JPH047806B2 - - Google Patents

Info

Publication number
JPH047806B2
JPH047806B2 JP59073011A JP7301184A JPH047806B2 JP H047806 B2 JPH047806 B2 JP H047806B2 JP 59073011 A JP59073011 A JP 59073011A JP 7301184 A JP7301184 A JP 7301184A JP H047806 B2 JPH047806 B2 JP H047806B2
Authority
JP
Japan
Prior art keywords
light spot
projector
virtual plane
point
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59073011A
Other languages
Japanese (ja)
Other versions
JPS60218016A (en
Inventor
Mikio Takano
Masayuki Miura
Shozo Aoki
Satoru Miura
Akitatsu Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP7301184A priority Critical patent/JPS60218016A/en
Publication of JPS60218016A publication Critical patent/JPS60218016A/en
Publication of JPH047806B2 publication Critical patent/JPH047806B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C7/00Tracing profiles
    • G01C7/06Tracing profiles of cavities, e.g. tunnels

Description

【発明の詳細な説明】 本発明は、掘削面に多数のスポツト光を投射
し、これを投影機から離れた位置で撮像して掘削
面の凹凸を撮像面上での変位量として測定するこ
とにより、可動部を有することなく非接触で掘削
断面の三次元形状の計測を行う掘削面形状の計測
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention projects a large number of spot lights onto an excavation surface, images them at a position away from the projector, and measures the unevenness of the excavation surface as the amount of displacement on the imaging surface. The present invention relates to an excavation surface shape measuring device that measures the three-dimensional shape of an excavation cross section in a non-contact manner without having a movable part.

従来、地下大空洞或いはトンネル断面など掘削
面の仕上り精度を計測する方法として、スケール
や伸縮棒など断面に直接触れて計測する方法と、
測距測角儀法や測量用カメラを用いる複写真法な
どの非接触で計測する方法が実用化されている。
Conventionally, methods for measuring the finishing accuracy of excavated surfaces such as large underground cavities or tunnel cross sections include measuring by directly touching the cross section using a scale or telescopic rod.
Non-contact measurement methods have been put into practical use, such as the rangefinder goniometer method and the photocopy method using a surveying camera.

このうち測距測角儀法は、スリツト光の投射に
よつて断面を表示して断面における光線上を任意
の間隔で角度と距離を測定演算し座標を得る方法
である。このため計測には人手を要し、大断面を
短時間で計測できない。また複写真法は、写真処
理及び図化機による処理が必要であり、即時に計
測結果を出力できない。
Among these, the rangefinder goniometer method is a method in which a cross section is displayed by projecting slit light, and coordinates are obtained by measuring and calculating angles and distances at arbitrary intervals on the light beam in the cross section. For this reason, measurement requires manpower, and large cross-sections cannot be measured in a short time. Furthermore, the photocopy method requires photographic processing and processing using a plotting machine, and cannot output measurement results immediately.

本発明は、これらの欠点を解消し、無人で即時
に計測でき、自動掘削機等のロボツトの目として
の役割を果すことができる掘削面形状の計測装置
を提供することを目的としてなされたものであ
る。
The present invention has been made for the purpose of solving these drawbacks and providing a measuring device for measuring the shape of an excavated surface that can be measured immediately without an operator and that can serve as the eyes of a robot such as an automatic excavator. It is.

本発明の掘削面形状の計測装置によれば、掘削
面など凹凸を有する面の前面に設置され多数のス
ポツトを面に投射して断面上に光点を作る投影機
と、該投影機から離れて設置され断面上の光点を
撮像するビデオカメラと、該ビデオカメラで断面
上の光点を撮像することにより得られる光点の撮
像面での位置と既知の距離に設定する仮想平面上
に投影機から投射された時にできる基準となる光
点の撮像面での位置とのズレ量を演算し、凹凸面
と仮想平面との相対的変位量を算出するコンピユ
ータとからなつている。
According to the excavation surface shape measuring device of the present invention, a projector is installed in front of an uneven surface such as an excavation surface and projects a large number of spots onto the surface to create a light spot on a cross section, and a projector is installed at a distance from the projector. A video camera is installed at It consists of a computer that calculates the amount of deviation from the position of a reference light spot on the imaging surface that is created when projected from a projector, and calculates the amount of relative displacement between the uneven surface and the virtual plane.

