenser lens 2,
A long line image is formed in the main scanning corresponding direction in the vicinity of the deflection reflection surface of the optical deflector 4 through the line image forming optical element 3 formed of a cylindrical lens. The light deflector 4 reflects the incoming light flux and deflects the reflected light flux at a constant angular velocity. Optical deflector 4
In this example, a rotary polygon mirror (polygon mirror) is used. The fθ lens 5 and the long optical element 6 are arranged between the optical deflector 4 and the surface to be scanned 7, and the optical path is bent by the folding mirror 8 by the combination system of these lenses, and the surface to be scanned 7 is scanned. An imaging spot is formed at. Due to the rotation of the deflector 4, the imaging spot is moved to the scanned surface 7
Scan above. In FIG. 1, reference numeral 100 indicates a synchronization signal detection system for synchronizing the optical scanning.

【0022】図2(a)は上記光走査装置の偏向走査面
内(主走査断面)での機能を説明するための平面図であ
る。光源1からの光束は集光レンズ2を通り、線像結像
光学素子3を通過した後、偏向器4の偏向反射面4aで
反射され、偏向器4の回転に伴ってその反射光束が偏向
される。さらに偏向光束は2枚のレンズからなるfθレ
ンズ5と長尺光学素子6の合成系により被走査面7上に
結像され、かつ、その結像スポットの走査速度は一定に
保たれる。上記fθレンズ5と長尺光学素子6は、共働
して、偏向器4により偏向された光束を被走査面7上を
略等速度的に走査させ、かつ、被走査面上に結像させる
ための光走査用レンズと補正光学系を構成している。
FIG. 2A is a plan view for explaining the function in the deflection scanning plane (main scanning section) of the optical scanning device. The light flux from the light source 1 passes through the condenser lens 2, the linear image forming optical element 3, and then is reflected by the deflection reflection surface 4 a of the deflector 4, and the reflected light flux is deflected as the deflector 4 rotates. To be done. Further, the deflected light beam is imaged on the surface to be scanned 7 by the synthetic system of the fθ lens 5 composed of two lenses and the long optical element 6, and the scanning speed of the imaged spot is kept constant. The fθ lens 5 and the long optical element 6 cooperate with each other to cause the light beam deflected by the deflector 4 to scan the surface to be scanned 7 at a substantially constant speed and form an image on the surface to be scanned. And an optical scanning lens and a correction optical system.

【0023】図2(b)は上記光走査装置の偏向走査面
と直交する方向(副走査断面)での機能、すなわち、偏
向器の面倒れの影響を補正する機能を説明するための側
面図である。光源1から出射した光束は集光レンズ2を
通り、線像結像光学素子3によって、偏向器4の偏向反
射面4aの近傍に線状に結像する。2枚の球面単レンズ
から構成されるfθレンズ5を通り、主走査方向と副走
査方向の屈折力が異なる面倒れ補正用長尺光学素子6を
介し被走査面7上に光スポットを形成するが、fθレン
ズ5と面倒れ補正用長尺光学素子6とは副走査断面内の
パワー配置と位置関係が、偏向反射面4aと被走査面7
とが幾何光学的に略共役な関係になるように配分され、
かつ配置されている。従って、偏向器4の偏向反射面4
aが偏向走査面と直交する方向に傾いて4a’で示す位
置に変化すると、fθレンズ5及び長尺光学素子6を通
過する光束は破線で示されるように変化するが、被走査
面7上での結像位置はほとんど変化せず、偏向反射面4
aが符号4a’で示す位置まで倒れたことによる影響は
補正されている。
FIG. 2B is a side view for explaining the function in the direction (sub-scan section) orthogonal to the deflection scanning plane of the optical scanning device, that is, the function of correcting the influence of the plane tilt of the deflector. Is. The light beam emitted from the light source 1 passes through the condenser lens 2 and is linearly imaged by the line image imaging optical element 3 in the vicinity of the deflection reflection surface 4a of the deflector 4. A light spot is formed on the surface to be scanned 7 through the fθ lens 5 composed of two spherical single lenses and the surface tilt correction long optical element 6 having different refracting powers in the main scanning direction and the sub scanning direction. However, the fθ lens 5 and the surface tilt correction long optical element 6 have a power arrangement and a positional relationship in the sub-scanning cross-section, and the deflection reflection surface 4a and the surface to be scanned 7 are different.
And are distributed so that they are geometrically and optically conjugate.
And it is arranged. Therefore, the deflecting / reflecting surface 4 of the deflector 4
When a is tilted in the direction orthogonal to the deflection scanning plane and changes to the position indicated by 4a ′, the light flux passing through the fθ lens 5 and the long optical element 6 changes as indicated by the broken line, but on the scanned surface 7 The image-forming position on the screen hardly changes, and the deflective reflection surface 4
The influence of the fact that a falls to the position indicated by reference numeral 4a 'is corrected.

