JPH09133863A - Variable power lens - Google Patents

Variable power lens

Info

Publication number
JPH09133863A
JPH09133863A JP28992595A JP28992595A JPH09133863A JP H09133863 A JPH09133863 A JP H09133863A JP 28992595 A JP28992595 A JP 28992595A JP 28992595 A JP28992595 A JP 28992595A JP H09133863 A JPH09133863 A JP H09133863A
Authority
JP
Japan
Prior art keywords
lens
group
gradient index
positive
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28992595A
Other languages
Japanese (ja)
Inventor
Noriyuki Iyama
猪山紀之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP28992595A priority Critical patent/JPH09133863A/en
Priority to US08/713,035 priority patent/US5808811A/en
Publication of JPH09133863A publication Critical patent/JPH09133863A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To compensate various aberrations sufficiently excellently from the wide-angle end to the telephoto end and make the number of constituent lens elements extremely small although the power variation rate is about 3.5, or large. SOLUTION: The variable power lens which consists of plural lens groups G1-G3 and varies in power by varying the interval of at least one of the lens groups has the lens group G2 with negative refracting power most on the image plane side, and at least one lens having positive refracting power in the lens group G2 having the negative refracting power is composed of a gradient index lens which varies in refractive index at right angles to the optical axis. Then at least one surface of the gradient index lens is made aspherical and at least one lens with negative refracting power is arranged on the image plane side of this gradient index lens.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、変倍レンズに関
し、特に、レンズシャッターカメラ用のコンパクトでし
かもレンズ枚数が少なく高変倍比を有する変倍レンズに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable power lens, and more particularly to a variable power lens for a lens shutter camera which has a small number of lenses and a high variable power ratio.

【0002】[0002]

【従来の技術】一般に、変倍レンズは、基準状態におい
て収差が良好に補正されている他に、変倍中における収
差変動を小さくする必要がある。そのため、各レンズ群
で球面収差、コマ収差、色収差等が良好に補正されてい
ることが望ましい。そのためには、各レンズ群のレンズ
枚数が多くならざるを得ず、レンズ系が大型化する。
2. Description of the Related Art Generally, in a variable power lens, aberration is favorably corrected in a reference state, and it is necessary to reduce aberration fluctuation during zooming. Therefore, it is desirable that spherical aberration, coma aberration, chromatic aberration, etc. be corrected well in each lens group. For that purpose, the number of lenses in each lens group is inevitably large, and the lens system becomes large.

【0003】近年、カメラの小型化に伴ってズームレン
ズも小型軽量化が図られている。特に、レンズ交換ので
きないレンズシャッターカメラにおいても、コンパクト
でしかも変倍比が3以上の変倍レンズを備えたカメラが
求められている。また、一方で、低コスト化に対する要
求も非常に大きい。
In recent years, along with the miniaturization of cameras, zoom lenses have been reduced in size and weight. In particular, even for lens shutter cameras in which the lenses cannot be exchanged, there is a demand for a camera that is compact and has a variable power lens with a variable power ratio of 3 or more. On the other hand, there is also a great demand for cost reduction.

【0004】ところで、特開昭61−159612号に
記載されているように、前群を正の屈折力、後群を負の
屈折力とし、前群と後群の間隔を変化させて変倍を行う
2群構成の変倍レンズが知られている。このようなレン
ズ構成で、レンズ系をよりコンパクトにしかつ高変倍比
化するためには、各レンズの曲率半径を小さくして屈折
力を強めればよい。しかし、その場合は、変倍中の収差
変動を小さくして良好な収差補正と十分な変倍比を得る
ためには、レンズ枚数を増やさねばならず、レンズ系全
体が大きくなってしまう。さらに、レンズ枚数が増える
のに従い、低コスト化を達成することが困難になる。ま
た、各レンズの屈折力を緩くして変倍中の収差変動を小
さくしようとすると、各群の移動量が大きくなり、コン
パクト化が図れなくなる。
By the way, as described in JP-A-61-159612, the front lens group has a positive refractive power and the rear lens group has a negative refractive power, and the distance between the front lens group and the rear lens group is changed to change the magnification. There is known a variable power lens having a two-group configuration for performing. In order to make the lens system more compact and have a high zoom ratio with such a lens configuration, the radius of curvature of each lens may be reduced to increase the refracting power. However, in that case, the number of lenses must be increased in order to reduce aberration fluctuation during zooming to obtain good aberration correction and a sufficient zoom ratio, and the entire lens system becomes large. Further, as the number of lenses increases, it becomes difficult to achieve cost reduction. Further, if the refracting power of each lens is relaxed to reduce the aberration variation during zooming, the amount of movement of each group becomes large, which makes it impossible to achieve compactness.

【0005】以上のような問題を解決するために、非球
面を用いることによりレンズ枚数を4枚まで減らした先
行技術として、特開平3−127008号、特開平3−
274516号、特開平6−67092号各々に記載さ
れているように、第1群が負、正、第2群が正、負のレ
ンズで構成されたものがあるが、変倍比が大きくても
2.6倍程度であり、ハイスペック化という点で十分で
はない。
In order to solve the above problems, as a prior art in which the number of lenses is reduced to 4 by using an aspherical surface, Japanese Patent Laid-Open Nos. 3-127008 and 3-1998.
As described in JP-A-274516 and JP-A-6-67092, there are lenses in which the first group is composed of negative and positive lenses, and the second group is composed of positive and negative lenses, but the zoom ratio is large. It is about 2.6 times, which is not enough in terms of high spec.

【0006】また、特開昭61−148414号、特開
昭61−259216号、特開昭61−126515号
各々に記載されているように、2群又は3群構成の変倍
レンズに屈折率分布型レンズを導入することが提案され
いてるが、変倍比が1.5〜2程度であり、ハイスペッ
ク化という点で十分ではない。
Further, as described in JP-A-61-148414, JP-A-61-259216 and JP-A-61-126515, a variable power lens having a two-group or three-group structure has a refractive index. It has been proposed to introduce a distributed lens, but the variable power ratio is about 1.5 to 2, which is not sufficient in terms of achieving high specifications.

【0007】ここで、2群構成の変倍レンズを例にして
考えてみる。2群構成の変倍レンズでレンズ枚数が少な
いままでさらに高変倍化しようとすると、各群の屈折力
を強くするか最終群の移動量を大きくする必要がある。
各群の屈折力を強くする場合、それぞれの群で発生する
収差が大きくなり、光学系全体の収差が大きくなる。特
に、最終群の負屈折力が強くなるために、望遠端で正の
球面収差が発生する。また、正の歪曲収差が大きくな
り、特に広角端ではその影響が大きい。さらに、コマ収
差も悪化する。同様に、最終群の移動量を大きくした場
合も、望遠端での収差が悪化する。
Here, let us consider a variable power lens having a two-group structure as an example. In order to further increase the magnification with a variable power lens having a two-group structure while the number of lenses is small, it is necessary to increase the refractive power of each group or increase the amount of movement of the final group.
When the refractive power of each group is increased, the aberration generated in each group becomes large and the aberration of the entire optical system becomes large. In particular, since the negative refractive power of the final group becomes strong, positive spherical aberration occurs at the telephoto end. Further, the positive distortion becomes large, and its influence is great especially at the wide-angle end. Further, coma also becomes worse. Similarly, when the amount of movement of the last lens unit is increased, the aberration at the telephoto end becomes worse.