今、ビデオカメラのレンズ主点を基準点にし、
ビデオカメラと投影機とを結ぶ線をX軸とし、基
準点からのレンズ光軸をZ軸とし、それらのX軸
とZ軸とに直交する方向で基準点を通る軸をY軸
とし、Z軸上で基準点より離れたX−Y平面と平
行な面を仮想平面とする。すると、仮想平面上の
光点位置は設計上の点であるから既知であるか
ら、コンピユータにより幾何学的な計算をするこ
とができ、仮想平面上の各光点に対する撮像面上
の平面位置を求めることができる。
Now, with the principal point of the video camera lens as the reference point,
The line connecting the video camera and the projector is the X-axis, the lens optical axis from the reference point is the Z-axis, the axis passing through the reference point in a direction perpendicular to the X-axis and the Z-axis is the Y-axis, and the Z-axis is the line connecting the video camera and the projector. A plane parallel to the XY plane that is distant from the reference point on the axis is defined as a virtual plane. Then, since the position of the light spot on the virtual plane is known because it is a design point, a computer can perform geometric calculations, and the plane position on the imaging plane for each light spot on the virtual plane can be calculated. You can ask for it.

このようにビーム等の可動部分を有しない手段
で三次元形状を求めることができるので、即時に
短時間で計測を行うことができ、自動掘削作業を
行うことができる。またトンネル内の悪環境の下
で無人で使用でき、振動等の影響もない。そして
計測点はスポツト光の位置であり、ビームのよう
に動くことがないので、計測後のデータ処理が容
易であり、またコンピユータのソフトも簡単かつ
容易に作ることができる。
As described above, since a three-dimensional shape can be determined using a means that does not have a moving part such as a beam, measurement can be performed immediately and in a short time, and automatic excavation work can be performed. Furthermore, it can be used unattended in the harsh environment of tunnels and is not affected by vibrations. Since the measurement point is the position of the spot light and does not move like a beam, data processing after measurement is easy, and computer software can be created simply and easily.

以下に本発明の実施例につき添付図面に基づき
詳述する。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は構成機器及び測定方法の全体概略図で
あり、図中1は光点を投射する投影機、2は撮像
のためのビデオカメラ、3は画像データを演算処
理するコンピユータ、4は演算処理結果を出力す
るコンピユータ周辺機器であり、プリンター、デ
イスプレイ、プロツタ等からなつている。また5
は対象とする掘削面、6は掘削面上の光点を表
す。
Figure 1 is an overall schematic diagram of the component equipment and measurement method, in which 1 is a projector that projects a light spot, 2 is a video camera for imaging, 3 is a computer that processes image data, and 4 is a calculation. A computer peripheral device that outputs processing results, and consists of printers, displays, plotters, etc. Also 5
represents the target excavation surface, and 6 represents a light spot on the excavation surface.

第2図aは測定原理の平面図、bは側面図を表
し、図中7は仮想面を、8はカメラの撮像面を表
す。
2A is a plan view of the measurement principle, and FIG. 2B is a side view. In the figure, 7 represents a virtual plane, and 8 represents an imaging plane of a camera.

三次元座標の基準点0,0,0をビデオカメラ
のレンズ主点位置とし、レンズ主点と投影機を結
ぶX軸、またレンズ主点からのレンズ光軸をZ
軸、またX軸、Z軸に直交する高さ方向でレンズ
主点を通る軸をY軸、またZ軸上でカメラより一
定距離K離れX−Y平面と平行な面を仮想平面と
する。
The three-dimensional coordinate reference point 0,0,0 is the position of the lens principal point of the video camera, and the X axis connecting the lens principal point and the projector is the Z axis, and the lens optical axis from the lens principal point is the Z axis.
The axis passing through the principal point of the lens in the height direction perpendicular to the X-axis and Z-axis is the Y-axis, and the plane parallel to the X-Y plane at a certain distance K from the camera on the Z-axis is a virtual plane.