【0024】上記長尺光学素子6はアナモフィック面を
有している。そこで、長尺光学素子6を構成しているア
ナモフィック面について説明する。長尺光学素子6の偏
向器4側の面は、副走査方向の曲率半径が光軸を主走査
対応方向に離れるに従い小さくなる樽型トロイダル面か
ら構成される。図3は樽型トロイダル面について説明し
たものである。図3(a)において、円弧ABの曲率中
心をC1とするとき、直線X1, Y1 が円弧AB上
の点Vと円弧ABの曲率中心C1との間にあるとき、直
線X1, Y1 を回転軸として円弧ABを回転させ
ると第3図(b)のような樽の側面のような面が形成さ
れる。これが樽型トロイダル面で、長尺光学素子6はこ
の樽型トロイダル面を凹面として用いている。さらに長
尺光学素子6の被走査面側の面は一般にトロイダル面と
呼ばれており、図3(a)において、直線X1, Y1
がC1より右側にある場合(点VとC1との間にない
場合)にX1,Y1を回転軸として形成される面により
構成される。
The long optical element 6 has an anamorphic surface. Therefore, the anamorphic surface forming the long optical element 6 will be described. The surface of the long optical element 6 on the deflector 4 side is composed of a barrel-shaped toroidal surface whose radius of curvature in the sub-scanning direction becomes smaller as the optical axis moves away from the optical axis in the main scanning corresponding direction. FIG. 3 illustrates the barrel-shaped toroidal surface. In FIG. 3A, when the center of curvature of the arc AB is C1, and when the straight lines X1 and Y1 are between the point V on the arc AB and the center of curvature C1 of the arc AB, the straight lines X1 and Y1 are rotation axes. As the arc AB is rotated, a surface such as the side surface of the barrel is formed as shown in FIG. 3 (b). This is a barrel-shaped toroidal surface, and the long optical element 6 uses this barrel-shaped toroidal surface as a concave surface. Further, the surface of the long optical element 6 on the scanned surface side is generally called a toroidal surface, and in FIG. 3A, straight lines X1, Y1 are used.
Is on the right side of C1 (not between the point V and C1), it is constituted by a plane formed with X1 and Y1 as rotation axes.

【0025】光源1と集光レンズ2から構成される光源
装置から射出される光束を平行光束とした場合、光源装
置と線像結像光学素子3との配置関係(距離)を自由に
設定することが可能となるため、レイアウト設計におい
て自由度が増し、設計が容易になる。また偏向器4とし
てはガルバノミラー、単面ミラー、ピラミダルミラー、
回転多面鏡(ポリゴンミラー)といろいろ考えられる
が、回転多面鏡を用いると、モータの回転数の低減に有
利である。また回転数が同じ場合は走査スピードの向上
が図れるため、高速化に有利となる。
When the light beam emitted from the light source device composed of the light source 1 and the condenser lens 2 is a parallel light beam, the positional relationship (distance) between the light source device and the line image forming optical element 3 can be freely set. Therefore, the degree of freedom in the layout design is increased and the design is facilitated. As the deflector 4, a galvanometer mirror, a single-sided mirror, a pyramidal mirror,
Although it can be considered variously as a rotary polygon mirror (polygon mirror), the use of the rotary polygon mirror is advantageous in reducing the rotation speed of the motor. Further, when the number of rotations is the same, the scanning speed can be improved, which is advantageous for increasing the speed.