【0008】また、高変倍比化を目的とした変倍レンズ
として、特開昭63−43115号、特開平1−252
916号等に記載されているように、3群又は4群構成
の変倍レンズが提案されており、変倍比は3程度まで上
げているが、非球面を用いてもレンズ構成枚数が最少で
11枚であり、コンパクト化の点で十分満足できるもの
ではない。
Further, as a variable power lens aiming at a high variable power ratio, there are disclosed in Japanese Patent Laid-Open Nos. 63-43115 and 1-252.
As described in No. 916 and the like, a variable power lens having a three-group or four-group structure has been proposed, and the variable power ratio has been increased to about 3, but the number of lens components is the minimum even if an aspherical surface is used. It is 11 sheets, which is not sufficiently satisfactory in terms of compactness.

【0009】また、変倍比が3程度の変倍レンズに屈折
率分布型レンズを用いた例として、特開昭63−159
818号、特開昭63−161423号に記載されてい
るが、レンズ構成枚数は最少で11枚であり、コンパク
ト化の点で十分満足できるものではない。
Further, as an example in which a gradient index lens is used as a variable power lens having a variable power ratio of about 3, Japanese Patent Laid-Open No. 63-159.
No. 818 and Japanese Patent Application Laid-Open No. 63-161423, the number of lens components is 11 at the minimum, which is not sufficiently satisfactory in terms of compactness.

【0010】また、3群構成の変倍レンズにおいても、
さらに高変倍比化しようとすると、最も像面側の負屈折
力を有するレンズ群の屈折力が強くなるため、前述した
2群構成の変倍レンズと同様の問題が起こる。
Further, even in a variable power lens having a three-group structure,
If an attempt is made to further increase the zoom ratio, the refractive power of the lens unit having the negative refractive power closest to the image surface side becomes strong, so that the same problem as the above-described variable power lens having the two-group structure occurs.

【0011】[0011]

【発明が解決しようとする課題】本発明は従来技術の以
上のような問題点に鑑みてなされたものであり、その目
的は、変倍比が3.4程度と大きいにも係わらず、広角
端から望遠端にかけて諸収差が十分良好に補正され、し
かも、構成レンズ枚数の非常に少ない変倍レンズを提供
することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems of the prior art. The object of the present invention is to provide a wide-angle lens despite a large zoom ratio of about 3.4. It is an object of the present invention to provide a variable power lens in which various aberrations are sufficiently corrected from the end to the telephoto end and the number of constituent lenses is very small.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
の本発明の変倍レンズは、複数のレンズ群よりなり、前
記複数のレンズ群の中、少なくとも1つのレンズ群間隔
を変化させて変倍を行う変倍レンズにおいて、最も像面
側に負の屈折力を有するレンズ群を配置し、前記負の屈
折力を有するレンズ群中の正の屈折力を有する少なくと
も1枚のレンズを、光軸と垂直方向に屈折率が変化する
屈折率分布型レンズで構成し、前記屈折率分布型レンズ
の少なくとも1面に非球面を有すると共に、前記屈折率
分布型レンズより像面側に少なくとも1枚の負の屈折力
を有するレンズを配置したことを特徴とするものであ
る。
A variable power lens of the present invention for solving the above-mentioned problems comprises a plurality of lens groups, and at least one lens group among the plurality of lens groups is varied to change the distance. In a variable power lens that performs magnification, a lens group having a negative refractive power is arranged closest to the image surface side, and at least one lens having a positive refractive power in the lens group having a negative refractive power is It is composed of a gradient index lens whose refractive index changes in the direction perpendicular to the axis, at least one surface of the gradient index lens has an aspherical surface, and at least one lens is closer to the image surface side than the gradient index lens. It is characterized in that a lens having a negative refracting power is arranged.

【0013】この場合、正の屈折力を有する屈折率分布
型レンズが両面に非球面を有していてもよい。
In this case, the gradient index lens having a positive refractive power may have aspherical surfaces on both sides.

【0014】本発明において、以上の構成をとる理由と
作用について説明する。屈折率分布型レンズには、光軸
方向に屈折率が変化を有するいわゆるアキシャル型屈折
率分布型レンズと、光軸と垂直方向に屈折率の変化する
いわゆるラジアル型屈折率分布型レンズとがある。本発
明は、光学的ポテンシャルの高いラジアル型屈折率分布
型レンズを用いたものである。
In the present invention, the reason and action for taking the above configuration will be described. The gradient index lens includes a so-called axial gradient index lens having a refractive index change in the optical axis direction and a so-called radial gradient index gradient lens having a refractive index change in the direction perpendicular to the optical axis. . The present invention uses a radial type gradient index lens having a high optical potential.

【0015】本発明で用いられるラジアル型屈折率分布
型レンズの基準波長の屈折率分布は、次の式で表され
る。 n(y)=N0 +N1 2 +N2 4 +・・・ ・・・(1) ただし、N0 はレンズの中心での基準波長の屈折率、y
はレンズの中心から半径方向距離、n(y)はレンズの
中心から半径yの所での基準波長の屈折率、N1 、N2
・・・は定数である。
The refractive index distribution of the reference wavelength of the radial type gradient index lens used in the present invention is expressed by the following equation. n (y) = N 0 + N 1 y 2 + N 2 y 4 + ... (1) where N 0 is the refractive index of the reference wavelength at the center of the lens, y
Is the radial distance from the center of the lens, n (y) is the refractive index of the reference wavelength at the radius y from the center of the lens, N 1 , N 2
... is a constant.

【0016】また、本発明で用いられる非球面の形状
は、光軸上光の進行方向にZ軸、光軸と直交する方向に
Y軸をとったとき、以下の式で示す。 Z=(Y2 /r)/{1+〔1−(K+1)(Y/r)2 1/2 } +A4 4 +A6 6 +A8 8 +A1010+・・ ・・・(2) ただし、rは近軸曲率半径、K、A4 、A6 、A8 、A
10は非球面係数である。
Further, the shape of the aspherical surface used in the present invention is expressed by the following formula when the Z axis is in the traveling direction of light on the optical axis and the Y axis is in the direction orthogonal to the optical axis. Z = (Y 2 / r) / {1+ [1- (K + 1) (Y / r) 2 ] 1/2} + A 4 Y 4 + A 6 Y 6 + A 8 Y 8 + A 10 Y 10 + ·· ··· (2) where r is the paraxial radius of curvature, K, A 4 , A 6 , A 8 , A
10 is an aspheric coefficient.

【0017】また、本発明においては、上記の正の屈折
力を有する屈折率分布型レンズが、少なくも1面、望ま
しくは両面に非球面を有することを特徴とする変倍レン
ズである。
Further, according to the present invention, the above-mentioned gradient index lens having a positive refractive power is a variable power lens having an aspherical surface on at least one surface, preferably on both surfaces.

【0018】これを以下で説明する。屈折率分布型レン
ズは、その媒質中にも屈折力を有しており、面の屈折力
と媒質の屈折力を同符号にすれば、均質レンズに比べて
面の形状を緩くしても全体として均質レンズと同じ屈折
力にすることができる。
This will be described below. The gradient index lens also has a refractive power in its medium. If the refractive power of the surface and the refractive power of the medium have the same sign, the entire surface can be made even if the shape of the surface is loose compared to a homogeneous lens. Can have the same refractive power as a homogeneous lens.