第3図a,bは仮想平面上の光点位置を求める
ための補助図であり、aはX−Z平面図、bはY
−Z平面図である。
Figures 3a and 3b are auxiliary views for determining the light spot position on the virtual plane, a is the X-Z plane view, and b is the Y-Z plane view.
-Z plan view.

図中 O……カメラの位置 T……投影機の位置 S……カメラの撮像面とZ軸の交点 K……仮想平面とZ軸の交点 H……仮想平面上の光点位置 H′……カメラの撮像面上の光点位置 L……O点とT点間の距離 M……O点とS点間の距離 N……O点とK点間の距離 であり、H点よりX、Y軸に下した垂線の交点を
それぞれI、Jとすると、第3図aより△HIO
△OSH′ ∴:=:′ ′=(×)/ また第3図bより △HJO∽△OSH′ ∴:=:′ ′=(×)/ 仮想平面上の光点位置、撮像面上の光点位置を
それぞれ(Kx、Ky、Kz)、(Sx、Sy、Sz)とす
ると、 Sx=−(Kx,M)/N Sz=−M Sy=−(Kz×M)/N となる。
In the figure O...Camera position T...Projector position S...Intersection point K between the camera's imaging plane and the Z axis...Intersection H between the virtual plane and the Z axis...Light spot position H' on the virtual plane... ...Light spot position L on the imaging surface of the camera...Distance between O point and T point M...Distance between O point and S point N...Distance between O point and K point, from point H to X , if the intersection points of the perpendicular lines drawn to the Y axis are I and J, respectively, then from Figure 3 a, △HIO
△OSH′ ∴:=:′ ′=(×)/ Also, from Figure 3 b, △HJO∽△OSH′ ∴:=:′ ′=(×)/ Light spot position on the virtual plane, light on the imaging surface Letting the point positions be (Kx, Ky, Kz) and (Sx, Sy, Sz), respectively, Sx=-(Kx, M)/N Sz=-M Sy=-(Kz×M)/N.

仮想平面上の光点位置は既知であることから、
仮想平面上の光点に対応する撮像面上の平面位置
は計算によつて求めれられる。
Since the light spot position on the virtual plane is known,
The plane position on the imaging surface corresponding to the light spot on the virtual plane is determined by calculation.

以下に掘削面の三次元形状を得るための計算を
示す。
The calculation to obtain the three-dimensional shape of the excavation surface is shown below.

(1) X、Z座標を求める。(1) Find the X and Z coordinates.

第2図aの平面図において計算を必要とする掘
削面位置は、仮想平面に比べ遠方となる場合と近
方となる場合の2通りであり、それぞれを第4
図、第5図に示す。
In the plan view of Figure 2a, there are two excavation surface positions that require calculation: one is far away from the virtual plane, and the other is near.
As shown in FIG.

いずれの場合も計算を必要とするのは次の6ケ
ースである。
In either case, the following six cases require calculation.

ケース……掘削面上の光点が投影機の左側にあ
る場合 ケース……掘削面上の光点が投影機の正面にあ
る場合 ケース……掘削面上の光点が投影機とカメラの
間にある場合。
Case: The light spot on the excavation surface is on the left side of the projector Case: The light spot on the excavation surface is in front of the projector Case: The light spot on the excavation surface is between the projector and camera If there is.