【0026】さて、本発明では、前記特開平3−337
12号公報等に記載されているような従来例より結像性
能、主に主走査方向の結像性能の向上を図るとともに、
走査等速性(リニアリティ、倍率誤差とも呼ばれる)の
向上を図るために、補正光学系である長尺光学素子6の
主走査対応方向、特に樽型トロイダル面の主走査対応方
向を非球面化している。樽型トロイダル面を非球面化し
た理由としては、反対側のトロイダル面を非球面化した
場合、副走査方向の収差補正の自由度が減り、性能を劣
化させてしまうことがあげられる。本発明は、走査等速
性の向上を目的としているため、長尺光学素子6の主走
査方向の非球面化が必要であり、トロイダルの主走査方
向のみの非球面化は基本的にありえないためである。
In the present invention, the above-mentioned Japanese Patent Laid-Open No. 3-337 is used.
In addition to improving the image forming performance, mainly in the main scanning direction, as compared with the conventional example described in Japanese Patent Publication No. 12 or the like,
In order to improve the scanning speed (also called linearity or magnification error), the main scanning direction of the long optical element 6 which is the correction optical system, especially the main scanning direction of the barrel-shaped toroidal surface is made aspheric. There is. The reason why the barrel-shaped toroidal surface is made aspherical is that when the opposite toroidal surface is made aspherical, the degree of freedom in aberration correction in the sub-scanning direction is reduced, and performance is deteriorated. Since the present invention is intended to improve the scanning uniform velocity, it is necessary to make the long optical element 6 aspheric in the main scanning direction, and basically it is impossible to make the toroidal aspheric in only the main scanning direction. Is.

【0027】そこで本発明では、樽型トロイダル面の主
走査方向を非球面化して走査等速性の向上を図り、トロ
イダル面と共働で、副走査方向において偏向反射面と被
走査面とを幾何光学的に略共役な関係に保ち、かつ像面
湾曲を補正している。
Therefore, in the present invention, the main scanning direction of the barrel-shaped toroidal surface is made aspherical to improve the scanning uniform velocity, and in cooperation with the toroidal surface, the deflective reflection surface and the scanned surface are formed in the sub-scanning direction. It maintains a geometrically-optically substantially conjugate relationship and corrects field curvature.

【0028】光走査用レンズとしては近年単玉化したも
のが見られるが(特開平7−113950号公報参
照)、光走査用レンズを非球面化する必要があったり、
光学性能的にも2枚構成の場合より劣るので高密度化・
高画質化には無理がある。レンズ加工上も、非球面を採
用しているため困難なものとなっている。そこで本発明
では、光走査用レンズを2枚構成(但し各面とも球面)
として光学性能の劣化を防ぎつつ、簡単な構成で光学系
を構成することを狙いとした。偏向器側のレンズは像面
湾曲の補正のため、偏向器側に凹面を向けたメニスカス
レンズとし、被走査面側のレンズは走査等速性向上のた
め凸レンズとした。
As the optical scanning lens, a single lens has been recently seen (see Japanese Patent Laid-Open No. 7-113950), but it is necessary to make the optical scanning lens aspherical.
The optical performance is inferior to that of the two-sheet structure, so higher density
It is impossible to improve the image quality. Also in terms of lens processing, it is difficult because it uses an aspherical surface. Therefore, in the present invention, two optical scanning lenses are provided (provided that each surface is a spherical surface).
As a result, the aim was to construct an optical system with a simple configuration while preventing deterioration of optical performance. The lens on the deflector side was a meniscus lens with a concave surface facing the deflector side to correct the field curvature, and the lens on the scanned surface side was a convex lens to improve the scanning constant velocity.

【0029】次に、近年さらなる高密度化の要望が著し
く、そのためには色収差の補正が必要となる。色収差を
補正し、かつ、光学性能を高密度化に十分対応可能なら
しめるためには、光走査用レンズは3枚構成とする必要
がある。色収差の補正を行うためには凹レンズと凸レン
ズの組み合わせが必要で、図4に示す本発明の別の実施
の形態では、色収差を補正しつつ、像面湾曲、走査等速
性の補正を行うために、光走査用レンズ5を3枚のレン
ズで構成し、この3枚のレンズのうち偏向器4側のレン
ズを凹レンズとし、残りの2枚のレンズを凸レンズとし
て配置した。
Next, in recent years, there has been a great demand for higher density, and for that purpose, correction of chromatic aberration is required. In order to correct chromatic aberration and to make the optical performance sufficiently compatible with high density, it is necessary to configure the optical scanning lens with three lenses. In order to correct chromatic aberration, a combination of a concave lens and a convex lens is required. In another embodiment of the present invention shown in FIG. 4, in order to correct chromatic aberration, the field curvature and scanning constant velocity are corrected. In addition, the optical scanning lens 5 is composed of three lenses, and the lens on the deflector 4 side among the three lenses is a concave lens, and the remaining two lenses are arranged as convex lenses.

