JPH09133512A - Optical three dimensional measuring method - Google Patents

Optical three dimensional measuring method

Info

Publication number
JPH09133512A
JPH09133512A JP7288929A JP28892995A JPH09133512A JP H09133512 A JPH09133512 A JP H09133512A JP 7288929 A JP7288929 A JP 7288929A JP 28892995 A JP28892995 A JP 28892995A JP H09133512 A JPH09133512 A JP H09133512A
Authority
JP
Japan
Prior art keywords
measuring
measurement
probe
hole
position data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7288929A
Other languages
Japanese (ja)
Inventor
Masatoshi Kito
正年 鬼頭
Yoshihide Aoki
良英 青木
Mitsutoshi Goto
光利 後藤
Takushi Goto
卓士 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Machine Works Ltd
Toyota Motor Corp
Original Assignee
Sanyo Machine Works Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Machine Works Ltd, Toyota Motor Corp filed Critical Sanyo Machine Works Ltd
Priority to JP7288929A priority Critical patent/JPH09133512A/en
Publication of JPH09133512A publication Critical patent/JPH09133512A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Image Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure a to-be-measured hole, a marking line, and a three- dimensional position of an end point with high precision and workability. SOLUTION: When a central position and radius of a to-be-measured hole 11 of complete roundness are measured with a spherical probe 10 of the tip of a measuring point indicator 3, the to-be-measured hole 11 is made contact to the probe 11 of a diameter larger than it, and the positions of three or more light sources of the measuring point indicator 3 are measured, and the position of the sphere center of the probe 10 is found from the data, and the data and the radius of the probe 10 are numerically calculated, for finding the central position and radius of the to-be-measured hole 11. When a to-be-measured object is a marking line, an intersection of it or the position of the end point of a boast, as well, the sphere center position data is found with the use of the probe 10, for numerically calculating the data and the probe radius.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、2台以上のCCD
カメラ等の撮像装置を用いた可搬式の光学式三次元測定
装置と、測定対象の測定点を指し示す光源付きの測定点
指示具を使用して、各種の測定対象の位置座標を測定す
る際の測定方法に関する。
TECHNICAL FIELD The present invention relates to two or more CCDs.
When measuring the position coordinates of various measurement targets using a portable optical three-dimensional measurement device that uses an imaging device such as a camera, and a measurement point indicator with a light source that points to the measurement point of the measurement target Regarding measurement method.

【0002】[0002]

【従来の技術】自動車のボディーやプレス金型等の測定
対象の三次元位置座標の測定方法として、2台以上の撮
像装置で撮像した測定対象の画像データをコンピュータ
で数値計算して、測定対象の位置座標、大きさ等を測定
する光学式三次元測定方法がある。この測定方法におい
て、測定対象が物体面に形成された穴、ケガキ線のよう
な場合、また、物体の稜線のような端点のような場合、
その測定対象の位置を撮像装置に指し示す測定点指示具
が用いられている。この測定点指示具には、測定対象に
直接接触するプローブと3点以上の点発光する光源を備
えたものであり、これを使った従来の測定方法を図11
を参照して説明する。
2. Description of the Related Art As a method of measuring the three-dimensional position coordinates of an object to be measured such as an automobile body or a press die, the image data of the object to be measured taken by two or more image pickup devices is numerically calculated by a computer, and the measured object is measured. There is an optical three-dimensional measurement method for measuring the position coordinates, size, etc. In this measuring method, when the measurement target is a hole formed on the object surface, such as a marking line, or an end point such as a ridgeline of the object,
A measurement point pointing device that points the position of the measurement target to the imaging device is used. This measurement point indicator is provided with a probe that directly contacts the measurement target and a light source that emits light at three or more points. A conventional measurement method using this is shown in FIG.
This will be described with reference to FIG.

【0003】図11に示される可搬式の光学式三次元測
定装置は、2台の撮像装置であるCCDカメラ6と1つ
の測定点指示具3を備える。測定点指示具3は、片手で
持てる本体の先端にプローブ4と、本体の後端部の3点
以上の定箇所に発光ダイオード等の光源5を有する。
The portable optical three-dimensional measuring device shown in FIG. 11 comprises two image pickup devices, a CCD camera 6 and one measuring point indicator 3. The measurement point indicator 3 has a probe 4 at the tip of the main body that can be held by one hand, and a light source 5 such as a light emitting diode at three or more fixed locations on the rear end of the main body.

【0004】図11の測定装置で測定対象、例えば測定
対象物1の平面に形成された真円の測定対象穴2の中心
位置と大きさを測定する場合、次のように行われる。測
定対象物1と2台のCCDカメラ6の相対位置を決めて
おいて、測定点指示具3のプローブ4の先端を測定対象
穴2の内周に当て、光源5をCCDカメラ6の視野に入
れる。この状態でプローブ4の先端を測定対象穴2の内
周面に周方向になぞらせて測定点指示具3の全体を円弧
移動させ、このときの光源5をCCDカメラ6で撮像す
る。2台のCCDカメラ6からの画像データをコンピュ
ータ(図示せず)に送って、光源5の円弧の三次元位置
データを求め、この位置データからプローブ4の先端の
移動した円弧の位置データを求める。このように求めら
れた円弧位置データは、測定対象穴2の内周の位置デー
タに相当して、この内周位置データを必要に応じ補正し
て数値計算することで、測定対象穴2の穴中心の位置座
標、半径が算出される。
When measuring the center position and size of a measurement object, for example, a measurement object hole 2 of a perfect circle formed on the plane of the measurement object 1 with the measuring device of FIG. The relative positions of the object to be measured 1 and the two CCD cameras 6 are determined, the tip of the probe 4 of the measuring point indicator 3 is brought into contact with the inner circumference of the hole to be measured 2, and the light source 5 is placed in the field of view of the CCD camera 6. Put in. In this state, the tip of the probe 4 is traced to the inner peripheral surface of the hole 2 to be measured in the circumferential direction to move the entire measuring point indicating tool 3 in an arc, and the light source 5 at this time is imaged by the CCD camera 6. Image data from the two CCD cameras 6 is sent to a computer (not shown) to obtain three-dimensional position data of the arc of the light source 5, and from this position data, position data of the moved arc of the tip of the probe 4 is obtained. . The arc position data thus obtained corresponds to the position data of the inner circumference of the hole 2 to be measured, and the hole position of the hole 2 to be measured is corrected by correcting the inner circumference position data as necessary. The position coordinates and radius of the center are calculated.

【0005】[0005]

【発明が解決しようとする課題】上記のような測定点指
示具のプローブ先端を測定対象穴の内周になぞらせる作
業は、プローブ先端が測定対象穴の内周面で上下動しな
いように注意を要して、測定対象穴の中心位置と大きさ
を精度よく測定することが難しく、かつ、1回の測定の
作業性が悪かった。また、プローブ先端は球状にしてあ
るのが通常であり、この球状のプローブ先端の球径より
小さいかほぼ同一の穴径の測定対象穴に対しては、その
測定が不可能である。
The work of tracing the probe tip of the measuring point indicator to the inner circumference of the hole to be measured as described above is performed so that the probe tip does not move up and down on the inner peripheral surface of the hole to be measured. It is difficult to measure the center position and size of the hole to be measured with caution, and the workability of one measurement is poor. Further, the probe tip is usually spherical, and the measurement is not possible for the measurement target hole having a hole diameter smaller than or substantially the same as the spherical diameter of the spherical probe tip.