【0019】また、屈折率分布型レンズの媒質の屈折力
は、主として上記の屈折率分布式(1)の2次の係数N
1 と光軸上の厚みとに依存し、その係数N1 の符号が正
の場合は、媒質は負の屈折力として働き、係数N1 の符
号が負の場合は、媒質は正の屈折力して働くため、面と
媒質とで屈折力の操作が可能になり、その分収差補正の
自由度が増大し、レンズ枚数の削減が可能になる。
Further, the refractive power of the medium of the gradient index lens is mainly the quadratic coefficient N of the above gradient index formula (1).
If the coefficient N 1 has a positive sign, the medium acts as a negative refractive power, and if the coefficient N 1 has a negative sign, the medium has a positive refractive power. Therefore, it becomes possible to control the refracting power between the surface and the medium, the degree of freedom in aberration correction is increased, and the number of lenses can be reduced.

【0020】さらに、屈折率分布型レンズは、その媒質
に屈折力を有することから、ペッツバール和の補正が可
能となる。屈折率分布型レンズ単体のペッツバール和P
Sは、次式で表される。 PS=(φS /N0 )+(φM /N0 2) ・・・(3) ここで、φS は屈折率分布型レンズの面の屈折力、φM
は屈折率分布型レンズの媒質の屈折力である。
Further, since the gradient index lens has a refractive power in its medium, it is possible to correct Petzval sum. Petzval sum P of the gradient index lens unit
S is represented by the following equation. PS = (φ S / N 0 ) + (φ M / N 0 2 ) (3) where φ S is the refractive power of the surface of the gradient index lens, φ M
Is the refractive power of the medium of the gradient index lens.

【0021】上記の式から明らかなように、屈折率分布
型レンズは、その面の屈折力と媒質の屈折力を操作する
ことによってペッツバール和をある程度自由に変えるこ
とができる。したがって、このような屈折率分布型レン
ズを本発明のレンズ系に適用することによって、レンズ
枚数を削減しても全系でのペッツバール和を良好に補正
することができる。さらに、媒質と面とに屈折率分布が
付いていることにより、均質系とは違った振る舞いをす
る面での補正項により収差の補正が可能になるので、全
系の性能を良好にすることが可能である。
As is clear from the above equation, in the gradient index lens, the Petzval sum can be freely changed to some extent by manipulating the refractive power of its surface and the refractive power of the medium. Therefore, by applying such a gradient index lens to the lens system of the present invention, the Petzval sum in the entire system can be satisfactorily corrected even if the number of lenses is reduced. Furthermore, because the medium and the surface have a refractive index distribution, aberrations can be corrected by the correction term on the surface that behaves differently from the homogeneous system, so that the performance of the entire system is improved. Is possible.

【0022】前述のように、屈折率分布型レンズは媒質
によりレンズの屈折力を分担できるので、特に屈折力の
強い群に用いるのが効果的である。本発明のようなレン
ズ系で変倍比を高くしようとすると、最も像面側の負レ
ンズ群の負屈折力が強くなり、特に望遠端で正の球面収
差が発生する。これらの理由から、最も像面側の負の屈
折力を有するレンズ群内のレンズに屈折率分布型レンズ
を用いるのが効果的である。
As described above, the gradient index lens can share the refracting power of the lens by the medium, so that it is effective to use it in a group having a particularly strong refracting power. If an attempt is made to increase the zoom ratio in the lens system as in the present invention, the negative refracting power of the negative lens group closest to the image surface side becomes strong, and particularly positive spherical aberration occurs at the telephoto end. For these reasons, it is effective to use a gradient index lens as the lens in the lens group having the most negative refractive power on the image plane side.

【0023】このとき、屈折率分布型レンズの係数N1
は次式を満足するようにするのがよい。 N1 >0 ・・・(4) これは、屈折率分布型レンズの係数N1 をN1 >0とし
て媒質の屈折力を負屈折力にすることにより、負レンズ
群の負屈折力を媒質に分散させ、負レンズ群全体で発生
する収差を少なくするためである。
At this time, the coefficient N 1 of the gradient index lens
Should satisfy the following equation. N 1 > 0 (4) This is because the refractive power of the medium is made negative by setting the coefficient N 1 of the gradient index lens to be N 1 > 0. This is to reduce the aberration generated in the entire negative lens group.

【0024】ところで、変倍レンズは、各レンズ群で発
生する諸収差を小さくする必要があるため、各群を最低
2枚で構成する必要があり、本発明の最も像面側の負レ
ンズ群でも、少なくとも1枚の正レンズと少なくとも1
枚の負レンズで構成することになる。
By the way, in the variable power lens, since it is necessary to reduce various aberrations generated in each lens group, it is necessary to configure each group with at least two lenses, and the negative lens group closest to the image plane of the present invention. But at least one positive lens and at least one
It will consist of one negative lens.

【0025】さらに、光学系のレンズ構成枚数をより少
なくし、さらに、諸収差を良好に補正する場合、最も像
面側の負レンズ群の構成を少なくとも正レンズより像面
側に1枚の負レンズを配置するという構成にするのが有
利である。このような構成にすると、負レンズ群がいわ
ゆる望遠タイプとなり、全系の後側主点を物体側に移動
することができるので、コンパクト化の点でも有利であ
る。
Furthermore, when the number of lens elements of the optical system is further reduced and various aberrations are corrected well, the negative lens group closest to the image surface side is composed of at least one negative lens element closer to the image surface side than the positive lens element. It is advantageous to arrange the lens. With such a configuration, the negative lens group becomes a so-called telephoto type and the rear principal point of the entire system can be moved to the object side, which is also advantageous in terms of compactness.

【0026】ここで、負レンズ群中の負レンズに屈折率
分布型レンズを用いる場合と、負レンズ群中の正レンズ
に屈折率分布型レンズを用いる場合について考えてみ
る。
Now, let us consider a case where a gradient index lens is used as the negative lens in the negative lens group and a case where the gradient index lens is used as the positive lens in the negative lens group.

【0027】屈折率分布型レンズの係数N1 をN1 >0
として媒質の屈折力を負屈折力にすることにより、負レ
ンズ群全体の負屈折力を媒質に分散させるということ
は、屈折率分布型レンズを負レンズに用いた場合でも正
レンズに用いた場合でも可能であるが、負レンズにN1
>0の屈折率分布型レンズを用いた場合は、媒質で正の
球面収差が発生すると共に、面の補正項で発生する球面
収差が正の球面収差となり、したがって、屈折率分布型
レンズを負レンズに用いると、全系、特に望遠端での正
の球面収差の発生を助長する結果となり好ましくない。
The coefficient N 1 of the gradient index lens is set to N 1 > 0.
As described above, by changing the refractive power of the medium to a negative refractive power, the negative refractive power of the entire negative lens group is dispersed in the medium. This means that even if a gradient index lens is used as a negative lens, But it is possible, but with negative lens N 1
When a gradient index lens of> 0 is used, positive spherical aberration occurs in the medium, and the spherical aberration generated in the correction term of the surface becomes positive spherical aberration. If it is used for a lens, it results in promoting the generation of positive spherical aberration in the entire system, especially at the telephoto end, which is not preferable.