【0030】以下、初めに光走査用レンズを2枚構成と
した場合の実施形態を示す。樽型トロイダル面は主走査
対応方向において、光軸方向の座標をX、光軸位置を原
点とする光軸直交方向の座標をYとして一般式 (ただし、Rm:光軸上の曲率半径、K:円錐定数、A
2、A3、A4・・:非球面係数)で表される形成を有
し、副走査方向に関しては、光軸上で面からRsだけ離
れ、偏向走査面内(主走査面内)において、光軸と直交
する軸を回転軸として、上記形状を回転させて形成され
る、凹の樽型トロイダル面である。ここでRmは図3
(a)ではVC1に対応し、RsはVC2に対応する。
First, an embodiment in which two optical scanning lenses are constructed will be described below. The barrel-shaped toroidal surface is a general formula in which the coordinate in the optical axis direction is X and the coordinate in the optical axis orthogonal direction with the optical axis position as the origin is Y in the main scanning corresponding direction. (However, Rm: radius of curvature on the optical axis, K: conical constant, A
2, A3, A4 ...: Aspherical coefficient), and with respect to the sub-scanning direction, the light is separated from the surface by Rs on the optical axis and the light is deflected in the scanning plane (in the main scanning plane). It is a concave barrel-shaped toroidal surface formed by rotating the above-described shape with an axis orthogonal to the axis as a rotation axis. Here, Rm is shown in FIG.
In (a), it corresponds to VC1 and Rs corresponds to VC2.

【0031】また樽型トロイダル面の主走査対応方向の
非球面は偏向器により偏向される光束の最大画角光線が
非球面と交差する位置(高さ)における非球面の非球面
変化量(近軸曲率半径Rmからのズレ量、近軸球面から
被走査面側へズレる方向を+の変移方向とする)が、主
走査方向における偏向器以降の光学系全系の合成焦点距
離をfmとするとき、非球面変化量ΔXは −0.0015<ΔX/fm<0.01 を満足するようにしたとき、主に主走査方向の像面湾曲
と走査等速性のどちらをも良好にバランス良く補正する
ことができる。
Further, the aspherical surface of the barrel-shaped toroidal surface in the main scanning corresponding direction has the maximum angle of view of the light beam deflected by the deflector at the position (height) where the ray intersects the aspherical surface. The amount of deviation from the axial curvature radius Rm, and the direction of deviation from the paraxial spherical surface to the surface to be scanned are defined as + transition directions), but the combined focal length of the entire optical system after the deflector in the main scanning direction is fm. At this time, when the aspherical surface change amount ΔX is set to satisfy −0.0015 <ΔX / fm <0.01, both the field curvature in the main scanning direction and the scanning uniform velocity are well balanced with good balance. Can be corrected.

【0032】[0032]

【実施例】以下、本発明にかかる光走査装置の各種実施
例について説明する。各実施例における符号は図2、図
4において使用されている符号に順ずる。ただし、各面
の曲率を図2、図4ではrで表しているのに対し各実施
例ではRで表している。樽型トロイダル面はr5面であ
る。また、各実施例において偏向走査面内(主走査面
内)における合成焦点距離fmを100に規格化してい
る。偏向器4による偏向角(半画角)をθとする。
EXAMPLES Various examples of the optical scanning apparatus according to the present invention will be described below. The reference numerals used in each embodiment are the same as those used in FIGS. However, the curvature of each surface is represented by r in FIGS. 2 and 4, whereas it is represented by R in each embodiment. The barrel-shaped toroidal surface is r5 surface. In each embodiment, the combined focal length fm in the deflection scanning plane (main scanning plane) is standardized to 100. The deflection angle (half angle of view) by the deflector 4 is θ.

【0033】実施例1〜5に光走査用レンズを2枚構成
とした場合を示す。また第5図〜第9図に実施例1〜5
の収差図を示す。各図における像面湾曲は偏向器の回転
時の動的像面湾曲で、点線が偏向走査方向(主走査方
向)、実線が偏向直交方向(副走査方向)の結像状態を
示している。収差図では、点線がfθ特性、実線がリニ
アリティを示している。fθ特性は、周知のごとく理想
像高をHi(θ)、実像高をHr(θ)とするとき (fθ特性)={Hr(θ)/Hi(θ)−1}×10
0(%) で定義さる。また走査等速性(リニアリティ)は (リニアリティ)={dHr(θ)/dHi(θ)−
1}×100(%) であらわされる。
Examples 1 to 5 show cases in which two optical scanning lenses are used. Moreover, Examples 1 to 5 are shown in FIGS.
The aberration chart of is shown. The field curvature in each figure is the dynamic field curvature when the deflector is rotated, and the dotted line shows the image formation state in the deflection scanning direction (main scanning direction) and the solid line shows the deflection orthogonal direction (sub scanning direction). In the aberration diagram, the dotted line shows the fθ characteristic and the solid line shows the linearity. As is well known, the fθ characteristic is that when the ideal image height is Hi (θ) and the actual image height is Hr (θ) (fθ characteristic) = {Hr (θ) / Hi (θ) −1} × 10
It is defined as 0 (%). Further, the scanning uniform velocity (linearity) is (linearity) = {dHr (θ) / dHi (θ) −
It is represented by 1} × 100 (%).