【0006】また、物体面に形成されたケガキ線やその
交点の三次元位置を測定する際、上記測定点指示具のプ
ローブ先端が針状のものをケガキ線になぞらせることが
行われる。この場合、プローブ先端がケガキ線から外れ
ないようになぞらせることが難しくて、測定結果の信頼
性と測定の作業性が悪い問題があった。
Further, when measuring the marking line formed on the object surface and the three-dimensional position of its intersection, the needle of the measuring point pointing device having a needle tip is traced to the marking line. In this case, it is difficult to trace the tip of the probe so that it does not come off the marking line, and the reliability of the measurement result and the workability of the measurement are poor.

【0007】また、物体の角、稜線等の端点の三次元位
置を測定する場合、上記測定点指示具のプローブ先端を
物体の端点に当接させることが行われる。この場合も、
プローブ先端が端点から外れ易くて、測定結果の信頼性
が悪い問題があった。
Further, when measuring the three-dimensional positions of the end points such as corners and ridges of the object, the probe tip of the above-mentioned measuring point indicator is brought into contact with the end point of the object. Again,
There is a problem that the tip of the probe is easily dislocated from the end point and the reliability of the measurement result is poor.

【0008】本発明の目的は、測定対象が穴、ケガキ
線、端点のような場合において、この測定対象の三次元
位置を高精度に作業性よく測定する測定方法を提供する
ことにある。
An object of the present invention is to provide a measuring method for measuring a three-dimensional position of a measuring object with high accuracy and good workability when the measuring object is a hole, a marking line, or an end point.

【0009】[0009]

【課題を解決するための手段】本発明は、球状測定子と
3点以上の光源を有する測定点指示具を用いて、測定対
象の三次元位置を2台以上の撮像装置を有する光学式三
次元測定装置で測定する測定方法で、測定対象の種類に
応じた次の測定方法にて、上記目的を達成するものであ
る。
SUMMARY OF THE INVENTION The present invention is an optical tertiary system having two or more imaging devices for measuring the three-dimensional position of a measuring object by using a measuring point indicator having a spherical probe and a light source of three or more points. The above-mentioned object is achieved by the following measuring method according to the type of the object to be measured, which is a measuring method using an original measuring device.

【0010】第1の測定方法は、測定対象が測定点指示
具の球状測定子より小径の穴の場合で、この測定対象穴
の在る測定対象面の穴周辺に測定子を接触させて、測定
対象面の面位置データを光学式三次元測定装置で求め、
また、測定対象穴に測定子を内接させて、測定子の球中
心の点位置データを光学式三次元測定装置で求め、これ
ら2つの位置データと測定子の半径のオフセット量を数
値計算して、測定対象穴の穴中心位置と大きさを測定す
ることを特徴とする。
In the first measuring method, the measuring object is a hole having a diameter smaller than that of the spherical measuring element of the measuring point indicator, and the measuring element is brought into contact with the periphery of the measuring object surface where the measuring object hole is present, Obtain the surface position data of the surface to be measured with an optical three-dimensional measuring device,
In addition, the probe is inscribed in the hole to be measured, the point position data of the sphere center of the probe is obtained by an optical three-dimensional measuring device, and these two position data and the offset amount of the radius of the probe are numerically calculated. Then, the hole center position and size of the hole to be measured are measured.

【0011】第2の測定方法は、測定対象が測定対象面
に形成されたケガキ線の場合で、このケガキ線周辺の測
定対象面に測定点指示具の測定子を接触させて、測定対
象面の面位置データを光学式三次元測定装置で求め、ま
た、ケガキ線に一致する稜線部とこの稜線部に沿う測定
補助面を有する測定補助具を測定対象面に、その稜線部
をケガキ線に沿わせて位置決め載置して、測定点指示具
の球状測定子を測定補助具の測定補助面と測定対象面に
点接触させたまま測定点指示具を測定補助具の測定補助
面に沿わせて移動させ、このときの測定点指示具の光源
の位置データを光学式三次元測定装置で求め、この位置
データから測定子の球中心軌跡の線位置データを算出し
て、上記面位置データと線位置データと測定子半径及び
測定子の球中心から測定補助具の測定補助面までの距離
のオフセット量を数値計算して、測定対象面のケガキ線
の位置を測定する。
The second measuring method is a case in which the measuring object is a marking line formed on the measuring surface, and the measuring point of the measuring point indicator is brought into contact with the measuring surface around the marking line to measure the measuring surface. The surface position data of is obtained by an optical three-dimensional measuring device, and a measuring aid having a ridge line part that coincides with the scribe line and a measurement auxiliary surface along this ridge line is the measurement target surface, and the ridge line part is the scribe line. Position and place the measurement point indicator along the measurement auxiliary surface of the measurement auxiliary tool while the spherical probe of the measurement point indicator is in point contact with the measurement auxiliary surface of the measurement auxiliary tool and the surface to be measured. Position data of the light source of the measuring point indicator at this time is obtained by an optical three-dimensional measuring device, and the line position data of the spherical center locus of the probe is calculated from this position data, and the surface position data Line position data, probe radius and probe center The offset amount of the distance to the measurement auxiliary surface of the measuring aid to numerical calculation, to measure the position of the scribe line of the object surface.

【0012】第3の測定方法は、測定対象が測定対象面
に交差させて形成された複数のケガキ線の交点で、測定
点指示具の球状測定子より大径の真円の測定補助穴を有
する測定補助具を測定対象面に、測定補助穴の穴中心を
ケガキ線の交点の真上に位置決めした状態で載置して、
測定補助穴の内周に測定子を接触させて円移動させ、こ
のときの測定点指示具の光源の位置データを光学式三次
元測定装置で求め、この位置データから測定子の球中心
の軌跡である円弧位置データを算出して、算出された円
弧位置データと測定子の半径のオフセット量を数値計算
して、測定対象面のケガキ線交点の位置を測定する。
The third measuring method is to form a perfect circular measurement auxiliary hole having a diameter larger than that of the spherical probe of the measuring point indicator at the intersection of a plurality of marking lines formed by intersecting the measuring object surface with the measuring object surface. Place the measurement auxiliary tool on the surface to be measured with the hole center of the measurement auxiliary hole positioned right above the intersection of the marking lines,
The probe is brought into contact with the inner circumference of the auxiliary measurement hole and moved circularly.At this time, the position data of the light source of the measuring point indicator is obtained with an optical three-dimensional measuring device, and from this position data the trajectory of the center of the sphere of the probe. Is calculated, and the calculated amount of offset between the calculated circular position data and the radius of the tracing stylus is numerically calculated to measure the position of the marking line intersection of the surface to be measured.

【0013】第4の測定方法は、測定対象が測定対象物
の稜線等の端点で、測定対象物の端点に当接して測定対
象物に位置決め設置されたときに、測定対象物の端点か
ら所定距離の端点真上が穴中心となる真円の測定補助穴
を有する測定補助具を測定対象物に位置決め設置し、こ
の測定補助具の測定補助穴の内周に測定子を接触させて
円移動させ、このときの測定点指示具の光源の位置デー
タを光学式三次元測定装置で求め、この位置データから
測定子の球中心軌跡の円弧位置データを算出して、算出
された円弧位置データと測定子の半径及び測定補助具の
測定補助穴から測定対象物の端点までの距離のオフセッ
ト量を数値計算して、測定対象物の端点の位置を測定す
る。
A fourth measuring method is such that, when the measuring object is an end point such as a ridgeline of the measuring object and comes into contact with the end point of the measuring object and is positioned and installed on the measuring object, a predetermined distance from the end point of the measuring object is determined. Position a measuring aid with a perfect circular measuring aid whose center is directly above the end point of the distance, and place it on the object to be measured.Move the circle by touching the probe inside the measuring aid hole. Then, the position data of the light source of the measuring point indicator at this time is obtained by an optical three-dimensional measuring device, and the arc position data of the spherical center locus of the probe is calculated from this position data, and the calculated arc position data is The position of the end point of the measuring object is measured by numerically calculating the offset amount of the radius of the probe and the distance from the measurement assisting hole of the measuring aid to the end point of the measuring object.