【0028】それとは反対に、正レンズにN1 >0の屈
折率分布型レンズを用いた場合は、媒質では正の球面収
差が発生するが、面の補正項では負の球面収差が発生
し、屈折率分布型レンズを用いることにより、負レンズ
群の負屈折力が強くなるに伴って大きくなる正の球面収
差を打ち消すことができる。したがって、望遠端での正
の球面収差の補正が可能になる。
On the contrary, when a gradient index lens of N 1 > 0 is used as the positive lens, positive spherical aberration occurs in the medium, but negative spherical aberration occurs in the correction term of the surface. By using the gradient index lens, it is possible to cancel positive spherical aberration that increases as the negative refractive power of the negative lens group increases. Therefore, it becomes possible to correct positive spherical aberration at the telephoto end.

【0029】以上より、本発明では、最も像面側の負屈
折力を有するレンズ群中の少なくとも1枚の正屈折力を
有するレンズに屈折率分布型レンズを用いることを特徴
としている。
As described above, the present invention is characterized in that the gradient index lens is used as at least one lens having the positive refractive power in the lens group having the negative refractive power on the most image side.

【0030】このように、負レンズ群中の正レンズを屈
折率分布型レンズとすることにより、特に望遠端の球面
収差の補正が可能になる。しかし、さらに諸収差を補正
しながら高変倍比化しようとすると、屈折率分布型レン
ズのレンズ中心での屈折率n(0)とレンズの最大有効
半径yMAX の位置での基準波長の屈折率n(yMAX )と
の差Δndを大きくする必要が生じ、屈折率分布型レン
ズを作製すること自体が困難になってくる。
As described above, by making the positive lens in the negative lens group a gradient index lens, it becomes possible to correct spherical aberration particularly at the telephoto end. However, if an attempt is made to increase the zoom ratio while correcting various aberrations, refraction of the reference wavelength at the position of the refractive index n (0) at the lens center of the gradient index lens and the maximum effective radius y MAX of the lens. It becomes necessary to increase the difference Δnd from the index n (y MAX ), which makes it difficult to manufacture the gradient index lens itself.

【0031】そこで、本発明では、屈折率分布型レンズ
の少なくとも1面を非球面形状にして負の球面収差を発
生させ、正方向に大きくなりがちな球面収差を補正する
と共に、負レンズ群の屈折力が強くなるに伴い特に広角
端で発生する正の歪曲収差を効果的に補正している。
Therefore, in the present invention, at least one surface of the gradient index lens element is formed into an aspherical surface to generate negative spherical aberration, correct spherical aberration that tends to become large in the positive direction, and reduce the negative lens group. As the refracting power becomes stronger, positive distortion that occurs particularly at the wide-angle end is effectively corrected.

【0032】前述のように、負レンズ群の構成は、少な
くとも1枚の正レンズと、その正レンズより像面側の少
なくとも1枚の負レンズとで構成することになるが、こ
のような構成にすると、正レンズではマージナル光線の
光線高は比較的高くなり、軸外の光線高は比較的低くな
る。逆に、負レンズではマージナル光線の光線高は比較
的低くなり、軸外光線高は比較的高くなる。すなわち、
正レンズに非球面を用いた場合は、特に球面収差に効果
的であり、負レンズに非球面を用いた場合は特に歪曲収
差や非点収差等の軸外収差に対して効果的である。
As described above, the negative lens group is composed of at least one positive lens and at least one negative lens on the image plane side of the positive lens. Then, in the positive lens, the ray height of the marginal ray becomes relatively high and the off-axis ray height becomes relatively low. On the contrary, in the negative lens, the height of the marginal ray is relatively low and the height of the off-axis ray is relatively high. That is,
The use of an aspherical surface for the positive lens is particularly effective for spherical aberration, and the use of an aspherical surface for the negative lens is particularly effective for off-axis aberrations such as distortion and astigmatism.

【0033】本発明のように、変倍レンズの望遠端の焦
点距離を伸ばして高変倍比化しようとする場合は、特に
望遠端で発生する正の球面収差が問題になるので、非球
面は負レンズ群の正レンズに配置するのがよい。
As in the present invention, when the focal length at the telephoto end of the variable power lens is extended to obtain a high zoom ratio, positive spherical aberration particularly at the telephoto end poses a problem. Is preferably arranged in the positive lens of the negative lens group.

【0034】このとき、非球面の形状を光軸から離れる
に従い正の屈折力が強くなるような形状にすると、望遠
端での正の球面収差の補正ばかりか、広角端での正の歪
曲収差も良好に補正することが可能になる。
At this time, if the shape of the aspherical surface is such that the positive refractive power becomes stronger as the distance from the optical axis increases, not only the correction of the positive spherical aberration at the telephoto end but also the positive distortion aberration at the wide angle end. Can be corrected well.

【0035】さらに、負レンズ群中の正レンズは、その
正レンズよりも像面側に少なくとも1枚ある負レンズよ
りも有効径の小さなレンズなので、このレンズに非球面
を用いることは加工上も好ましい。
Furthermore, since the positive lens in the negative lens group has a smaller effective diameter than at least one negative lens on the image plane side of the positive lens, using an aspherical surface for this lens also contributes to processing. preferable.

【0036】さらに、本発明は、この屈折率分布型の正
レンズの両面を非球面にしてもよい。これまで述べたよ
うに、この屈折率分布型の正レンズの少なくとも1面に
非球面を用いることにより、特に望遠端での球面収差を
良好に補正することが可能であるが、非球面を両面に用
いることにより、これら諸収差を一層効果的に補正する
ことが可能になる。このとき、非球面の形状を両面共光
軸から離れるに従い正の屈折力が強くなるような形状に
すると、望遠端での正の球面収差を良好に補正すること
が可能になる。
Further, in the present invention, both surfaces of this gradient index positive lens may be aspherical. As described above, by using an aspherical surface for at least one surface of this gradient index positive lens, it is possible to satisfactorily correct spherical aberration especially at the telephoto end. It is possible to more effectively correct these various aberrations by using the above. At this time, if the shape of the aspherical surface is such that the positive refracting power becomes stronger as the distance from both sides of the optical axis increases, it becomes possible to satisfactorily correct the positive spherical aberration at the telephoto end.

【0037】なお、本発明は2群構成及び3群構成の変
倍レンズに限定されるものではなく、最も像面側のレン
ズ群が負屈折力である4群以上の光学系に対しても有効
である。
The present invention is not limited to the variable power lens having the two-group configuration and the three-group configuration, and may be applied to an optical system of four or more groups in which the lens group closest to the image plane has negative refractive power. It is valid.

【0038】[0038]

【発明の実施の形態】以下に、本発明の変倍レンズの実
施例1〜3について図面を参照にして説明する。以下の
3つの実施例は、その目的を達成するため、例えば図1
に示すように、複数のレンズ群G1〜G2よりなり、こ
の複数のレンズ群の中、少なくとも1つのレンズ群間隔
を変化させて変倍を行う変倍レンズにおいて、最も像面
側に負の屈折力を有するレンズ群G2を配置し、この負
の屈折力を有するレンズ群G2中の正の屈折力を有する
少なくとも1枚のレンズを、光軸と垂直方向に屈折率の
変化する屈折率分布型レンズで構成し、この屈折率分布
型レンズの少なくとも1面に非球面を有すると共に、こ
の屈折率分布型レンズより像面側に少なくとも1枚の負
の屈折力を有するレンズを配置することを特徴としてい
る。さらに、この正の屈折力を有する屈折率分布型レン
ズが、両面に非球面を有することを特徴としている。
Embodiments 1 to 3 of a variable power lens of the present invention will be described below with reference to the drawings. In order to achieve that purpose, the following three embodiments are shown in FIG.
As shown in FIG. 7, in a variable power lens that includes a plurality of lens groups G1 to G2 and performs zooming by changing the distance between at least one lens group among the plurality of lens groups, the negative refraction closest to the image plane side. A lens group G2 having a power is arranged, and at least one lens having a positive refractive power in the lens group G2 having a negative refractive power is a refractive index distribution type in which a refractive index changes in a direction perpendicular to an optical axis. It is configured by a lens, and at least one surface of the gradient index lens has an aspherical surface, and at least one lens having a negative refractive power is arranged on the image plane side of the gradient index lens. I am trying. Furthermore, this gradient index lens having a positive refractive power is characterized by having aspherical surfaces on both sides.