【0034】光走査用レンズを3枚構成とした場合の実
施例を実施例6〜8に示す。また、各実施例の収差図を
第10図〜第12図に示す。光走査用レンズを3枚構成
とした場合の具体例における符号は図4に順ずる。樽型
トロイダル面はr7 面である。各実施例の偏向走査面
内(主走査面内)における偏向器以降の光学系全系の合
成焦点距離fmは光走査用レンズを2枚構成とした例と
同様に、100に規格化している。
Examples 6 to 8 show examples in which three optical scanning lenses are used. Aberration diagrams of the respective examples are shown in FIGS. The reference numerals in the specific example in the case where the optical scanning lens is composed of three lenses are in accordance with FIG. The barrel-shaped toroidal surface is the r7 surface. The combined focal length fm of the entire optical system after the deflector in the deflection scanning plane (in the main scanning plane) of each embodiment is standardized to 100 as in the example in which two optical scanning lenses are configured. .

【0035】(実施例1) (Example 1)

【0036】(実施例2) (Example 2)

【0037】(実施例3) (Example 3)

【0038】(実施例4) (Example 4)

【0039】(実施例5) (Example 5)

【0040】(実施例6) (Example 6)

【0041】(実施例7) (Example 7)

【0042】(実施例8) (Embodiment 8)

【0043】[0043]

【発明の効果】請求項1記載の発明によれば、偏向器と
被走査面との間に、偏向器により偏向された光束を被走
査面上に光スポットとして結像させる光学系を設け、こ
の光学系は、偏向器により偏向された光束を被走査面上
を略等速度的に走査させかつ被走査面上に結像させるた
めの光走査用レンズと補正光学系とで構成し、上記光走
査用レンズは複数枚で構成し、上記補正光学系は光走査
用レンズと被走査面との間に配置すると共に、副走査方
向の曲率半径が光軸から主走査対応方向に離れるに従い
小さくなる樽型トロイダル面を凹レンズ面として有する
長尺トロイダルレンズとし、この長尺トロイダルレンズ
は少なくともその1つの面を非球面化したため、収差補
正の自由度が上がり結像性能、等速性の向上を図った光
走査装置を提供することができる。
According to the first aspect of the present invention, an optical system is provided between the deflector and the surface to be scanned for forming an image of the light beam deflected by the deflector on the surface to be scanned as a light spot. This optical system is composed of an optical scanning lens and a correction optical system for scanning the light beam deflected by the deflector on the surface to be scanned at a substantially constant speed and forming an image on the surface to be scanned. The optical scanning lens is composed of a plurality of lenses, and the correction optical system is arranged between the optical scanning lens and the surface to be scanned, and the radius of curvature in the sub-scanning direction becomes smaller as the distance from the optical axis in the main scanning corresponding direction increases. Since this is a long toroidal lens having a barrel-shaped toroidal surface as a concave lens surface, and at least one surface of this long toroidal lens is made aspherical, the degree of freedom in aberration correction is increased and the imaging performance and constant velocity are improved. Providing a designed optical scanning device It is possible.

【0044】請求項2記載の発明によれば、補正光学系
を構成する長尺トロイダルレンズを、等速性の向上に効
果のある主走査方向を非球面化したため、等速性の向上
を図ることができる。
According to the second aspect of the present invention, the long toroidal lens that constitutes the correction optical system is made aspheric in the main scanning direction, which is effective in improving the uniform velocity, so that the uniform velocity is improved. be able to.

【0045】請求項3記載の発明によれば、上記長尺ト
ロイダルレンズの樽型トロイダル面を非球面化すること
で等速性の向上を図り、反対側の面で副走査方向の結像
性能の向上を図るため、トロイダル面を使用し、光学系
全体としての性能の向上を図ることができる。
According to the third aspect of the present invention, the barrel-shaped toroidal surface of the long toroidal lens is made aspheric to improve the uniform velocity, and the surface on the opposite side is image-forming performance in the sub-scanning direction. To improve the performance of the optical system, a toroidal surface can be used to improve the performance of the optical system as a whole.