ケース……掘削面上の光点がカメラの正面にあ
る場合 ケース……仮想平面上の光点がカメラの正面に
ある場合 ケース……掘削面上の光点が投影機の右側にあ
る場合 第4図において、 A16:掘削面上の光点 H16:仮想面上の光点 A′16:撮像面上の光点 この6ケースにおける計算のための補助図を第
6図ないし第11図に示す。図中掘削面上の光点
Aとカメラ位置(基準原点)を結ぶ線分と仮想平
面との交点をB、またA、H、B点より仮想平面
X軸上に下した垂線の交点をそれぞれC、D、
E、Fとすると、 △BOF∽△OA′S :=:′ =(×′)/ △HOE∽△OH′S :=:′ =(×′)/ = ∴=(′−′)×/ = また ΔAHB∽ΔATO :=: ……(1) ΔACH∽ΔADT :=: ……(2) ∴:=: =+− 故に ={×(−)}/−) = ∴=+ ={×(−)}/ (−)={×(−)} /(−) 更に(1)、(2)より:=:=
+ 故に=(×)/(−) ∴=(×)/(−) =(×)/(−) 掘削面上の光点位置、撮像面上の光点位置をそ
れぞれ(X、Y、Z)、(x、y、z)とし、既知
の値を代入して象限による正負を考慮すると、 X=L・N・x/{L・M−N(Sx−x)} 〔Z〕L・M・N/{L・M−N(Sx−x)} 以上の計算によりケース〜についても同様
に求められる。その結果を第21図に示す。
Case: The light spot on the excavation surface is in front of the camera. Case: The light spot on the virtual plane is in front of the camera. Case: The light spot on the excavation surface is on the right side of the projector. In Figure 4, A 1 to 6 : Light points on the excavation surface H 1 to 6 : Light points on the virtual surface A' 1 to 6 : Light points on the imaging surface The auxiliary diagram for calculation in these six cases is shown in Fig. 4. This is shown in FIGS. 6 to 11. In the figure, the intersection of the line segment connecting the light point A on the excavation surface and the camera position (reference origin) with the virtual plane is B, and the intersection of the perpendicular lines drawn from points A, H, and B onto the virtual plane X-axis is C, D,
Assuming E and F, △BOF∽△OA′S :=:′ =(×′)/ △HOE∽△OH′S :=:′ =(×′)/ = ∴=(′−′)×/ = Also ΔAHB∽ΔATO :=: …(1) ΔACH∽ΔADT :=: …(2) ∴:=: =+− Therefore ={×(−)}/−) = ∴=+ ={×( −)}/ (−)={×(−)} /(−) Furthermore, from (1) and (2):=:=
+ Therefore = (×)/(-) ∴=(×)/(-) = (×)/(-) The light spot position on the excavation surface and the light spot position on the imaging surface are respectively (X, Y, Z ), (x, y, z), and by substituting known values and considering the positive and negative depending on the quadrant, we get: X=L・N・x/{L・M−N(Sx−x)} [Z]L・M·N/{L·M−N(Sx−x)} The above calculation can be similarly obtained for the case ~. The results are shown in FIG.

第5図において、 A16:掘削面上の光点 H16:仮想平面上の光点 A′16:撮像面上の光点 この6ケースにおける計算のための補助図を第
12図ないし第17図に示す。掘削面上の光点A
よりx軸上に下した交点をE、またA点とT点及
O点を結ぶ線分を延長し仮想平面との交点をH、
I、またH、Iよりx軸上に垂線を下しA点を通
るx軸と平行な線分との交点をB、Cまたx軸と
の交点をE、Fとすると、 ΔIOF∽ΔOA′S :=:′ =(×′)/ ΔHOE∽ΔOH′S :=:′ =(×′)/ = ∴={×(′−′)} /= また ΔIAC∽ΔIOF :=: ……(3) ΔHAB∽ΔHTE :=: =、= ∴:=: (+):= :(−) ={×(−)} /(−+)= =− ∴=−{×(−)} /(−+) 更に(3)より =(×)/ ={×(+)}/ =−= ∴={×(−−)}/ =(×)/ 掘削面上の光点位置、撮像面上の光点位置をそ
れぞれ(X、Y、Z)、(x、y、z)とし、既知
の値を代入して象限による正負を考慮すると、 X=−L・N・x/{L・M+N(x−Sx)} Z=L・M・N/{(L・M+N(x−Sx)} 以上の計算によりケース〜についても同様
に求められる。その結果を第22図に示す。
In Fig. 5, A 1 to 6 : Light points on the excavation surface H 1 to 6 : Light points on the virtual plane A' 1 to 6 : Light points on the imaging surface Auxiliary diagrams for calculations in these six cases are shown below. This is shown in FIGS. 12 to 17. Light spot A on the excavation surface
The intersection point on the x-axis is E, and the line segment connecting point A, T point, and O point is extended and the intersection point with the virtual plane is H.
I, H, Drop a perpendicular line from I on the x-axis, and let the intersections of the line segment parallel to the x-axis passing through point A be B and C, and the intersections with the x-axis be E and F, then ΔIOF∽ΔOA′ S :=:′ =(×′)/ ΔHOE∽ΔOH′S :=:′ =(×′)/ = ∴={×(′−′)} /= Also, ΔIAC∽ΔIOF :=: ……(3 ) ΔHAB∽ΔHTE :=: =,= ∴:=: (+):= :(-) ={×(-)} /(-+)= =- ∴=-{×(-)} /(- +) Furthermore, from (3) =(×)/ ={×(+)}/ =-= ∴={×(--)}/ =(×)/ Light spot position on the excavation surface, on the imaging surface Letting the light spot positions be (X, Y, Z) and (x, y, z), respectively, and substituting known values and considering the positive and negative depending on the quadrant, X = -L・N・x/{L・M+N( x-Sx)} Z=L・M・N/{(L・M+N(x-Sx)} The above calculation can be similarly obtained for the case ~. The results are shown in FIG.