【0039】以下、各実施例について説明すると、実施
例1は、図1に広角端(a)、中間焦点距離(b)、望
遠端(c)での断面を示すように、物体側より順に、正
屈折力の第1群G1と負屈折力の第2群G2で構成し、
第1群G1と第2群G2とのレンズ群間隔を変化させて
変倍を行っている。そして、第1群G1は、物体側に凸
面を向けた負メニスカスレンズと両凸の正レンズとで構
成され、その像面側に絞りが一体に配置されている。ま
た、第2群G2は、像面側に凸面を向けた正メニスカス
レンズと同様の負メニスカスレンズとで構成されてお
り、第1群G1の負メニスカスレンズの両面は非球面か
らなっている。
The respective embodiments will be described below. In the first embodiment, as shown in FIG. 1 in which the cross section at the wide-angle end (a), the intermediate focal length (b), and the telephoto end (c) is shown, the objects are sequentially arranged from the object side. , A first group G1 having positive refractive power and a second group G2 having negative refractive power,
The zooming is performed by changing the lens group interval between the first group G1 and the second group G2. The first group G1 is composed of a negative meniscus lens having a convex surface directed toward the object side and a biconvex positive lens, and an aperture is integrally arranged on the image side thereof. The second group G2 includes a negative meniscus lens similar to the positive meniscus lens having a convex surface facing the image plane side, and both surfaces of the negative meniscus lens of the first group G1 are aspherical surfaces.

【0040】ここで、第2群G2の最も物体側に配置し
ている正の屈折力を有するレンズ(正メニスカスレン
ズ)を屈折率分布型レンズで構成している。また、この
屈折率分布型レンズの両面を非球面形状にしている。ま
た、第1群G1の正レンズも屈折率分布型レンズで構成
している。このように構成することにより、コンパクト
でレンズ枚数の少ない高変倍比を有する変倍レンズを構
成することを達成している。
Here, the lens (positive meniscus lens) having a positive refractive power, which is arranged on the most object side of the second group G2, is constituted by a gradient index lens. Both surfaces of this gradient index lens are aspherical. The positive lens of the first group G1 is also composed of a gradient index lens. With this configuration, it is possible to achieve a compact variable power lens having a high variable power ratio with a small number of lenses.

【0041】実施例2は、断面形状は実施例1と略同様
であるので図示は省くが、物体側より順に、正屈折力の
第1群G1と負屈折力の第2群G2で構成し、第1群G
1と第2群G2とのレンズ群間隔を変化させて変倍を行
っている。そして、第1群G1は、物体側に凸面を向け
た負メニスカスレンズと両凸の正レンズとで構成され、
その像面側に絞りが一体に配置されている。また、第2
群G2は、像面側に凸面を向けた正メニスカスレンズと
同様の負メニスカスレンズとで構成されており、第1群
G1の負メニスカスレンズの両面は非球面からなってい
る。
The cross-sectional shape of the second embodiment is substantially the same as that of the first embodiment, so the illustration thereof is omitted. However, the second embodiment is composed of a first group G1 having a positive refractive power and a second group G2 having a negative refractive power in order from the object side. , First group G
The zooming is performed by changing the lens group interval between the first and second lens groups G2. The first group G1 is composed of a negative meniscus lens having a convex surface directed toward the object side and a biconvex positive lens,
A diaphragm is integrally arranged on the image plane side. Also, the second
The group G2 is composed of a positive meniscus lens having a convex surface facing the image plane side and a negative meniscus lens similar to the positive meniscus lens, and both surfaces of the negative meniscus lens of the first group G1 are aspherical.

【0042】ここで、第2群G2の最も物体側に配置し
ている正の屈折力を有するレンズ(正メニスカスレン
ズ)を屈折率分布型レンズで構成している。また、この
屈折率分布型レンズの物体側の面を非球面形状にしてい
る。また、第1群G1の正レンズも屈折率分布型レンズ
で構成している。このように構成することにより、コン
パクトでレンズ枚数が少ない高変倍比を有する変倍レン
ズを構成することを達成している。さらに、第2群G2
中の屈折率分布型レンズの物体側の面だけを非球面形状
にしているので、加工上有利になる。
Here, the lens (positive meniscus lens) having a positive refractive power, which is arranged on the most object side of the second group G2, is formed of a gradient index lens. Further, the surface of the gradient index lens on the object side has an aspherical shape. The positive lens of the first group G1 is also composed of a gradient index lens. With this configuration, it is possible to achieve a compact variable power lens having a high variable power ratio with a small number of lenses. Furthermore, the second group G2
Since only the object side surface of the gradient index lens in the inside has an aspherical shape, it is advantageous in processing.

【0043】実施例3は、図2に広角端(a)、中間焦
点距離(b)、望遠端(c)での断面を示すように、物
体側より順に、正屈折力の第1群G1と正屈折力の第2
群G2と負屈折力の第3群G3で構成し、第1群G1と
第2群G2の間、第2群G2と第3群G3の間のレンズ
群間隔を変化させて変倍を行っている。そして、第1群
G1は、両凹の負レンズと物体側に凸面を向けた正メニ
スカスレンズとで構成され、第2群G2は、両凹の負レ
ンズと両凸の正レンズとで構成され、両レンズ間に絞り
が一体に配置されている。また、第3群G3は、像面側
に凸面を向けた正メニスカスレンズと同様の負メニスカ
スレンズとで構成されている。
In the third embodiment, as shown in FIG. 2 at the wide-angle end (a), the intermediate focal length (b), and the telephoto end (c), the first group G1 having a positive refractive power is arranged in order from the object side. And positive refractive power second
It is composed of a group G2 and a third group G3 having negative refractive power, and zooming is performed by changing the lens group spacing between the first group G1 and the second group G2 and between the second group G2 and the third group G3. ing. The first group G1 is composed of a biconcave negative lens and a positive meniscus lens having a convex surface facing the object side, and the second group G2 is composed of a biconcave negative lens and a biconvex positive lens. , A diaphragm is integrally disposed between both lenses. The third group G3 is composed of a positive meniscus lens having a convex surface facing the image plane side and a negative meniscus lens similar to the positive meniscus lens.

【0044】ここで、第3群G3の最も物体側に配置し
ている正の屈折力を有するレンズ(正メニスカスレン
ズ)を屈折率分布型レンズで構成している。また、この
屈折率分布型レンズの物体側の面を非球面形状にしてい
る。このように構成することにより、コンパクトでレン
ズ枚数が少ない高変倍比を有する変倍レンズを構成する
ことを達成している。
Here, the lens (positive meniscus lens) having a positive refractive power, which is arranged on the most object side of the third group G3, is composed of a gradient index lens. Further, the surface of the gradient index lens on the object side has an aspherical shape. With this configuration, it is possible to achieve a compact variable power lens having a high variable power ratio with a small number of lenses.