【0046】請求項4記載の発明によれば、長尺トロイ
ダルレンズの非球面を1面のみにすることにより、長尺
トロイダルレンズの加工が容易となる。
According to the fourth aspect of the present invention, the long toroidal lens can be easily processed by forming only one aspherical surface of the long toroidal lens.

【0047】請求項5記載の発明によれば、非球面の変
化量を所定の範囲内に規制したことにより、像面湾曲
(主に主走査方向の)の補正及び走査等速性の向上をバ
ランス良く、効果的に行うことができる。
According to the fifth aspect of the invention, the amount of change of the aspherical surface is regulated within a predetermined range, so that the field curvature (mainly in the main scanning direction) is corrected and the scanning uniform velocity is improved. It is well-balanced and effective.

【0048】請求項6記載の発明によれば、市場で望ま
れている高密度化・高画質化を達成しながら、加工が容
易な球面で光走査用レンズを構成した場合の最低枚数で
ある2枚で光学系を構成したことにより、高性能かつ低
コストの光走査装置を提供することができる。
According to the sixth aspect of the present invention, the minimum number is required when the optical scanning lens is constituted by a spherical surface which is easily processed while achieving the high density and high image quality desired in the market. By configuring the optical system with two sheets, a high-performance and low-cost optical scanning device can be provided.

【0049】超高密度化を達成する場合、色収差による
影響が問題となり、色収差を補正するためには最低2枚
以上レンズが必要であり、2枚構成だと結像性能と、色
収差の補正を両立することは困難であるが、請求項7記
載の発明によれば、光走査用レンズを3枚のレンズで構
成したため、実質上の超高密度光学系を達成するうえで
の最低構成枚数で光学系の構成が可能になる。
In order to achieve ultra high density, the influence of chromatic aberration becomes a problem, and at least two lenses or more are required to correct chromatic aberration. If two lenses are used, the imaging performance and the correction of chromatic aberration are required. According to the invention of claim 7, since the optical scanning lens is composed of three lenses, it is difficult to achieve both at the same time. An optical system can be configured.

【0050】請求項8記載の発明によれば、光源装置か
らの射出光束を平行光束とすることにより、光源装置
と、シリンダレンズとの配置関係が自由になり、光学レ
イアウトが容易になる。
According to the eighth aspect of the invention, by making the luminous flux emitted from the light source device a parallel luminous flux, the positional relationship between the light source device and the cylinder lens can be freely set, and the optical layout can be facilitated.

【0051】請求項9記載の発明によれば、偏向器とし
て、ガルバノミラー等が考えられるが、回転多面鏡にす
ることにより、モータの回転数の低減又は、走査スピー
ドの高速化を図ることができる。
According to the ninth aspect of the invention, a galvanometer mirror or the like can be considered as the deflector. However, by using a rotary polygon mirror, the number of rotations of the motor can be reduced or the scanning speed can be increased. it can.

【0052】請求項10記載の発明によれば、光源装置
における光源を半導体レーザーとすることにより、光源
装置を小型化することが可能になる。
According to the tenth aspect of the present invention, the light source device can be miniaturized by using the semiconductor laser as the light source in the light source device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる光走査装置の実施の形態を示す
斜視図である。
FIG. 1 is a perspective view showing an embodiment of an optical scanning device according to the present invention.

【図2】同上光走査装置の光学配置図であって、(a)
は主走査断面、(b)は副走査断面を示す図である。
FIG. 2 is an optical layout diagram of the optical scanning device of the above, FIG.
FIG. 3B is a diagram showing a main scanning section, and FIG.

【図3】上記光走査装置に用いられる樽型トロイダル面
の説明図である。
FIG. 3 is an explanatory diagram of a barrel-shaped toroidal surface used in the optical scanning device.

【図4】本発明にかかる光走査装置の別の実施の形態を
示す光学配置図であって、(a)は主走査断面、(b)
は副走査断面を示す図である。
4A and 4B are optical layout diagrams showing another embodiment of the optical scanning device according to the present invention, in which FIG. 4A is a main scanning cross section and FIG.
FIG. 6 is a diagram showing a sub-scanning section.

【図5】本発明の実施例1の像面湾曲とリニアリティ、
fθ特性を示す線図である。
FIG. 5 shows field curvature and linearity according to the first embodiment of the present invention,
It is a diagram showing an fθ characteristic.

【図6】本発明の実施例2の像面湾曲とリニアリティ、
fθ特性を示す線図である。
FIG. 6 shows field curvature and linearity according to the second embodiment of the present invention,
It is a diagram showing an fθ characteristic.