以上の結果より掘削面上の光点位置のX、Z座
標は X=−L・N・x/{L・M−N(Sx−x)} Z=L・M・N/{L・M−N{Sx−x)} (2) Y座標を求める。
From the above results, the X and Z coordinates of the light spot position on the excavation surface are: −N{Sx−x)} (2) Find the Y coordinate.

第3図bに示すように投影機とカメラはx軸上
にあるので、掘削面が仮想平面と比べ遠方あるい
は近方どちらにあつても仮想平面上の光点に対す
る撮像面のy座標と掘削面の光点に対する撮像面
のy座標とはズレない。
As shown in Figure 3b, since the projector and camera are on the x-axis, the y-coordinate of the imaging plane relative to the light point on the virtual plane and the excavation There is no deviation from the y-coordinate of the imaging surface relative to the light spot on the surface.

計算のための補助図を第18図に示す。 An auxiliary diagram for calculation is shown in FIG.

A点よりY軸上に下した垂線の交点をBとすれ
ば、 ΔA′SO∽ΔOBA ′:=: ∴=(′×)/ には(1)項での計算結果を代入し、掘削面上の
光点位置、撮像面上の光点位置をそれぞれ(X、
Y、Z)、(x、y、z)とし、象限による正負を
考慮すると、 Y=[−y・(L・M・N) /{L・M−N(Sx−x)}]/M =−L・N・y/{L・M−N(Sx−x)} 従つて、ビデオカメラより一定距離離れた位置
に仮想平面を設けることにより掘削面の凹凸を計
算によつて求めることができる。第19図は構成
機器のブロツク図であり、投影機よりなるスポツ
ト光線照射部1、ビデオカメラよりなる画像入力
部2、コンピユータよりなる演算部3、コンピユ
ータ周辺機器である画像処理データ出力部4とよ
りなつている。コンピユータ3は中央制御装置3
1、主記憶装置32、磁器デイスク33、フロツ
ピーデイスク34、画像メモリ35などよりなつ
ており、またコンピユータ周辺機器4はプリンタ
−41、プロツター42、画像デイスプレイ43
などよりなつている。
If B is the intersection of the perpendicular lines drawn from point A to the Y axis, then ΔA′SO∽ΔOBA ′:=: ∴=(′×)/ Substitute the calculation result in section (1) and find the excavation surface. The light spot position on the top and the light spot position on the imaging surface are respectively (X,
Y, Z), (x, y, z), and considering the positive and negative depending on the quadrant, Y=[-y・(L・M・N) /{L・M−N(Sx−x)}]/M =-L・N・y/{L・M−N(Sx−x)} Therefore, by setting a virtual plane at a certain distance from the video camera, it is possible to calculate the unevenness of the excavation surface. can. FIG. 19 is a block diagram of the component equipment, including a spot light irradiation unit 1 consisting of a projector, an image input unit 2 consisting of a video camera, an arithmetic unit 3 consisting of a computer, and an image processing data output unit 4 which is a computer peripheral device. It's getting more familiar. Computer 3 is central control unit 3
1. It consists of a main storage device 32, a porcelain disk 33, a floppy disk 34, an image memory 35, etc., and the computer peripheral equipment 4 includes a printer 41, a plotter 42, and an image display 43.
It's getting more familiar.