【0014】[0014]

【発明の実施の形態】以下、本発明測定方法の各種実施
装置例を図1乃至図10を参照して説明する。尚、図1
1を含む全図を通じて同一、または、相当部分には同一
符号を付して説明の重複を避ける。
BEST MODE FOR CARRYING OUT THE INVENTION Various embodiments of the measuring method of the present invention will be described below with reference to FIGS. 1 to 10. FIG.
The same or corresponding parts are denoted by the same reference symbols throughout the drawings including 1 to avoid redundant description.

【0015】図1(A)、(B)は、本発明の第1の測
定方法を説明するためのもので、図11の測定点指示具
3とCCDカメラ6を有する光学式三次元測定装置を使
って位置測定される測定対象が真円の測定対象穴11で
ある。測定点指示具3は、その先端に球状の測定子10
を備える。測定子10は、測定対象穴11の半径より大
きな半径Rの半球が示されるが、図2のような球形であ
ってもよい。測定対象穴11は、測定対象物12の平坦
な測定対象面13に形成された加工基準穴等で、これの
穴中心と大きさ(半径)の測定が測定点指示具3と図1
1の光学式三次元測定装置を使って次のように2段階的
に行われる。
FIGS. 1 (A) and 1 (B) are for explaining the first measuring method of the present invention. An optical three-dimensional measuring apparatus having the measuring point indicator 3 and the CCD camera 6 shown in FIG. The measurement target whose position is measured using is the measurement target hole 11 having a perfect circle. The measuring point indicator 3 has a spherical probe 10 at its tip.
Is provided. Although the tracing stylus 10 is shown as a hemisphere having a radius R larger than the radius of the hole 11 to be measured, it may be spherical as shown in FIG. The measurement object hole 11 is a machining reference hole or the like formed on the flat measurement object surface 13 of the measurement object 12, and the measurement of the hole center and the size (radius) of the measurement object hole 11 and the measurement point indicator 3 are shown in FIG.
The optical three-dimensional measuring device 1 is used to perform the following two steps.

【0016】まず、図1(A)に示すように、測定子1
0を測定対象面13に接触させて測定点指示具3を測定
対象面13上に立て、測定子10を測定対象穴11の周
辺の測定対象面13上を摺動させる。このときの測定点
指示具3の光源をCCDカメラで撮像し、その画像デー
タから測定対象面13の三次元の面位置データを求め
る。
First, as shown in FIG.
0 is brought into contact with the measurement target surface 13, the measurement point indicator 3 is erected on the measurement target surface 13, and the tracing stylus 10 is slid on the measurement target surface 13 around the measurement target hole 11. The light source of the measurement point indicator 3 at this time is imaged by a CCD camera, and three-dimensional surface position data of the measurement target surface 13 is obtained from the image data.

【0017】次に、図1(B)に示すように、測定子1
0を測定対象穴11に挿入して、測定子10の球面を測
定対象穴11の上端エッジに内接させる。この状態を保
持して、或いは、測定点指示具3を測定子10の球中心
を中心に揺動回転させて、測定点指示具3の光源をCC
Dカメラで撮像し、その画像データから測定子10の球
中心の三次元の点位置データを求める。
Next, as shown in FIG.
0 is inserted into the hole 11 to be measured, and the spherical surface of the probe 10 is inscribed in the upper edge of the hole 11 to be measured. While maintaining this state, or by swinging and rotating the measuring point indicator 3 around the spherical center of the probe 10, the light source of the measuring point indicator 3 is CC
An image is taken with a D camera, and three-dimensional point position data of the center of the sphere of the probe 10 is obtained from the image data.

【0018】以上のように求めた面位置データ及び点位
置データに、測定子10の半径Rの既知のオフセット量
のデータを加えて数値計算して、測定対象穴11の穴中
心位置と大きさを測定する。このときの具体的な数値計
算例を図2を参考に説明する。
Numerical calculation is performed by adding data of known offset amount of the radius R of the tracing stylus 10 to the surface position data and point position data obtained as described above, and the hole center position and size of the hole 11 to be measured. To measure. A specific numerical calculation example at this time will be described with reference to FIG.

【0019】測定対象穴11の在る測定対象面13の位
置を測定することにより平面のパラメータ[法線ベクト
ルn(nX ,nY ,nZ )と位置ベクトルo(oX ,o
Y ,oZ )]が求められる。一方、測定対象穴11に測
定子10を当てることにより、測定子10の球中心p
(pX ,pY ,pZ )が求められる。これらの位置デー
タと測定子10の半径Rにより、測定対象穴11の穴中
心位置q(qX ,qY ,qZ )と半径rh を求める。
By measuring the position of the measurement target surface 13 in which the measurement target hole 11 is present, the parameters of the plane [normal vector n (n X , n Y , n Z ) and position vector o (o X , o) are measured.
Y , o Z )] is required. On the other hand, by placing the tracing stylus 10 on the measurement target hole 11, the spherical center p of the tracing stylus 10 is measured.
(P X , p Y , p Z ) is obtained. The radius R of these position data and the measuring element 10, the hole center position q of the measurement target hole 11 Request (q X, q Y, q Z) and radius r h.

【0020】即ち、測定対象穴11の穴中心位置q(q
X ,qY ,qZ )を求めるには、球中心p(pX
Y ,pZ )と穴中心位置q(qX ,qY ,qZ )を通
る直線を求めて、その直線と測定された測定対象面13
の平面との交点を求めればよい。この場合の直線は、方
向ベクトルが平面の法線ベクトルで、位置ベクトルがp
(pX ,pY ,pZ )で表現できるので、次の式のよ
うになる。
That is, the hole center position q (q
To obtain X , q Y , q Z ), the sphere center p (p X ,
p Y , p Z ) and a hole center position q (q X , q Y , q Z ) are obtained, and the measured line 13 is measured with the line.
The intersection with the plane of should be calculated. The straight line in this case has a direction vector that is a plane normal vector and a position vector that is p.
Since it can be expressed by (p X , p Y , p Z ), the following equation is obtained.

【0021】 [(X−px)/nX)]=[(Y−pY )/nY)]=[(Z−pZ )/nZ)]… 従って、 X =nX k+px ,Y =ny k+py ,Z =nz k+pz … k:媒介変数 ここで、測定対象面13のパラメータから、測定対象面
13は次の式で表される。
[(X−p x ) / n X )] = [(Y−p Y ) / n Y )] = [(Z−p Z ) / n Z )] ... Therefore, X = n X k + p x , Y = ny k + py , Z = nz k + pz ... k: parametric variable Here, from the parameters of the measurement target surface 13, the measurement target surface 13 is expressed by the following equation.

【0022】 nX (X−ox)+ny (Y−oY )+nZ (Z−oZ )=0 … 式を式に代入してtを求めると、次の式となる。N x (X−o x ) + n y (Y−o Y ) + n Z (Z−o Z ) = 0 The following equation is obtained by substituting the equation into the equation and obtaining t.

【0023】k=n・(o−p)/|n|2 … 従って、測定対象穴11の穴中心位置q(qX ,qY
Z )は、式から次のように求められる。
K = n (op) / │n│ 2 Therefore, the hole center position q (q X , q Y , of the hole 11 to be measured).
q Z ) is calculated from the equation as follows.

【0024】q=kn+p また、測定対象穴11の半径rh は、三平方の定理よ
り、 rH=[R2−|p−q|21/2 =[R2−k2|n|2
1/2 で求められる。
Q = kn + p The radius r h of the hole 11 to be measured is calculated from the Pythagorean theorem as follows: r H = [R 2 − | p−q | 2 ] 1/2 = [R 2 −k 2 | n | 2 ]
Calculated as 1/2 .

【0025】以上の測定方法によれば、測定対象穴の穴
径が測定点指示具の球状測定子の球径より小さければ、
測定対象穴に測定子を当てる作業だけで測定対象穴の中
心位置と半径の測定が可能となる。この場合、測定対象
穴で測定子が安定して位置決めされるので、高精度な測
定、作業性の良い測定が可能となる。
According to the above measuring method, if the diameter of the hole to be measured is smaller than the spherical diameter of the spherical probe of the measuring point indicator,
It is possible to measure the center position and radius of the measurement target hole only by applying the probe to the measurement target hole. In this case, since the tracing stylus is stably positioned in the measurement target hole, highly accurate measurement and measurement with good workability are possible.

【0026】次に、図3乃至図5に基づき本発明の第2
の測定方法を説明する。この測定方法の測定対象は、測
定対象面13に形成された直線のケガキ線21である。
この場合は、上記同様な測定点指示具3と直線専用の測
定補助具22を使ってケガキ線21の三次元の位置が次
のように2段階的に測定される。
Next, the second aspect of the present invention will be described with reference to FIGS.
The measurement method of is explained. The measurement target of this measurement method is a straight marking line 21 formed on the measurement target surface 13.
In this case, the three-dimensional position of the marking line 21 is measured in two steps as follows using the same measurement point indicating tool 3 and the measuring aid 22 dedicated to a straight line.

【0027】まず上記第1の測定方法と同様にして、測
定点指示具3の測定子10を測定対象面13に接触させ
て、ケガキ線21の在る測定対象面13の面位置データ
を求める。次に、図3、図4に示すように、測定対象面
13上に測定補助具22を位置決め載置する。測定補助
具22は、ケガキ線21に沿う直線の稜線部23とこの
稜線部23に沿う測定補助面24を有する例えば平板
で、稜線部23をケガキ線21に合わせて測定対象面1
3上に載置される。この場合、測定対象面13が磁性体
面であれば、測定補助具22をマグネットシートで構成
すれば、測定対象面13での着脱作業が容易となる。
First, in the same manner as the above-mentioned first measuring method, the probe 10 of the measuring point indicator 3 is brought into contact with the measurement object surface 13 to obtain surface position data of the measurement object surface 13 having the marking line 21. . Next, as shown in FIGS. 3 and 4, the measurement auxiliary tool 22 is positioned and placed on the measurement target surface 13. The measurement assisting tool 22 is, for example, a flat plate having a straight ridge line portion 23 along the marking line 21 and a measurement assisting surface 24 along the ridge line portion 23, and the measurement target surface 1 with the ridge line portion 23 aligned with the marking line 21.
3 is placed. In this case, if the measurement target surface 13 is a magnetic surface, if the measurement auxiliary tool 22 is made of a magnet sheet, the attachment / detachment work on the measurement target surface 13 becomes easy.

【0028】測定対象面13に測定補助具22を載置す
ると、測定点指示具3の測定子10を測定対象面13と
測定補助面24に接触させ、そのまま測定子10を測定
補助面24に沿って直線移動させ、このときの測定点指
示具3の光源軌跡の線位置データを求める。この線位置
データから測定子10の球中心の線位置データを求め、
このデータと測定子10の半径Rと測定補助具22の厚
みtのオフセット量を数値計算して、ケガキ線21の三
次元の位置を測定する。以上の第2の測定方法の具体的
な数値計算を、図4と図5を参照して説明する。
When the measuring auxiliary tool 22 is placed on the measuring object surface 13, the measuring element 10 of the measuring point indicator 3 is brought into contact with the measuring object surface 13 and the measuring auxiliary surface 24, and the measuring element 10 is directly placed on the measuring auxiliary surface 24. The linear position is moved along the line, and the line position data of the light source locus of the measuring point indicator 3 at this time is obtained. From this line position data, the line position data of the center of the sphere of the probe 10 is obtained,
The three-dimensional position of the marking line 21 is measured by numerically calculating this data, the radius R of the probe 10, and the offset amount of the thickness t of the measuring aid 22. A specific numerical calculation of the above second measurement method will be described with reference to FIGS. 4 and 5.

【0029】ケガキ線21の在る測定対象面13を測定
することにより、測定対象面13の平面のパラメータ
[法線ベクトルn(nX ,nY ,nZ )と位置ベクトル
o(o X ,oY ,oZ )]が求められる。また、測定対
象面13上の測定補助具22の測定補助面24に測定子
10をなぞらせることにより、測定子10の球中心を通
る直線のパラメータ[方向ベクトルl(lX ,lY ,l
Z )と位置ベクトルp(pX ,pY ,pZ )]が求めら
れる。これらの面位置データと線位置データと測定子1
0の半径R及び測定補助具22の厚みtから、次の計算
式でケガキ線21の位置データを求める。
Measure the surface 13 to be measured with the marking line 21
Parameters of the plane of the measurement target surface 13
[Normal vector n (nX , NY , NZ ) And position vector
o (o X , OY , OZ )] Is required. Also, the measurement pair
A probe is attached to the measurement assisting surface 24 of the measurement assisting tool 22 on the quadrant 13.
By tracing 10
Parameter of the straight line [direction vector l (lX , LY , L
Z ) And the position vector p (pX, PY, PZ )]
It is. These surface position data, line position data, and probe 1
From the radius R of 0 and the thickness t of the measurement aid 22, the following calculation
The position data of the marking line 21 is obtained by the formula.

【0030】測定子10の球中心の方向ベクトルl(l
X ,lY ,lZ )をそのまま用いて、補正した位置ベク
トルq(qX ,qY ,qZ )を求める。そのために、ま
ず、図4の点pからケガキ線21の存在する測定対象面
13上に投影した点sを求め、それから点qを求める。
点sは、第1の測定方法の場合と同様に求めると、次式
で求まる。
Direction vector l (l
X, using l Y, l Z) as it is, corrected position vector q (q X, q Y, obtaining the q Z). For that purpose, first, a point s projected from the point p in FIG. 4 onto the measurement target surface 13 where the marking line 21 exists is obtained, and then a point q is obtained.
When the point s is obtained in the same manner as in the case of the first measuring method, it is obtained by the following equation.

【0031】s=kn+p k=[n(o−p)]/|n|2 ここで、点sと点qの距離は、図5から分かるように、
三平方の定理から (2Rt−t2)1/2 で求まる。そこで、点sと点qを通る直線の式を求め
る。この場合、点sを通るので、位置ベクトルはs、ま
た、方向ベクトルは測定対象面13の法線nと直線の方
向ベクトルlに直角であるので、2つのベクトルの外積
を次式で求める。
S = kn + p k = [n (op)] / | n | 2 Here, the distance between the point s and the point q is as shown in FIG.
From the Pythagorean theorem, it can be calculated by (2Rt-t 2 ) 1/2 . Therefore, an equation of a straight line passing through the points s and q is obtained. In this case, since it passes through the point s, the position vector is s, and the direction vector is perpendicular to the normal line n of the measurement target surface 13 and the direction vector l of the straight line. Therefore, the outer product of the two vectors is obtained by the following equation.