【図7】本発明の実施例3の像面湾曲とリニアリティ、
fθ特性を示す線図である。
FIG. 7 shows field curvature and linearity according to the third embodiment of the present invention,
It is a diagram showing an fθ characteristic.

【図8】本発明の実施例4の像面湾曲とリニアリティ、
fθ特性を示す線図である。
FIG. 8 is a field curvature and linearity of Example 4 of the present invention,
It is a diagram showing an fθ characteristic.

【図9】本発明の実施例5の像面湾曲とリニアリティ、
fθ特性を示す線図である。
FIG. 9 shows field curvature and linearity according to the fifth embodiment of the present invention,
It is a diagram showing an fθ characteristic.

【図10】本発明の実施例6の像面湾曲とリニアリテ
ィ、fθ特性を示す線図である。
FIG. 10 is a diagram showing field curvature, linearity, and fθ characteristic according to the sixth embodiment of the present invention.

【図11】本発明の実施例7の像面湾曲とリニアリテ
ィ、fθ特性を示す線図である。
FIG. 11 is a diagram showing field curvature, linearity, and fθ characteristic of Example 7 of the present invention.

【図12】本発明の実施例8の像面湾曲とリニアリテ
ィ、fθ特性を示す線図である。
FIG. 12 is a diagram showing field curvature, linearity, and fθ characteristic of Example 8 of the present invention.

【符号の説明】[Explanation of symbols]

1 光源 4 偏向器 5 光走査用レンズ 6 補正光学系 7 被走査面 1 Light Source 4 Deflector 5 Optical Scanning Lens 6 Correction Optical System 7 Scanned Surface

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 光ビームを偏向器により偏向させ、被走
査面を光走査する光走査装置において、 偏向器と被走査面との間に配置され、偏向器により偏向
された光束を被走査面上に光スポットとして結像させ、
また副走査方向に関して、偏向器の偏向反射面と被走査
面とを幾何光学的に略共役な関係とする光学系を有し、 上記光学系は、偏向器により偏向された光束を被走査面
上を略等速度的に走査させかつ被走査面上に結像させる
ための光走査用レンズと補正光学系とからなり、 上記光走査用レンズは複数枚から構成され、 上記補正光学系は光走査用レンズと被走査面との間に配
置され、副走査方向の曲率半径が光軸から主走査対応方
向に離れるに従い小さくなる樽型トロイダル面を凹レン
ズ面として有する長尺トロイダルレンズであり、 上記長尺トロイダルレンズは少なくともその1つの面を
非球面化したことを特徴とする光走査装置。
1. An optical scanning device for deflecting a light beam by a deflector to optically scan a scanned surface, wherein a light beam deflected by the deflector is disposed between the deflector and the scanned surface. Image it as a light spot on the top,
Further, with respect to the sub-scanning direction, it has an optical system in which the deflective reflection surface of the deflector and the surface to be scanned are in a geometrically-optically substantially conjugate relationship, and the optical system described above makes the light beam deflected by the deflector the surface to be scanned. The optical scanning lens comprises a plurality of optical scanning lenses for scanning the upper surface at a substantially constant speed and forming an image on the surface to be scanned, and the optical scanning lens is composed of a plurality of lenses. A long toroidal lens that is disposed between the scanning lens and the surface to be scanned, and has a barrel-shaped toroidal surface as a concave lens surface that has a radius of curvature in the sub-scanning direction that decreases with distance from the optical axis in the main scanning corresponding direction, An optical scanning device, wherein at least one surface of the long toroidal lens is aspherical.
【請求項2】 長尺トロイダルレンズは主走査方向にお
いて非球面化されていることを特徴とする請求項1記載
の光走査装置。
2. The optical scanning device according to claim 1, wherein the long toroidal lens is aspherical in the main scanning direction.
【請求項3】 長尺トロイダルレンズの非球面は樽型ト
ロイダル面を非球面化したことを特徴とする請求項1記
載の光走査装置。
3. The optical scanning device according to claim 1, wherein the aspherical surface of the long toroidal lens is a barrel-shaped toroidal surface.
【請求項4】 長尺トロイダル面はその1つの面のみ非
球面化したことを特徴とする請求項3記載の光走査装
置。
4. The optical scanning device according to claim 3, wherein only one of the long toroidal surfaces is aspherical.
【請求項5】 偏向走査される光束の最大画角光線が非
球面と交差する位置における、非球面の非球面変化量Δ
Xは、主走査方向の全系の焦点距離をfmとし、偏向器
から被走査面方向を+とするするとき、 −0.0015<ΔX/fm<0.01 を満足することを特徴とする請求項4記載の光走査装
置。
5. An aspherical surface change amount Δ of the aspherical surface at a position where the maximum angle of view ray of the light beam deflectively scanned crosses the aspherical surface.
X is characterized by satisfying −0.0015 <ΔX / fm <0.01 when fm is the focal length of the entire system in the main scanning direction and + is the direction of the surface to be scanned from the deflector. The optical scanning device according to claim 4.
【請求項6】 光走査用レンズは2枚のレンズからな
り、偏向器側のレンズは偏向器側に凹面を向けたメニス
カスレンズ、被走査側のレンズは凸レンズから構成され
ることを特徴とする請求項5記載の光走査装置。
6. The optical scanning lens comprises two lenses, the lens on the deflector side is a meniscus lens having a concave surface facing the deflector side, and the lens on the scanned side is a convex lens. The optical scanning device according to claim 5.
【請求項7】 光走査用レンズは3枚のレンズからな
り、偏向器側のレンズは凹レンズ、残りの2枚のレンズ
は凸レンズから構成されることを特徴とする請求項5記
載の光走査装置。
7. The optical scanning device according to claim 5, wherein the optical scanning lens is composed of three lenses, the deflector side lens is a concave lens, and the remaining two lenses are convex lenses. .
【請求項8】 光源装置から射出される光束は略平行光
束であることを特徴とする請求項6又は7記載の光走査
装置。
8. The optical scanning device according to claim 6, wherein the light beam emitted from the light source device is a substantially parallel light beam.
【請求項9】 光ビームを偏向する偏向器は回転多面鏡
からなることを特徴とする請求項8記載の光走査装置。
9. The optical scanning device according to claim 8, wherein the deflector for deflecting the light beam is a rotary polygon mirror.
【請求項10】 光源装置における光源は半導体レーザ
であることを特徴とする請求項8記載の光走査装置。
10. The optical scanning device according to claim 8, wherein the light source in the light source device is a semiconductor laser.
JP29103995A 1995-11-09 1995-11-09 Optical scanning device Expired - Lifetime JP3512538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29103995A JP3512538B2 (en) 1995-11-09 1995-11-09 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29103995A JP3512538B2 (en) 1995-11-09 1995-11-09 Optical scanning device

Publications (2)

Publication Number Publication Date
JPH09133888A true JPH09133888A (en) 1997-05-20
JP3512538B2 JP3512538B2 (en) 2004-03-29

Family

ID=17763657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29103995A Expired - Lifetime JP3512538B2 (en) 1995-11-09 1995-11-09 Optical scanning device

Country Status (1)

Country Link
JP (1) JP3512538B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100366155B1 (en) * 2000-04-10 2002-12-31 송태선 Two-dimensional optical scanning apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107479169B (en) * 2016-06-07 2020-08-14 佳凌科技股份有限公司 Fixed focus projection lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100366155B1 (en) * 2000-04-10 2002-12-31 송태선 Two-dimensional optical scanning apparatus

Also Published As

Publication number Publication date
JP3512538B2 (en) 2004-03-29

Similar Documents

Publication Publication Date Title
JPH06265810A (en) Reflection type scanning optical system
JPH06118325A (en) Optical scanner
JP2003215486A (en) Scanning optical system
JP3445092B2 (en) Scanning optical device
JP2011059559A (en) Multi-beam optical scanning device and image forming apparatus using the same
JP2000098288A (en) Optical scanning optical system and image forming device using the same
JP4293780B2 (en) Scanning optical system
JP5269169B2 (en) Scanning optical device and laser beam printer having the same
JP3512538B2 (en) Optical scanning device
JP2003107382A (en) Scanning optical system
JP2000267030A (en) Optical scanning device
JP2005338865A (en) Scanning optical apparatus and laser beam printer having the same
JP4349500B2 (en) Optical scanning optical system
JP2005173221A (en) Optical scanning device and image forming apparatus
JPH08248345A (en) Optical scanner
JPH09189855A (en) Scanning optical system
JPH10260371A (en) Scanning optical device
JPH1184304A (en) Optical scanner
JP3472205B2 (en) Optical scanning optical device and image forming apparatus using the same
JP3729286B2 (en) Optical scanning device
JP3752124B2 (en) Scanning optical system
JPH11249040A (en) Optical scanning device
JP2001004939A (en) Multibeam scanning system
JPH09146030A (en) Optical scanner
JP3478679B2 (en) Scanning optical device and laser beam printer having the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080116

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 10

EXPY Cancellation because of completion of term