第20図は操作手順を示すフローチヤートで、
このフローチヤートと第19図の構成機器のブロ
ツク図を参照し操作手順につき説明する。
Figure 20 is a flowchart showing the operating procedure.
The operating procedure will be explained with reference to this flowchart and the block diagram of the component equipment shown in FIG.

スタートに際し、事前準備として投影機及びビ
デオカメラの位置決め(ステツプS1)、仮想平面
設定(ステツプS2)を行う。事前準備を完了すれ
ば投影機よりスポツト光を照射し(ステツプS3)、
ビデオカメラにより掘削面のスポツト光を取り込
む(ステツプS4)。コンピユータにより2値化等
の画像処理を行い(ステツプS5)、記憶装置へデ
ータを取り込み(ステツプS6)、当該データに基
づき仮想平面の基本座標と掘削面のスポツト光と
のズレを算出(ステツプS7)、以て演算処理によ
る掘削面の凹凸の把握(ステツプS8)がなされ
る。コンピユータより2値化したデータやスポツ
ト光の座標および算出された掘削面の凹凸情報
は、コンピユータ周辺機器に入力され、プリンタ
ー打ち出し(ステツプS9)、デイスプレイ表示
(ステツプS10)、プロツター作図(ステツプS11
等による出力がなされ、測定作業は終了する。こ
の際、コンピユータによる演算は勿論前述の計算
式に基づきなされる。
Before starting, the projector and video camera are positioned (step S 1 ) and the virtual plane is set (step S 2 ) as advance preparations. Once the preliminary preparations are completed, the projector illuminates the spot light (step S3 ).
A video camera captures the spot light on the excavation surface (step S4 ). The computer performs image processing such as binarization (step S5 ), imports the data into the storage device (step S6 ), and calculates the deviation between the basic coordinates of the virtual plane and the spot light on the excavation surface based on the data (step S6). Step S7 ), and the unevenness of the excavated surface is grasped by arithmetic processing (Step S8 ). The data converted into binary data from the computer, the coordinates of the spot light, and the calculated unevenness information of the excavation surface are input to the computer peripheral equipment, and are used for printer printing (step S 9 ), display display (step S 10 ), and plotter drawing (step S 10 ). S11 )
etc., and the measurement work is completed. At this time, the calculation by the computer is of course performed based on the above-mentioned calculation formula.