【0032】n×l=v(vX ,vY ,vZ ) 従って、点sと点qを通る直線の式は、次式となる。N × l = v (v X , v Y , v Z ) Therefore, the equation of the straight line passing through the points s and q is as follows.

【0033】 (X -sX)/vX=(Y -sY)/vY=(Z -sZ)/vZ=u u:媒介変数 つまり、q=uv+sであるので、uを求めればよい。
uを求めるには、点qと点sの長さが (2Rt−t2)1/2
であることを用いればよい。即ち、 |s−q|2=2Rt−t2 であり、この式とq=uv+sから、 |v|22=2Rt−t2 u=+(2Rt−t2)1/2/(|v|2)1/2 … が求まる。ここで、uの値は本来ならば符号が±の2つ
の値ででるが、設定した方向によって+の値になる。従
って、式で求めた値をuv+sに代入して補正したq
を求めれば、測定対象のケガキ線21の位置が求まる。
(X-s X ) / v X = (Y-s Y ) / v Y = (Z-s Z ) / v Z = u u: Parametric variable That is, q = uv + s, so u is obtained. Good.
To obtain u, the lengths of the points q and s are (2Rt-t 2 ) 1/2
You can use that. That is, | s−q | 2 = 2Rt−t 2 , and from this formula and q = uv + s, | v | 2 u 2 = 2Rt−t 2 u = + (2Rt−t 2 ) 1/2 / (| v | 2 ) 1/2 ... Is obtained. Here, the value of u is originally two values with a sign of ±, but becomes a value of + depending on the set direction. Therefore, q corrected by substituting the value obtained by the equation into uv + s
Is obtained, the position of the marking line 21 to be measured can be obtained.

【0034】次に、図6及び図7にて本発明の第3の測
定方法を説明する。この測定方法の測定対象は、測定対
象面13に形成された2本の直線のケガキ線21の交点
31である。この場合に使用される専用の測定補助具3
2は、例えばマグネットシート等の平板で、中央部に貫
通した真円の測定補助穴33を有する。測定補助穴33
の穴径は、測定点指示具3の球状測定子10の球径より
大きく設定される。また、2本のケガキ線21が直交す
る直線の場合、測定補助具32の表面の直交2直線上に
位置する4箇所に位置出しマーク34を形成する。この
位置出しマーク34の延長線交点は、測定補助穴33の
穴中心に一致する。
Next, a third measuring method of the present invention will be described with reference to FIGS. 6 and 7. The measurement target of this measurement method is an intersection 31 of two linear marking lines 21 formed on the measurement target surface 13. Dedicated measuring aid 3 used in this case
Reference numeral 2 is a flat plate such as a magnet sheet, for example, and has a perfect circular measurement auxiliary hole 33 penetrating in the central portion. Measurement auxiliary hole 33
The hole diameter is set to be larger than the spherical diameter of the spherical probe 10 of the measuring point indicator 3. In the case where the two marking lines 21 are orthogonal to each other, the positioning marks 34 are formed at four positions on the surface of the measurement auxiliary tool 32 which are two orthogonal lines. The extension line intersection of the positioning mark 34 coincides with the center of the measurement auxiliary hole 33.

【0035】而して、測定補助具32による交点31の
位置測定は、次のように行われる。図6に示すように、
ケガキ線21の在る測定対象面13上に測定補助具32
を、その位置出しマーク34を2本のケガキ線21の真
上に位置決めして載置し、測定補助穴33の穴中心を交
点31に一致させる。図7に示すように、測定点指示具
3の球状測定子10を測定対象面13と測定補助穴33
の内周面に接触させて、測定子10を測定補助穴33の
内周に沿って円移動させる。このときの測定点指示具3
の光源の円移動の円弧位置データを求め、この円弧位置
データから測定子10の球中心が通る円の円弧位置デー
タを算出し、この位置データから測定子10の球中心が
通る円弧の中心点の点位置データを求める。そして、こ
の点位置データと測定子10の半径Rのオフセット量を
数値計算して、交点31の三次元の位置を測定する。
The position of the intersection 31 is measured by the measuring aid 32 in the following manner. As shown in FIG.
A measurement aid 32 is provided on the surface 13 to be measured on which the marking line 21 is present.
The positioning mark 34 is positioned and placed right above the two marking lines 21, and the hole center of the measurement auxiliary hole 33 is aligned with the intersection 31. As shown in FIG. 7, the spherical probe 10 of the measurement point indicator 3 is attached to the measurement target surface 13 and the measurement auxiliary hole 33.
The probe 10 is moved in a circle along the inner circumference of the measurement auxiliary hole 33 by making contact with the inner peripheral surface of. Measuring point indicator 3 at this time
The circular arc position data of the circular movement of the light source is obtained, the circular arc position data of the circle through which the sphere center of the probe 10 passes is calculated from this arc position data, and the center point of the arc through which the sphere center of the probe 10 passes from this position data. Find the point position data of. Then, this point position data and the offset amount of the radius R of the tracing stylus 10 are numerically calculated to measure the three-dimensional position of the intersection 31.

【0036】交点31の位置測定の数値計算は、次のよ
うに行えばよい。測定子10を測定補助穴33の内周を
なぞらせたときの球中心の通る円弧のパラメータ[法線
ベクトルn(nX ,nY ,nZ )と位置ベクトルp(p
X ,pY ,pZ )と半径r]を求める。これらと測定子
10の半径Rから、交点31のベクトルqを求める。点
qと点pから方向が円の法線ベクトルと逆向きに測定子
10の半径R分の距離を求めれば交点31の位置が求ま
る。
Numerical calculation for measuring the position of the intersection 31 may be performed as follows. Parameters of an arc passing through the center of the sphere when tracing the tracing stylus 10 along the inner circumference of the auxiliary measurement hole 33 [normal vector n (n X , n Y , n Z ) and position vector p (p
X , p Y , p Z ) and radius r]. From these and the radius R of the tracing stylus 10, the vector q of the intersection 31 is obtained. If the distance corresponding to the radius R of the tracing stylus 10 is obtained from the points q and p in the direction opposite to the normal vector of the circle, the position of the intersection 31 can be obtained.

【0037】ここで、点pを通る直線の式は次のように
表される。 [(X−px)/nX)]=[(Y−pY )/nY)]=[(Z−
Z )/nZ)] 従って、q=kn+pとなり(k:媒介変数)、点pと
点qの距離が半径Rであるので、 |q−p|2=R2 k=R/(|n|2)1/2 なる式が得られる。ここで、kの値は設定した方向によ
りk<0であるから、これらの式でケガキ線21の交点
31の位置が求められる。
Here, the equation of the straight line passing through the point p is expressed as follows. [(X-p x ) / n X )] = [(Y-p Y ) / n Y )] = [(Z-
p z ) / n z )] Therefore, q = kn + p (k: parameter), and the distance between the point p and the point q is the radius R. | q−p | 2 = R 2 k = R / (| The expression n | 2 ) 1/2 is obtained. Here, since the value of k is k <0 depending on the set direction, the position of the intersection 31 of the marking line 21 can be obtained by these equations.

【0038】次に、図8乃至図10を参照して本発明の
第4の測定方法を説明する。この場合の測定対象は、角
形ブロック等の測定対象物12の稜線、角等の端点41
である。端点41が測定対象物12の直交する2平面の
交点である場合、使用する専用の測定補助具は、例えば
三角柱状の第1測定補助具42と、平板状の第2測定補
助具43を組合せたものである。第2測定補助具43
は、その表面中央部に有底真円の測定補助穴44を有す
る。測定補助穴44の穴径は、測定点指示具3の球状測
定子10の球径より大きく設定される。
Next, a fourth measuring method of the present invention will be described with reference to FIGS. In this case, the measurement target is an edge point 41 such as a ridge or a corner of the measurement target 12 such as a rectangular block.
It is. When the end point 41 is an intersection point of two orthogonal planes of the measurement object 12, the dedicated measurement aid to be used is, for example, a first measurement aid 42 having a triangular prism shape and a second measurement aid 43 having a flat plate shape. It is a thing. Second measurement aid 43
Has a measurement assisting hole 44 having a perfect circle with a bottom at the center of the surface thereof. The hole diameter of the measurement auxiliary hole 44 is set to be larger than the ball diameter of the spherical probe 10 of the measuring point indicator 3.

【0039】図8に示すように、第1測定補助具42の
1つの稜線の延長線と第2測定補助具43の測定補助穴
44の中心線を一致させて、両測定補助具42、43を
測定対象物12の直交2平面に沿わせて位置決め保持
し、第2測定補助具43の測定補助穴44の穴中心を端
点41の真上に位置させる(図9の状態)。次に、図1
0に示すように、測定補助穴44の底面と内周面に測定
子10を接触させて、測定子10を測定補助穴44の内
周面に沿って円移動させ、このときの測定点指示具3の
光源の円弧位置データを求め、この位置データから測定
子10の球中心が通る円弧の中心点の点位置データを算
出する。この算出の計算は、図7の第3の測定方法と同
様に行えばよい。
As shown in FIG. 8, the extension line of one ridge line of the first measurement auxiliary tool 42 and the center line of the measurement auxiliary hole 44 of the second measurement auxiliary tool 43 are made to coincide with each other so that both measurement auxiliary tools 42, 43. Is positioned and held along two orthogonal planes of the measuring object 12, and the hole center of the measurement auxiliary hole 44 of the second measurement auxiliary tool 43 is positioned directly above the end point 41 (state of FIG. 9). Next, FIG.
As shown in 0, the measuring element 10 is brought into contact with the bottom surface and the inner peripheral surface of the measuring auxiliary hole 44, and the measuring element 10 is circularly moved along the inner peripheral surface of the measuring auxiliary hole 44. The arc position data of the light source of the tool 3 is obtained, and the point position data of the center point of the arc through which the center of the sphere of the probe 10 passes is calculated from this position data. The calculation for this calculation may be performed in the same manner as the third measurement method in FIG. 7.

【0040】第2測定補助具43の測定補助穴44の穴
中心と端点41の距離は、第2測定補助具43の板厚t
から測定補助穴44の深さdを差し引いたオフセット量
であるから、測定補助穴44をなぞったときの測定子1
0の球中心が通る円弧の中心点位置データを求め、これ
と数値(t−d)のオフセット量を数値計算すれば、端
点41の三次元の位置が求められる。即ち、図10にお
いて、|q−p|2=(t−d+R )2であるから、測定子
10の球中心が通る円弧の中心点位置データを求めるこ
とによって、図7の第3の測定方法と同様にして端点4
1の位置が求まる。
The distance between the center of the measurement auxiliary hole 44 of the second measurement auxiliary tool 43 and the end point 41 is determined by the plate thickness t of the second measurement auxiliary tool 43.
Since the offset amount is obtained by subtracting the depth d of the measurement auxiliary hole 44 from the above, the tracing stylus 1 when tracing the measurement auxiliary hole 44
The three-dimensional position of the end point 41 can be obtained by obtaining the center point position data of an arc passing through the sphere center of 0 and numerically calculating the offset amount of this and the numerical value (td). That is, since | q−p | 2 = (t−d + R) 2 in FIG. 10, the third measurement method of FIG. 7 is obtained by obtaining the center point position data of the arc through which the spherical center of the probe 10 passes. End point 4 in the same manner as
The position of 1 is obtained.

【0041】尚、上記した第2〜第4の測定方法におい
て使用される測定補助具は、測定対象の形状、内容に対
応するもので、図示の形状のものに限らない。
The measuring aids used in the above second to fourth measuring methods correspond to the shape and content of the object to be measured and are not limited to the shapes shown.

【0042】[0042]

【発明の効果】請求項1記載の測定方法によれば、測定
点指示具の球状測定子を、これより小径の測定対象穴に
当接させる作業だけで、測定対象穴の穴中心位置と大き
さが数値計算で算出されるので、高精度の測定が作業性
よく行える。
According to the measuring method of the first aspect, the hole center position and the size of the measurement target hole can be measured only by the operation of bringing the spherical probe of the measurement point indicator into contact with the measurement target hole having a smaller diameter. Since the value is calculated by numerical calculation, highly accurate measurement can be performed with good workability.

【0043】請求項2記載の測定方法によれば、ケガキ
線に沿って測定補助具を設置し、その測定補助面に測定
点指示具の測定子をなぞらえるだけでケガキ線の三次元
位置が測定できるので、細いケガキ線であってもこれの
位置測定が常に高精度で作業性よく行える。
According to the measuring method of the second aspect, the three-dimensional position of the marking line can be measured simply by installing the measuring auxiliary tool along the marking line and comparing the measuring element of the measuring point indicator on the measuring auxiliary surface. Therefore, even with a thin marking line, the position of the marking line can always be measured with high accuracy and workability.

【0044】請求項3記載の測定方法によれば、ケガキ
線の交点に測定点指示具の測定子を当てることなく、測
定対象面上に設置した測定補助具の測定補助穴に測定子
をなぞらせることで、ケガキ線の交点の位置が測定でき
るので、常に高精度な測定が可能となる。
According to the measuring method of claim 3, the measuring element is traced in the measuring auxiliary hole of the measuring auxiliary tool installed on the surface to be measured without contacting the measuring element of the measuring point indicator with the intersection of the marking lines. By doing so, the position of the intersection of the marking lines can be measured, so that highly accurate measurement is always possible.

【0045】請求項4記載の測定方法によれば、測定対
象物の稜線や角等の端点を基準に測定対象物に設置した
測定補助具の測定補助穴の穴中心位置を測定点指示具を
使って測定することで、測定対象物の測定対象の端点位
置が求まるので、測定対象物の端点が測定点指示具の測
定子が滑り易い箇所であっても、この端点位置を簡単に
高精度に測定することができる。
According to the measuring method of the fourth aspect, the hole center position of the measuring auxiliary hole of the measuring auxiliary tool installed on the measuring object with reference to the end points of the measuring object such as ridges and corners is used as a measuring point indicator. Since the end point position of the measurement object of the measurement object can be obtained by performing the measurement, even if the end point of the measurement object is a place where the probe of the measurement point indicator slips easily, this end point position can be easily and accurately determined. Can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(A)は、本発明の第1の測定方法を説明
するための測定点指示具と測定対象の斜視図、図1
(B)は、図1(A)の測定子を測定対象に係合させた
ときの断面図。
FIG. 1 (A) is a perspective view of a measuring point indicator and a measuring object for explaining a first measuring method of the present invention, FIG.
FIG. 1B is a cross-sectional view when the probe of FIG. 1A is engaged with a measurement target.

【図2】図1の測定子による測定対象穴の中心位置と半
径の数値計算式を説明するための参考斜視図。
2 is a reference perspective view for explaining a numerical calculation formula of a center position and a radius of a hole to be measured by the probe of FIG.

【図3】本発明の第2の測定方法を説明するための測定
点指示具と測定補助具と測定対象の斜視図。
FIG. 3 is a perspective view of a measurement point indicating tool, a measurement assisting tool, and a measurement target for explaining a second measuring method of the present invention.

【図4】図3の測定子と測定補助具の斜視図。FIG. 4 is a perspective view of the probe and the measurement assisting tool of FIG.

【図5】図3の測定子と測定補助具の正面図。FIG. 5 is a front view of the tracing stylus and measurement auxiliary tool of FIG. 3;

【図6】本発明の第3の測定方法を説明するための測定
点指示具と測定補助具と測定対象の斜視図。
FIG. 6 is a perspective view of a measurement point indicating tool, a measurement assisting tool, and a measurement target for explaining a third measuring method of the present invention.

【図7】図6の測定子と測定補助具の断面図。FIG. 7 is a cross-sectional view of the probe and the measurement assisting tool of FIG.

【図8】本発明の第4の測定方法を説明するための測定
補助具と測定対象の斜視図。
FIG. 8 is a perspective view of a measurement auxiliary tool and a measurement target for explaining a fourth measurement method of the present invention.

【図9】図8の測定補助具と測定対象の測定点指示具に
よる測定時の正面図。
9 is a front view at the time of measurement with the measurement auxiliary tool and the measurement point pointing tool of the measurement target in FIG.

【図10】図9の要部の拡大正面図。FIG. 10 is an enlarged front view of the main part of FIG.

【図11】従来の技術を示す斜視図。FIG. 11 is a perspective view showing a conventional technique.

【符号の説明】[Explanation of symbols]

3 測定点指示具 5 光源 6 撮像装置(CCDカメラ) 10 測定子 11 測定対象穴 12 測定対象物 13 測定対象面 21 ケガキ線 22 測定補助具 23 稜線部 24 測定補助面 31 (ケガキ線の)交点 32 測定補助具 33 測定補助穴 41 端点 42、43 測定補助具 44 測定補助穴 3 Measuring Point Indicator 5 Light Source 6 Imaging Device (CCD Camera) 10 Measuring Element 11 Measuring Target Hole 12 Measuring Target 13 Measuring Target Surface 21 Marking Line 22 Measuring Aid 23 Ridge Line 24 Measuring Aiding Surface 31 Intersection Point (of Marking Line) 32 measuring aid 33 measuring aid hole 41 end points 42, 43 measuring aid 44 measuring aid hole

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G06T 7/00 G06F 15/62 415 (72)発明者 青木 良英 愛知県西春日井郡西春町大字沖村字岡1番 地 三洋機工株式会社内 (72)発明者 後藤 光利 愛知県西春日井郡西春町大字沖村字岡1番 地 三洋機工株式会社内 (72)発明者 後藤 卓士 愛知県西春日井郡西春町大字沖村字岡1番 地 三洋機工株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location G06T 7/00 G06F 15/62 415 (72) Inventor Yoshihide Aoki Nishiharu, Nishiharu-cho, Aichi Prefecture Okimura character Oka No. 1 Sanyo Kiko Co., Ltd. (72) Inventor Mitsutoshi Goto Okimura, Nishiharu-cho, Nishikasugai-gun, Aichi Oka No. 1 Sanyo Kiko Co., Ltd. (72) Inventor Takushi Goto Oishi-mura, Nishiharu-cho, Nishikasui-gun Aichi No. 1 in Jinoka Sanyo Kiko Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 測定対象に接触する球状測定子と3点以
上の光源を有する測定点指示具を用いて、測定対象の三
次元位置を2台以上の撮像装置を有する光学式三次元測
定装置で測定する際の測定方法で、 測定対象が測定点指示具の球状測定子より小径の穴で、
この測定対象穴の在る測定対象面の穴周辺に測定子を接
触させて、測定対象面の面位置データを光学式三次元測
定装置で求め、また、測定対象穴に測定子を内接させ
て、測定子の球中心の点位置データを光学式三次元測定
装置で求め、これら2つの位置データと測定子の半径の
オフセット量を数値計算して、測定対象穴の穴中心位置
と大きさを測定することを特徴とする光学式三次元測定
方法。
1. An optical three-dimensional measuring device having two or more image pickup devices for measuring the three-dimensional position of a measuring object by using a measuring point indicator having a spherical probe contacting the measuring object and a light source of three or more points. In the measurement method when measuring with, the measurement target is a hole with a diameter smaller than the spherical probe of the measurement point indicator,
Contact the probe around the hole on the measurement surface where this measurement hole is located, obtain surface position data of the measurement surface with an optical three-dimensional measuring device, and inscribe the probe in the measurement hole. Then, the point position data of the sphere center of the probe is obtained by an optical three-dimensional measuring device, and the offset amount of these two position data and the radius of the probe is numerically calculated, and the hole center position and size of the hole to be measured are calculated. An optical three-dimensional measuring method, which comprises:
【請求項2】 測定対象に接触する球状測定子と3点以
上の光源を有する測定点指示具を用いて、測定対象の三
次元位置を2台以上の撮像装置を有する光学式三次元測
定装置で測定する際の測定方法で、 測定対象が測定対象面に形成されたケガキ線で、このケ
ガキ線周辺の測定対象面に測定点指示具の測定子を接触
させて、測定対象面の面位置データを光学式三次元測定
装置で求め、また、ケガキ線に一致する稜線部とこの稜
線部に沿う測定補助面を有する測定補助具を測定対象面
に、その稜線部をケガキ線に沿わせて位置決め載置し
て、測定点指示具の測定子を測定補助具の測定補助面と
測定対象面に点接触させたまま測定点指示具を測定補助
具の測定補助面に沿わせて移動させ、このときの測定点
指示具の光源の位置データを光学式三次元測定装置で求
め、この位置データから測定子の球中心軌跡の線位置デ
ータを算出して、上記面位置データと線位置データと測
定子半径及び測定子と測定補助具の相対寸法関係のオフ
セット量を数値計算して、測定対象面のケガキ線の位置
を測定することを特徴とする光学式三次元測定方法。
2. An optical three-dimensional measuring device having two or more image pickup devices for measuring the three-dimensional position of a measuring object by using a measuring point indicator having a spherical probe contacting the measuring object and a light source of three or more points. In the measurement method when measuring with, the measurement target is the marking line formed on the measurement target surface, the measuring point of the measuring point indicator is brought into contact with the measuring target surface around this marking line, and the surface position of the measuring target surface Data is obtained with an optical three-dimensional measuring device, and a measuring aid having a ridge line portion that coincides with the marking line and a measuring auxiliary surface along this ridge line is placed on the surface to be measured, and the ridge portion is aligned with the marking line. Positioning and placing, move the measurement point indicator along the measurement auxiliary surface of the measurement auxiliary tool while the probe of the measurement point indicator is in point contact with the measurement auxiliary surface of the measurement auxiliary tool and the surface to be measured, The position data of the light source of the measuring point indicator at this time is converted to the optical cubic Obtained with a measuring device, and calculate the line position data of the sphere center locus of the probe from this position data, and the above-mentioned surface position data, line position data and probe radius, and the offset amount of the relative dimensional relationship between the probe and the measurement aid. An optical three-dimensional measuring method characterized by numerically calculating and measuring the position of the marking line on the surface to be measured.
【請求項3】 測定対象に接触する球状測定子と3点以
上の光源を有する測定点指示具を用いて、測定対象の三
次元位置を2台以上の撮像装置を有する光学式三次元測
定装置で測定する際の測定方法で、 測定対象が測定対象面に交差させて形成された複数のケ
ガキ線の交点で、測定点指示具の測定子より大径の真円
の測定補助穴を有する測定補助具を測定対象面に、測定
補助穴の穴中心をケガキ線の交点の真上に位置決めした
状態で載置して、測定補助穴の内周に測定子を接触させ
て円移動させ、このときの測定点指示具の光源の位置デ
ータを光学式三次元測定装置で求め、この位置データか
ら測定子の球中心の軌跡である円弧位置データを算出し
て、算出された円弧位置データと測定子の半径のオフセ
ット量を数値計算して、測定対象面のケガキ線交点の位
置を測定することを特徴とする光学式三次元測定方法。
3. An optical three-dimensional measuring device having two or more imaging devices for measuring the three-dimensional position of a measuring object by using a measuring point indicator having a spherical probe contacting the measuring object and a light source of three or more points. In the measurement method when measuring with, the measurement target has a perfect circular measurement auxiliary hole with a diameter larger than that of the contact point of the measurement point indicator at the intersection of the marking lines formed by intersecting the measurement target surface. Place the auxiliary tool on the surface to be measured with the hole center of the measurement auxiliary hole positioned right above the intersection of the marking lines, and move the probe circularly by contacting the probe with the inner circumference of the measurement auxiliary hole. At this time, the position data of the light source of the measuring point pointing device is obtained by the optical three-dimensional measuring device, and the arc position data which is the locus of the sphere center of the probe is calculated from this position data, and the calculated arc position data and Numerically calculate the offset amount of the radius of the child, and Optical three-dimensional measuring method characterized by measuring the position of the brat line intersections.
【請求項4】 測定対象に接触する球状測定子と3点以
上の光源を有する測定点指示具を用いて、測定対象の三
次元位置を2台以上の撮像装置を有する光学式三次元測
定装置で測定する際の測定方法で、 測定対象が測定対象物の稜線等の端点で、測定対象物の
端点に当接して測定対象物に位置決め設置されたとき
に、測定対象物の端点から所定距離の端点真上が穴中心
となる真円の測定補助穴を有する測定補助具を測定対象
物に位置決め設置し、この測定補助具の測定補助穴の内
周に測定子を接触させて円移動させ、このときの測定点
指示具の光源の位置データを光学式三次元測定装置で求
め、この位置データから測定子の球中心軌跡の円弧位置
データを算出して、算出された円弧位置データと測定子
の半径及び測定補助具の測定補助穴の穴中心から測定対
象物の端点までの距離のオフセット量を数値計算して、
測定対象物の端点の位置を測定することを特徴とする光
学式三次元測定方法。
4. An optical three-dimensional measuring device having two or more imaging devices for measuring the three-dimensional position of a measuring object by using a measuring point indicator having a spherical probe contacting the measuring object and a light source of three or more points. In the measurement method when measuring with, the measurement target is an edge point such as a ridgeline of the measurement target, and when the measurement target is positioned and installed in contact with the end point of the measurement target, a predetermined distance from the end point of the measurement target Position the measuring aid with a perfect circular measuring auxiliary hole right above the end point of the measurement auxiliary object on the object to be measured, and move the circle by touching the probe inside the measuring auxiliary hole of this measuring auxiliary tool. , The position data of the light source of the measuring point indicator at this time is obtained by the optical three-dimensional measuring device, and the arc position data of the spherical center locus of the probe is calculated from this position data, and the calculated arc position data and the measured Radius of child and hole of measurement auxiliary hole of measurement auxiliary tool Sincerely numerical offset amount of the distance to the end point of the measurement object,
An optical three-dimensional measurement method characterized by measuring the position of an end point of a measurement object.
JP7288929A 1995-11-07 1995-11-07 Optical three dimensional measuring method Withdrawn JPH09133512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7288929A JPH09133512A (en) 1995-11-07 1995-11-07 Optical three dimensional measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7288929A JPH09133512A (en) 1995-11-07 1995-11-07 Optical three dimensional measuring method

Publications (1)

Publication Number Publication Date
JPH09133512A true JPH09133512A (en) 1997-05-20

Family

ID=17736641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7288929A Withdrawn JPH09133512A (en) 1995-11-07 1995-11-07 Optical three dimensional measuring method

Country Status (1)

Country Link
JP (1) JPH09133512A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7155958B2 (en) * 2004-11-10 2007-01-02 The Boeing Company Hole diameter measurement
WO2010109975A1 (en) * 2009-03-24 2010-09-30 コニカミノルタオプト株式会社 Shape measuring device
JP2011227081A (en) * 2010-04-22 2011-11-10 Metronol As Optical measuring system
CN107941188A (en) * 2017-10-20 2018-04-20 安徽理工大学 A kind of detecting device for inside diameter of gasket and its detection method based on PLC
KR20180078526A (en) * 2016-12-30 2018-07-10 탑테크주식회사 Actuator Driving Type 3 dimensional Measuring Apparatus using Self-centering Unit
KR20180078525A (en) * 2016-12-30 2018-07-10 탑테크주식회사 Method for Measuring 3 dimensional Woked Surface

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7155958B2 (en) * 2004-11-10 2007-01-02 The Boeing Company Hole diameter measurement
WO2010109975A1 (en) * 2009-03-24 2010-09-30 コニカミノルタオプト株式会社 Shape measuring device
JP4748287B2 (en) * 2009-03-24 2011-08-17 コニカミノルタオプト株式会社 Shape measuring device
CN102362143A (en) * 2009-03-24 2012-02-22 柯尼卡美能达精密光学株式会社 Shape measuring device
JP2011227081A (en) * 2010-04-22 2011-11-10 Metronol As Optical measuring system
KR20180078526A (en) * 2016-12-30 2018-07-10 탑테크주식회사 Actuator Driving Type 3 dimensional Measuring Apparatus using Self-centering Unit
KR20180078525A (en) * 2016-12-30 2018-07-10 탑테크주식회사 Method for Measuring 3 dimensional Woked Surface
CN107941188A (en) * 2017-10-20 2018-04-20 安徽理工大学 A kind of detecting device for inside diameter of gasket and its detection method based on PLC
CN107941188B (en) * 2017-10-20 2020-03-13 安徽理工大学 PLC-based gasket inner diameter detection device and detection method thereof

Similar Documents

Publication Publication Date Title
CN101282823B (en) Method for determining a virtual tool center point, and device therefor
JP3511450B2 (en) Position calibration method for optical measuring device
US20070242280A1 (en) Digitizer adapter
EP0527797B1 (en) Device for determination of the topography of a surface
CN111256591B (en) External parameter calibration device and method for structured light sensor
CN104897142A (en) Three-dimensional target for binocular or multi-view vision dimension measuring
JP2509357B2 (en) Work position detector
JP3402021B2 (en) Method for detecting relative position and orientation of robot device
JPH09133512A (en) Optical three dimensional measuring method
JPH08254409A (en) Three-dimensional shape measuring and analyzing method
JPH09133510A (en) Wheel alignment measuring method
CN218832876U (en) Calibration plate for uniformly calibrating coordinates of CT machine and surgical robot
JPH1089957A (en) Three-dimensional measuring method for structure member
JPH0522814Y2 (en)
JPH047806B2 (en)
JPH04203905A (en) Measuring-point member for optical measurement and optical method for measurement
JP4259910B2 (en) Robot teaching method and teaching apparatus
JPH08110206A (en) Method and apparatus for detecting position and posture
US11828596B2 (en) Optical template projection using positional reference
CN115297307A (en) Optical template projection using positional references
KR20040009550A (en) Efficient digitizing in reverse engineering by sensor fusion
JPH01207610A (en) Measuring method for reference position of vehicle body component
JPH0894318A (en) Optical position measuring method
JP2728193B2 (en) Drawing tracing method and apparatus
Dierckx et al. Measuring a geometry by photogrammetry: Evaluation of the approach in view of experimental modal analysis on automotive structures

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107