【0045】以下に、上記各実施例の数値データを示す
が、記号は上記の外、fは全系焦点距離、FNOはFナン
バー、ωは半画角、fB は無限遠合焦時のバックフォー
カス、r1 、r2 …は各レンズ面の曲率半径、d1 、d
2 …は各レンズ面間の間隔、nd1、nd2…は各レンズの
d線の屈折率、νd1、νd2…は各レンズのアッベ数であ
る。なお、非球面形状は、光軸上光の進行方向をZ、光
軸に直交する方向をYとしたとき、次の式で表される。 Z=(Y2 /r)/{1+〔1−(K+1)(Y/r)2 1/2 } +A4 4 +A6 6 +A8 8 +A1010+・・ ・・・(2) ただし、rは近軸曲率半径、K、A4 、A6 、A8 、A
10は非球面係数である。
Numerical data of each of the above-mentioned embodiments will be shown below. Symbols are other than the above, f is the focal length of the entire system, F NO is the F number, ω is the half angle of view, and f B is at infinity. Back focus, r 1 , r 2 ... Is the radius of curvature of each lens surface, d 1 , d
2 is the distance between the lens surfaces, n d1 , n d2 ... Is the d-line refractive index of each lens, and ν d1 , ν d2 are the Abbe numbers of each lens. The aspherical shape is expressed by the following equation, where Z is a traveling direction of light on the optical axis and Y is a direction orthogonal to the optical axis. Z = (Y 2 / r) / {1+ [1- (K + 1) (Y / r) 2 ] 1/2} + A 4 Y 4 + A 6 Y 6 + A 8 Y 8 + A 10 Y 10 + ·· ··· (2) where r is the paraxial radius of curvature, K, A 4 , A 6 , A 8 , A
10 is an aspheric coefficient.

【0046】また、各実施例中の光軸と垂直方向に屈折
率分布を有するいわゆるラジアル型屈折率分布型レンズ
(数値データ中では、“GRIN”と表記)は、次式で
表される屈折率分布を有している。 n(y)=N0 +N1 2 +N2 4 +・・・ ・・・(1) ただし、N0 はレンズの中心での基準波長の屈折率、y
はレンズの中心から半径方向距離、n(y)はレンズの
中心から半径yの所での基準波長の屈折率、N1 、N2
・・・は定数である。
The so-called radial type gradient index lens (indicated by "GRIN" in the numerical data) having a gradient index in the direction perpendicular to the optical axis in each example is a refraction expressed by the following equation. It has a rate distribution. n (y) = N 0 + N 1 y 2 + N 2 y 4 + ... (1) where N 0 is the refractive index of the reference wavelength at the center of the lens, y
Is the radial distance from the center of the lens, n (y) is the refractive index of the reference wavelength at the radius y from the center of the lens, N 1 , N 2
... is a constant.

【0047】また、屈折率分布型レンズに関するν0d
νidはそれれ下記の式で表される定数である。 ν0d=(N0d−1)/(N0F−N0C) ・・・(5) νid=Nid/(NiF−NiC) ・・・(6) なお、上記のν0d、νidの式中、N0d、N0F、N0Cはそ
れぞれd線、F線、C線の光軸上の屈折率、Nid
iF、NiCはそれぞれ屈折率分布レンズのd線、F線、
C線のi次の分布係数である。次に、上記実施例1〜3
の数値データを示す。
Ν 0d for the gradient index lens,
ν id is a constant represented by the following equation. ν 0d = (N 0d -1) / (N 0F -N 0C ) ... (5) ν id = N id / (N iF -N iC ) ... (6) It should be noted that the above ν 0d , ν In the formula of id , N 0d , N 0F , and N 0C are the refractive indices of the d-line, F-line, and C-line on the optical axis, N id ,
N iF and N iC are the d-line, F-line, and
It is the i-th order distribution coefficient of the C line. Next, Examples 1 to 3 above
The numerical data of is shown.

【0048】実施例1 f = 39.01 〜 72.30 〜133.78 FNO= 3.60 〜 5.87 〜 9.50 ω = 29.01 〜 16.67 〜 9.18° fB = 4.46 〜 33.91 〜 88.31 r1 = 25.8987(非球面) d1 = 2.7744 nd1 =1.84666 νd1 =23.78 r2 = 19.3356(非球面) d2 = 3.7238 r3 = 83.1780 d3 = 6.6456 GRIN−1 r4 = -15.3783 d4 = 0.1000 r5 = ∞(絞り) d5 =(可変) r6 = -146.7940(非球面) d6 = 5.3221 GRIN−2 r7 = -37.4853(非球面) d7 = 5.5968 r8 = -11.9204 d8 = 4.0993 nd4 =1.77250 νd4 =49.60 r9 = -42.6851 非球面係数 第1面 K = 0 A4 =-1.1999 ×10-4 A6 =-7.0203 ×10-7 A8 = 2.2850 ×10-9 A10= 3.8162 ×10-15 第2面 K = 0 A4 =-1.0246 ×10-4 A6 =-5.2145 ×10-7 A8 = 6.5715 ×10-9 A10= 3.7930 ×10-13 第6面 K = 0 A4 = 3.8168 ×10-5 A6 = 4.7400 ×10-9 A8 = 7.9294 ×10-10 A10= 1.0991 ×10-13 第7面 K = 0 A4 = 3.3331 ×10-6 A6 =-2.6277 ×10-8 A8 =-9.6421 ×10-10 A10= 1.0146 ×10-13 GRIN−1 N0 = 1.563370 N1 = 9.7518×10-52 = 1.0454×10-6 ν0d=60.00 ν1d= 8.6905 ν2d= 6.3160×10+1 GRIN−2 N0 = 1.574990 N1 = 4.9692×10-42 = 1.5545×10-7 ν0d=37.00 ν1d= 9.8014×10+1 ν2d= 3.0490×10+1
Example 1 f = 39.01 to 72.30 to 133.78 F NO = 3.60 to 5.87 to 9.50 ω = 29.01 to 16.67 to 9.18 ° f B = 4.46 to 33.91 to 88.31 r 1 = 25.8987 (aspherical surface) d 1 = 2.7744 n d1 = 1.84666 ν d1 = 23.78 r 2 = 19.3356 (aspherical surface) d 2 = 3.7238 r 3 = 83.1780 d 3 = 6.6456 GRIN-1 r 4 = -15.3783 d 4 = 0.1000 r 5 = ∞ (aperture) d 5 = ( Variable) r 6 = -146.7940 (aspherical surface) d 6 = 5.3221 GRIN-2 r 7 = -37.4853 (aspherical surface) d 7 = 5.5968 r 8 = -11.9204 d 8 = 4.0993 n d4 = 1.77250 ν d4 = 49.60 r 9 = -42.6851 Aspheric surface coefficient 1st surface K = 0 A 4 = -1.1999 × 10 -4 A 6 = -7.0203 × 10 -7 A 8 = 2.2850 × 10 -9 A 10 = 3.8162 × 10 -15 2nd surface K = 0 A 4 = -1.0246 × 10 -4 A 6 = -5.2145 × 10 -7 A 8 = 6.5715 × 10 -9 A 10 = 3.7930 × 10 -13 6th surface K = 0 A 4 = 3.8168 × 10 -5 A 6 = 4.7 400 × 10 -9 A 8 = 7.9294 × 10 -10 A 10 = 1.0991 × 10 -13 7th surface K = 0 A 4 = 3.3331 × 10 -6 A 6 = -2.6277 × 10 -8 A 8 = -9.6421 × 10 -10 A 10 = 1.0146 × 10 -13 GRIN-1 N 0 = 1.563370 N 1 = 9.7518 × 10 -5 N 2 = 1.0454 × 10 -6 ν 0d = 60.00 ν 1d = 8.6905 ν 2d = 6.3160 × 10 +1 GRIN-2 N 0 = 1.574990 N 1 = 4.9692 × 10 -4 N 2 = 1.5545 × 10 -7 ν 0d = 37.00 ν 1d = 9.8014 × 10 +1 ν 2d = 3.0490 × 10 +1
.

【0049】実施例2 f = 39.01 〜 72.30 〜133.78 FNO= 3.60 〜 5.87 〜 9.50 ω = 29.01 〜 16.67 〜 9.18° fB = 4.45 〜 33.89 〜 88.25 r1 = 25.8624(非球面) d1 = 2.7745 nd1 =1.84666 νd1 =23.78 r2 = 19.3414(非球面) d2 = 3.7238 r3 = 83.5721 d3 = 6.6454 GRIN−1 r4 = -15.3854 d4 = 0.1000 r5 = ∞(絞り) d5 =(可変) r6 = -146.6621(非球面) d6 = 5.3219 GRIN−2 r7 = -37.4942 d7 = 5.5968 r8 = -11.9237 d8 = 4.1001 nd4 =1.77250 νd4 =49.60 r9 = -42.7350 非球面係数 第1面 K = 0 A4 =-1.2029 ×10-4 A6 =-8.8969 ×10-7 A8 = 6.8070 ×10-9 A10=-2.5204 ×10-11 第2面 K = 0 A4 =-1.0338 ×10-4 A6 =-8.4262 ×10-7 A8 = 1.5758 ×10-8 A10=-5.9487 ×10-11 第6面 K = 0 A4 = 3.6152 ×10-5 A6 =-1.8326 ×10-7 A8 = 7.0651 ×10-9 A10=-3.6443 ×10-11 GRIN−1 N0 = 1.563370 N1 = 9.7518×10-52 = 1.0454×10-6 ν0d=60.00 ν1d= 8.6905 ν2d= 6.3160×10+1 GRIN−2 N0 = 1.574990 N1 = 4.9692×10-42 = 1.5545×10-7 ν0d=37.00 ν1d= 9.8014×10+1 ν2d= 3.0490×10+1
Example 2 f = 39.01 to 72.30 to 133.78 F NO = 3.60 to 5.87 to 9.50 ω = 29.01 to 16.67 to 9.18 ° f B = 4.45 to 33.89 to 88.25 r 1 = 25.8624 (aspherical surface) d 1 = 2.7745 n d1 = 1.84666 ν d1 = 23.78 r 2 = 19.3414 (aspherical surface) d 2 = 3.7238 r 3 = 83.5721 d 3 = 6.6454 GRIN-1 r 4 = -15.3854 d 4 = 0.1000 r 5 = ∞ (aperture) d 5 = ( Variable) r 6 = -146.6621 (aspherical surface) d 6 = 5.3219 GRIN-2 r 7 = -37.4942 d 7 = 5.5968 r 8 = -11.9237 d 8 = 4.1001 n d4 = 1.77250 ν d4 = 49.60 r 9 = -42.7350 Aspheric surface coefficient 1st surface K = 0 A 4 = -1.2029 × 10 -4 A 6 = -8.8969 × 10 -7 A 8 = 6.8070 × 10 -9 A 10 = -2.5204 × 10 -11 2nd surface K = 0 A 4 = -1.0338 × 10 -4 A 6 = -8.4262 × 10 -7 A 8 = 1.5758 × 10 -8 A 10 = -5.9487 × 10 -11 6th surface K = 0 A 4 = 3.6152 × 10 -5 A 6 = -1.8326 × 10 -7 A 8 = 7.0651 × 10 -9 A 10 = -3.6443 × 10 -11 GRIN-1 N 0 = 1.563370 N 1 = 9.7518 × 10 -5 N 2 = 1.0454 × 10 -6 ν 0d = 60.00 ν 1d = 8.6905 ν 2d = 6.3160 × 10 +1 GRIN-2 N 0 = 1.574990 N 1 = 4.9692 × 10 -4 N 2 = 1.5545 × 10 -7 ν 0d = 37.00 ν 1d = 9.8014 × 10 +1 ν 2d = 3.0490 × 10 +1
.

【0050】実施例3 f = 36.75 〜 70.68 〜135.82 FNO= 3.60 〜 5.90 〜 9.85 ω = 30.48 〜 17.02 〜 9.05° fB = 5.19 〜 28.75 〜 72.03 r1 = -222.3525 d1 = 2.1440 nd1 =1.84666 νd1 =23.78 r2 = 153.7652 d2 = 0.1200 r3 = 19.3933 d3 = 3.0773 nd2 =1.69680 νd2 =55.53 r4 = 110.4690 d4 =(可変) r5 = -41.5543 d5 = 4.8827 GRIN−1 r6 = 634.1938 d6 = 0.7116 r7 = ∞(絞り) d7 = 1.9919 r8 = 112.4261 d8 = 6.9769 GRIN−2 r9 = -20.4783 d9 =(可変) r10= -18.4369(非球面) d10= 4.6366 GRIN−3 r11= -16.3872 d11= 2.1753 r12= -14.7410 d12= 1.9874 nd6 =1.69680 νd6 =55.53 r13= -246.2346 非球面係数 第10面 K = 0 A4 = 8.3268 ×10-6 A6 = 1.5647 ×10-7 A8 =-1.3259 ×10-9 A10= 6.4565 ×10-12 GRIN−1 N0 = 1.840700 N1 = 1.9724×10-42 = 5.4363×10-6 ν0d=43.42 ν1d=-3.6893 ν2d= 1.9788×10+1 GRIN−2 N0 = 1.573310 N1 =-7.6013×10-42 =-2.4574×10-6 ν0d=61.83 ν1d=-3.6527×10+1 ν2d=-7.1944 GRIN−3 N0 = 1.764930 N1 = 6.5194×10-42 = 4.8191×10-9 ν0d=21.19 ν1d= 2.7770×10+1 ν2d=-9.6653×10+3
Example 3 f = 36.75 ~ 70.68 ~ 135.82 F NO = 3.60 ~ 5.90 ~ 9.85 ω = 30.48 ~ 17.02 ~ 9.05 ° f B = 5.19 ~ 28.75 ~ 72.03 r 1 = -222.3525 d 1 = 2.1440 n d1 = 1.84666 ν d1 = 23.78 r 2 = 153.7652 d 2 = 0.1200 r 3 = 19.3933 d 3 = 3.0773 n d2 = 1.69680 ν d2 = 55.53 r 4 = 110.4690 d 4 = (variable) r 5 = -41.5543 d 5 = 4.8827 GRIN-1 r 6 = 634.1938 d 6 = 0.7116 r 7 = ∞ (aperture) d 7 = 1.9919 r 8 = 112.4261 d 8 = 6.9769 GRIN-2 r 9 = -20.4783 d 9 = (variable) r 10 = -18.4369 (aspherical surface) d 10 = 4.6366 GRIN-3 r 11 = -16.3872 d 11 = 2.1753 r 12 = -14.7410 d 12 = 1.9874 n d6 = 1.69680 ν d6 = 55.53 r 13 = -246.2346 Aspherical surface 10th surface K = 0 A 4 = 8.3268 × 10 -6 A 6 = 1.5647 × 10 -7 A 8 = -1.3259 × 10 -9 A 10 = 6.4565 × 10 -12 GRIN-1 N 0 = 1.840700 N 1 = 1.9724 × 10 -4 N 2 = 5.4363 × 10 -6 ν 0d = 43.42 ν 1d = -3.6893 ν 2d = 1.9788 × 10 +1 GRIN-2 N 0 = 1.573310 N 1 = -7.6013 × 10 -4 N 2 = -2.4574 × 10 -6 ν 0d = 61.83 ν 1d = -3.6527 × 10 +1 ν 2d = -7.1944 GRIN-3 N 0 = 1.764930 N 1 = 6.5194 × 10 -4 N 2 = 4.8191 × 10 -9 ν 0d = 21.19 ν 1d = 2.7770 × 10 +1 ν 2d = -9.6653 × 10 +3
.

【0051】上記実施例1〜3の無限遠物体合焦時の収
差図を図3〜図5に示す。各収差図において、(a)は
広角端、(b)は中間焦点距離、(c)は望遠端の球面
収差、非点収差、歪曲収差、倍率色収差をそれぞれ示
す。
Aberration diagrams of Examples 1 to 3 when focusing on an object at infinity are shown in FIGS. In each of the aberration diagrams, (a) shows the wide-angle end, (b) shows the intermediate focal length, and (c) shows the spherical aberration, astigmatism, distortion, and chromatic aberration of magnification at the telephoto end, respectively.

【0052】[0052]

【発明の効果】以上説明したように、本発明の構成にす
ることにより、変倍比が3.4以上と大きいにも係わら
ず、広角端から望遠端にかけて諸収差が十分良好に補正
され、しかも、構成レンズ枚数の非常に少ない変倍レン
ズを構成することができる。
As described above, according to the configuration of the present invention, various aberrations are sufficiently corrected from the wide-angle end to the telephoto end despite the large zoom ratio of 3.4 or more. Moreover, it is possible to construct a variable power lens having a very small number of constituent lenses.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の変倍レンズの実施例1の断面図であ
る。
FIG. 1 is a sectional view of a zoom lens according to a first embodiment of the present invention.

【図2】本発明の変倍レンズの実施例3の断面図であ
る。
FIG. 2 is a sectional view of a variable power lens according to a third embodiment of the present invention.

【図3】実施例1の収差図である。FIG. 3 is an aberration diagram of Example 1.

【図4】実施例2の収差図である。FIG. 4 is an aberration diagram of the second embodiment.

【図5】実施例3の収差図である。FIG. 5 is an aberration diagram for Example 3.

【符号の説明】[Explanation of symbols]

G1…第1レンズ群 G2…第2レンズ群 G3…第3レンズ群 G1: first lens group G2: second lens group G3: third lens group

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数のレンズ群よりなり、前記複数のレ
ンズ群の中、少なくとも1つのレンズ群間隔を変化させ
て変倍を行う変倍レンズにおいて、 最も像面側に負の屈折力を有するレンズ群を配置し、前
記負の屈折力を有するレンズ群中の正の屈折力を有する
少なくとも1枚のレンズを、光軸と垂直方向に屈折率が
変化する屈折率分布型レンズで構成し、前記屈折率分布
型レンズの少なくとも1面に非球面を有すると共に、前
記屈折率分布型レンズより像面側に少なくとも1枚の負
の屈折力を有するレンズを配置したことを特徴とする変
倍レンズ。
1. A variable power lens composed of a plurality of lens groups, wherein at least one lens group among the plurality of lens groups is varied to perform a magnification change, having a negative refractive power closest to the image plane side. A lens group is arranged, and at least one lens having a positive refractive power in the lens group having a negative refractive power is constituted by a gradient index lens whose refractive index changes in a direction perpendicular to an optical axis, A variable power lens characterized in that at least one surface of the gradient index lens has an aspherical surface, and at least one lens having a negative refractive power is arranged on the image plane side of the gradient index lens. .
【請求項2】 前記正の屈折力を有する屈折率分布型レ
ンズが、両面に非球面を有することを特徴とする請求項
1記載の変倍レンズ。
2. The variable power lens according to claim 1, wherein the gradient index lens element having a positive refractive power has aspherical surfaces on both sides.
JP28992595A 1995-11-08 1995-11-08 Variable power lens Pending JPH09133863A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP28992595A JPH09133863A (en) 1995-11-08 1995-11-08 Variable power lens
US08/713,035 US5808811A (en) 1995-11-08 1996-09-12 Zoom lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28992595A JPH09133863A (en) 1995-11-08 1995-11-08 Variable power lens

Publications (1)

Publication Number Publication Date
JPH09133863A true JPH09133863A (en) 1997-05-20

Family

ID=17749542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28992595A Pending JPH09133863A (en) 1995-11-08 1995-11-08 Variable power lens

Country Status (1)

Country Link
JP (1) JPH09133863A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193885A (en) * 1998-12-24 2000-07-14 Asahi Optical Co Ltd Zoom lens system
JP2001356266A (en) * 2000-06-13 2001-12-26 Olympus Optical Co Ltd Zoom lens
JP2013061548A (en) * 2011-09-14 2013-04-04 Canon Inc Imaging optical system and optical instrument having refraction index distribution type lens
WO2014017029A1 (en) * 2012-07-23 2014-01-30 富士フイルム株式会社 Imaging lens and imaging device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193885A (en) * 1998-12-24 2000-07-14 Asahi Optical Co Ltd Zoom lens system
JP2001356266A (en) * 2000-06-13 2001-12-26 Olympus Optical Co Ltd Zoom lens
JP2013061548A (en) * 2011-09-14 2013-04-04 Canon Inc Imaging optical system and optical instrument having refraction index distribution type lens
WO2014017029A1 (en) * 2012-07-23 2014-01-30 富士フイルム株式会社 Imaging lens and imaging device
US9405102B2 (en) 2012-07-23 2016-08-02 Fujifilm Corporation Imaging lens and imaging apparatus

Similar Documents

Publication Publication Date Title
US7330316B2 (en) Zoom lens system
JP3253405B2 (en) Two-group zoom lens
US7251081B2 (en) Zoom lens system
JP2000352665A (en) Wide-angle lens
JP3365835B2 (en) Compact 3-group zoom lens
JPH06337354A (en) Zoom lens
JP3204703B2 (en) Zoom lens
JP3365837B2 (en) Focusing method of 3-group zoom lens
JP2000121942A (en) Zoom lens
JP3331011B2 (en) Small two-group zoom lens
JPH07225339A (en) Zoom lens
JP3678522B2 (en) Camera with zoom lens
JPH11142737A (en) Variable power lens system
JP2901066B2 (en) Zoom lens
JP3432050B2 (en) High zoom 3 group zoom lens
JP3467086B2 (en) Camera with zoom lens
JP2546293B2 (en) Small zoom lens
JPH06130298A (en) Compact zoom lens
JPH08334693A (en) Variable power lens
JP2579215B2 (en) Zoom lens
JP3323839B2 (en) Camera with a small zoom lens
JP4379957B2 (en) Rear focus zoom lens and optical apparatus using the same
JPH09133863A (en) Variable power lens
JPH1114903A (en) Zoom lens
JP4720005B2 (en) Zoom lens

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030730