以上説明したように本発明は、投影機から多数
のスポツト光を掘削面など凹凸を有する面に照射
し、これを投影機から離れた位置で撮像すること
により得られる光点の撮像面上の平面位置と、コ
ンピユータにより記憶された既知の距離に設定さ
れた仮想平面上に投影機より投射された時にでき
る光点を撮像することにより得られる光点の撮像
面の平面位置との変位量をコンピユータで演算
し、対象面と仮想平面とのズレを算出することに
より対象面の三次元形状を測定するものであるの
で、無人でかつ即時に計測でき、自動掘削機など
のロボツトの目としての役割を果すことができる
ものである。
As explained above, the present invention irradiates a large number of spot lights from a projector onto an uneven surface such as an excavation surface, and images the spots at a position away from the projector. The amount of displacement between the plane position and the plane position of the imaging surface of the light spot obtained by imaging the light spot that is created when projected by a projector onto a virtual plane set at a known distance stored by a computer. Since the three-dimensional shape of the target surface is measured by calculating the deviation between the target surface and the virtual plane using a computer, it can be measured unattended and immediately, and can be used as the eyes of robots such as automatic excavators. It is something that can play a role.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は掘削面形状の計測装置の全体概略図、
第2図a,bは測定原理の平面図及び側面図、第
3図a,bは仮想平面上の光点位置を求めるため
の補助図でaはX−Z平面図、bはY−Z平面
図、第4図は第2図aの平面図において計算を必
要とする掘削面位置が仮想平面に比べ遠方となる
場合の測定原理の平面図、第5図は第2図aの平
面図において計算を必要とする掘削面位置が仮想
平面に比べ近方となる場合の測定原理の平面図、
第6図ないし第11図は第4図において6ケース
における計算のための補助図、第12図ないし第
17図は第5図において6ケースにおける計算の
ための補助図、第18図a,bは共に座標計算の
ための補助図、第19図は装置のブロツク図、第
20図は操作手順を示すフローチヤート図、第2
1図は掘削面が仮想平面より遠方の場合の計算結
果の一覧表、第22図は掘削面が仮想平面より近
方の場合の計算結果の一覧表である。 1……投影機、2……ビデオカメラ、3……コ
ンピユータ、4……コンピユータ周辺機器、5…
…対象とする掘削面、6……掘削面上の光点。
Figure 1 is an overall schematic diagram of the excavation surface shape measuring device.
Figures 2a and b are a plan view and side view of the measurement principle, Figures 3a and b are auxiliary views for determining the light spot position on a virtual plane, a is an X-Z plan view, and b is a Y-Z plan view. A plan view, Fig. 4 is a plan view of the measurement principle when the position of the excavation surface that requires calculation is far from the virtual plane in the plan view of Fig. 2 a, and Fig. 5 is a plan view of Fig. 2 a. A plan view of the measurement principle when the excavation surface position that requires calculation is closer than the virtual plane,
Figures 6 to 11 are auxiliary diagrams for calculations in 6 cases in Figure 4, Figures 12 to 17 are auxiliary diagrams for calculations in 6 cases in Figure 5, and Figures 18a and b. are auxiliary diagrams for coordinate calculation, Figure 19 is a block diagram of the device, Figure 20 is a flowchart showing the operating procedure, and Figure 2
FIG. 1 is a list of calculation results when the excavation surface is farther from the virtual plane, and FIG. 22 is a list of calculation results when the excavation surface is closer than the virtual plane. 1...Projector, 2...Video camera, 3...Computer, 4...Computer peripheral equipment, 5...
...Target excavation surface, 6... Light spot on the excavation surface.

Claims (1)

【特許請求の範囲】[Claims] 1 掘削面など凹凸を有する面の前面に設置され
多数のスポツトを面に投射して断面上に光点を作
る投影機と、該投影機から離れて設置され断面上
の光点を撮像するビデオカメラと、該ビデオカメ
ラで断面上の光点を撮像することにより得られる
光点の撮像面での位置と既知の距離に設定する仮
想平面上に投影機から投射された時にできる基準
となる光点の撮像面での位置とのズレ量を演算
し、凹凸面と仮想平面との相対的変位量を算出す
るコンピユータとからなることを特徴とする掘削
面形状の計測装置。
1. A projector that is installed in front of an uneven surface such as an excavation surface and projects a large number of spots onto the surface to create a light spot on the cross section, and a video that is installed away from the projector and images the light spot on the cross section. A reference light that is created when projected from a projector onto a virtual plane that is set at a known distance from the position of the light spot on the imaging surface obtained by imaging a light spot on a cross section with a camera and the video camera. 1. An excavation surface shape measuring device comprising a computer that calculates the amount of deviation from the position of a point on an imaging surface and calculates the amount of relative displacement between an uneven surface and a virtual plane.
JP7301184A 1984-04-13 1984-04-13 Method and instrument for measuring shape of digged surface Granted JPS60218016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7301184A JPS60218016A (en) 1984-04-13 1984-04-13 Method and instrument for measuring shape of digged surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7301184A JPS60218016A (en) 1984-04-13 1984-04-13 Method and instrument for measuring shape of digged surface

Publications (2)

Publication Number Publication Date
JPS60218016A JPS60218016A (en) 1985-10-31
JPH047806B2 true JPH047806B2 (en) 1992-02-13

Family

ID=13505968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7301184A Granted JPS60218016A (en) 1984-04-13 1984-04-13 Method and instrument for measuring shape of digged surface

Country Status (1)

Country Link
JP (1) JPS60218016A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147101A (en) * 1984-12-21 1986-07-04 Machida Seisakusho:Kk Measuring method of surface shape and distance of object
JPS6260075A (en) * 1985-09-10 1987-03-16 Hitachi Ltd Shape recognizing device
JPH0789058B2 (en) * 1986-06-11 1995-09-27 キヤノン株式会社 Distance measuring device
JPH0789057B2 (en) * 1986-06-11 1995-09-27 キヤノン株式会社 Distance measuring device
JPH0772690B2 (en) * 1987-01-22 1995-08-02 清水建設株式会社 Underground excavator excursion measurement system
JP5730079B2 (en) * 2011-03-04 2015-06-03 鹿島建設株式会社 Tunnel construction information projection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53110553A (en) * 1977-03-08 1978-09-27 Sony Corp Measurement apparatus of gradients of curved faces
JPS5811803A (en) * 1981-07-15 1983-01-22 Hitachi Ltd Method and device for measuring film thickness
JPS5875531A (en) * 1981-10-28 1983-05-07 株式会社トプコン Apparatus for measuring curvature
JPS5877609A (en) * 1981-11-02 1983-05-11 Hitachi Ltd Shape detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53110553A (en) * 1977-03-08 1978-09-27 Sony Corp Measurement apparatus of gradients of curved faces
JPS5811803A (en) * 1981-07-15 1983-01-22 Hitachi Ltd Method and device for measuring film thickness
JPS5875531A (en) * 1981-10-28 1983-05-07 株式会社トプコン Apparatus for measuring curvature
JPS5877609A (en) * 1981-11-02 1983-05-11 Hitachi Ltd Shape detector

Also Published As

Publication number Publication date
JPS60218016A (en) 1985-10-31

Similar Documents

Publication Publication Date Title
JP3079186B2 (en) Structure measurement system
CN107905275B (en) Digitlization auxiliary construction system of excavator and auxiliary construction method thereof
JP2844040B2 (en) 3D display device
JP2509357B2 (en) Work position detector
JP2578241B2 (en) Automatic program creation device
CN110850882A (en) Charging pile positioning method and device of sweeping robot
JP7409848B2 (en) Display device and display program
JPH047806B2 (en)
WO2021115236A1 (en) Method and device for positioning by means of scene marking
JP2020172784A (en) Mountain tunnel concrete thickness measuring method and measuring device
JPH08254409A (en) Three-dimensional shape measuring and analyzing method
DE102018208080B3 (en) Method and system for locating an object in a robot environment
JP2896539B2 (en) How to detect unique information such as object position and angle
JP2020086759A (en) Three-dimensional model creation system, processing simulation system, and tool path automatic production system
CN112729252B (en) Tunnel laser point cloud collection method based on robot platform and robot system
RU2451982C1 (en) Method for producing effect on virtual objects
JPH09133512A (en) Optical three dimensional measuring method
JP3247143B2 (en) Positioning / posture surveying device for moving objects
CN115990890B (en) Calibration method and device for manipulator, computer equipment and storage medium
JP7375066B2 (en) Method and system for generating HD maps based on aerial images taken by unmanned aerial vehicles or aircraft
US20240135554A1 (en) Visual localization and feature detection for an implement tracking system
WO2023216651A1 (en) Lane positioning method, computer device, computer-readable storage medium and vehicle
EP4361355A1 (en) Visual localization and feature detection for a work vehicle implement tracking system
JPH01201112A (en) Data inspection device for digital mapping
CN117516545A (en) Heading machine navigation positioning method, system and device based on ultrasonic technology

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees