JPH09132409A - Production of dispersion of ultrafine particles - Google Patents

Production of dispersion of ultrafine particles

Info

Publication number
JPH09132409A
JPH09132409A JP7317270A JP31727095A JPH09132409A JP H09132409 A JPH09132409 A JP H09132409A JP 7317270 A JP7317270 A JP 7317270A JP 31727095 A JP31727095 A JP 31727095A JP H09132409 A JPH09132409 A JP H09132409A
Authority
JP
Japan
Prior art keywords
dispersion
sol
ultrafine particles
ultrafine
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7317270A
Other languages
Japanese (ja)
Other versions
JP3301690B2 (en
Inventor
Kazuo Taguchi
和男 田口
Tatsuya Horibata
達也 堀端
Kentaro Oshima
賢太郎 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP31727095A priority Critical patent/JP3301690B2/en
Publication of JPH09132409A publication Critical patent/JPH09132409A/en
Application granted granted Critical
Publication of JP3301690B2 publication Critical patent/JP3301690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crushing And Grinding (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Colloid Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a dispersion of ultrafine particles having high visible ray transparency and UV ray shielding ability and excellent in dispersibility and dispersion stability of the ultrafine particles by dispersing a raw material of ultrafine particles in a medium with an agitating mill and/or ball mill in the presence of SiO2 sol, Al2 O3 sol and TiO2 sol. SOLUTION: The raw material of ultrafine particles is dispersed in the medium by interposing a media with an agitating mill and/or ball mill in the presence of more than one kind among sols of SiO2 , Al2 O3 and TiO2 . In this way, the dispersion of the ultramicro particles good in dispersibility and dispersion stability is produced efficiently. This dispersion of the ultramicro particles exhibits a high light transmissivity at a visible ray region and manifests a high shielding property at an UV ray region and also this dispersion is excellent in dispersion stability with time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は分散性及び分散安定
性に優れた超微粒子分散液の製造方法に関する。より詳
しくは、分散性及び分散安定性に優れた、可視光線域で
の高透明性、かつ紫外線の高遮蔽性を有する超微粒子分
散液の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing an ultrafine particle dispersion having excellent dispersibility and dispersion stability. More specifically, it relates to a method for producing an ultrafine particle dispersion having excellent dispersibility and dispersion stability, high transparency in the visible light region, and high ultraviolet ray shielding property.

【0002】[0002]

【従来の技術】地球に届く太陽光(赤外線、可視光線、
紫外線)の内、5〜6%が紫外線である。紫外線は波長
が短く、従ってエネルギーの高い電磁波であり、多くの
物質に対して分解性を持ち、広く生体に障害を及ぼすこ
とが知られている。
2. Description of the Related Art Sunlight reaching the earth (infrared rays, visible rays,
Of the (UV), 5-6% is UV. It is known that ultraviolet rays are electromagnetic waves having a short wavelength and hence high energy, have a decomposability for many substances, and widely damage living organisms.

【0003】近年、可視光透明性、紫外線遮蔽能、化学
的安定性、無毒性等の特徴を有するTiO2 及びZnO
微粒子は、食品・医薬品包装分野、化粧品分野等に応用
されている。かかる性質を有する微粒子を含有する分散
液も、可視光線域での透明性を高めることによって、包
装分野の場合では包装材による色彩の損失を防ぎ、化粧
品の場合では白浮きを防ぐことができるため、可視光線
域での透明性を維持しつつ、紫外線遮蔽を行うことが望
ましい。
In recent years, TiO 2 and ZnO having characteristics such as visible light transparency, ultraviolet shielding ability, chemical stability and nontoxicity.
The fine particles are applied to the fields of food / pharmaceutical packaging and cosmetics. A dispersion containing fine particles having such properties can also prevent the loss of color due to the packaging material in the case of the packaging field by increasing the transparency in the visible light region, and can prevent the whitening in the case of cosmetics. It is desirable to block ultraviolet rays while maintaining transparency in the visible light range.

【0004】可視光線域での高透明性を維持しながら紫
外線域での遮蔽能を有効に発現させるためには、微粒子
を微細化して超微粒子とし、かつ高分散状態にする必要
がある。しかし、TiO2 及びZnOの超微粒子を用い
る場合にはその強い凝集性に起因する分散性、分散安定
性が問題となる。分散性を高めるために、例えば分散媒
のpHを変えたり、ヘキサメタリン酸ナトリウムやピロ
リン酸ナトリウム等の分散剤や界面活性剤を添加する方
法、TiO2 超微粒子表面をSiO2 やAl23 等で
被覆して改質する方法等が公知技術として知られてい
る。
In order to effectively exhibit the shielding ability in the ultraviolet region while maintaining the high transparency in the visible light region, it is necessary to miniaturize the fine particles into ultrafine particles and bring them into a highly dispersed state. However, when ultrafine particles of TiO 2 and ZnO are used, dispersibility and dispersion stability due to their strong cohesiveness pose problems. In order to enhance the dispersibility, for example, the pH of the dispersion medium is changed, a dispersant such as sodium hexametaphosphate or sodium pyrophosphate or a surfactant is added, and the surface of TiO 2 ultrafine particles is SiO 2 or Al 2 O 3 etc. A known method is a method of coating and modifying with.

【0005】また酸化チタン分散液の製造方法(特開平
6−279725号公報)では、TiO2 をバインダー
中に分散させる際に、分散メディアの材質をTiO2
はZrO2 とする方法が開示されている。さらに、超微
粒子吸着による顔料分散安定化(藤谷、加藤;色材協会
誌、第68巻8号、463−472頁(1995))で
は、BaSO4 超微粒子粉末を添加してTiO2 等の分
散を行った結果が報告されている。
Further, a method for producing a titanium oxide dispersion liquid (Japanese Patent Laid-Open No. 6-279725) discloses a method of dispersing TiO 2 in a binder and using TiO 2 or ZrO 2 as the material of the dispersion medium. There is. Furthermore, in pigment dispersion stabilization by adsorption of ultrafine particles (Fujitani, Kato; Journal of Coloring Materials, Vol. 68, No. 8, pp. 463-472 (1995)), BaSO 4 ultrafine particle powder was added to disperse TiO 2, etc. The result of doing is reported.

【0006】しかし、これらの方法を用いた場合でも、
凝集した超微粒子を完全に分散することは難しく、製造
された分散液の分散性や分散安定性は必ずしも十分では
なかった。したがって、これらの方法で得られた分散液
の可視光線透明性は満足のいくものではなかった。
However, even when these methods are used,
It is difficult to completely disperse the aggregated ultrafine particles, and the dispersibility and dispersion stability of the manufactured dispersion liquid are not always sufficient. Therefore, the visible light transparency of the dispersions obtained by these methods was not satisfactory.

【0007】一方、紫外線遮蔽性複合微粒子、その製造
方法及び化粧料(WO95/09895号公報)では、
MgF2 ゾルを添加して撹拌ミルによるTiO2 の分散
を行った例、及びSiO2 ゾルを添加して高圧分散機
(ナノマイザー)によるZnOの分散を行った例が開示
されている。しかし現状ではMgF2 ゾルは工業的に生
産されておらず、高価である上に、SiO2 ゾル、Al
2 3 ゾル及びTiO2ゾルに比べ、分散性や分散安定
性を向上させる効果が低いという問題があり、高圧分散
機は撹拌ミルやボールミルより分散能力が低く、凝集し
た超微粒子を完全に分散することが困難であった。
On the other hand, in the ultraviolet-shielding composite fine particles, the method for producing the same, and the cosmetic (WO95 / 09895),
An example in which MgF 2 sol is added to disperse TiO 2 by a stirring mill and an example in which SiO 2 sol is added to disperse ZnO by a high pressure disperser (nanomizer) are disclosed. However, at present, MgF 2 sol is not industrially produced and is expensive, and in addition, SiO 2 sol and Al
Compared with 2 O 3 sol and TiO 2 sol, there is a problem that the effect of improving dispersibility and dispersion stability is low, and the high-pressure disperser has a lower dispersion capacity than a stirring mill or a ball mill and completely disperses aggregated ultrafine particles. It was difficult to do.

【0008】[0008]

【発明が解決しようとする課題】したがって本発明は、
高い可視光線透明性及び紫外線遮蔽能を有する超微粒子
の分散性や分散安定性に優れた、超微粒子分散液の製造
方法を提供することを目的とする。
Accordingly, the present invention provides
An object of the present invention is to provide a method for producing an ultrafine particle dispersion, which is excellent in dispersibility and dispersion stability of ultrafine particles having high visible light transparency and ultraviolet ray shielding ability.

【0009】[0009]

【課題を解決するための手段】本発明者らは、超微粒子
の分散条件について検討を行った結果、SiO2 ゾル、
Al2 3 ゾル、TiO2 ゾルの存在下に、撹拌ミルや
ボールミルによりメディアを介して超微粒子原料を媒質
に分散させたところ、効率良く分散性及び分散安定性の
良好な超微粒子分散液を製造できることを見出し、本発
明を完成させた。
Means for Solving the Problems As a result of studying dispersion conditions of ultrafine particles, the present inventors have found that SiO 2 sol,
In the presence of Al 2 O 3 sol and TiO 2 sol, the ultrafine particle raw material was dispersed in the medium through a medium by a stirring mill or a ball mill. As a result, an ultrafine particle dispersion liquid having good dispersibility and dispersion stability was obtained. They have found that they can be manufactured and have completed the present invention.

【0010】即ち、本発明の要旨は、(1) SiO
2 ゾル、Al2 3 ゾル及びTiO2 ゾルからなる群よ
り選ばれる1種以上のゾルの存在下、撹拌ミル及び/又
はボールミルによりメディアを介して超微粒子原料を媒
質に分散させることを特徴とする、超微粒子分散液の製
造方法、(2) 超微粒子原料がTiO2 、ZnO、
CeO2 、BaTiO3 、CaTiO3 、SrTiO3
及びSiCからなる群より選ばれる1種以上の物質であ
る前記(1)記載の製造方法、(3) 超微粒子原料
の一次粒子の平均粒径が0.001〜0.5μmである
前記(1)又は(2)記載の製造方法、(4) 得ら
れる分散液中での超微粒子の濃度が0.1〜20重量%
である前記(1)〜(3)いずれか記載の製造方法、
(5) 用いるゾルのゾル中の固形分の量が、超微粒
子100重量部に対して10〜10000重量部である
前記(1)〜(4)いずれか記載の製造方法、(6)
メディアの平均粒径が0.001〜1.0mmである
前記(1)〜(5)いずれか記載の製造方法、(7)
メディアの充填量が装置容積の50〜95容量%であ
る前記(1)〜(6)いずれか記載の製造方法、並びに
(8) 得られる超微粒子分散液を水で粒子濃度0.
5重量%に調整し、光路長1mmの光学セルを用いて紫
外可視分光分析により光透過率を測定した場合、波長3
20〜400nmにおける最小の透過率が5%以下、か
つ波長410nm及び800nmにおける透過率の平均
値が10%以上である、前記(1)〜(7)いずれか記
載の製造方法、に関するものである。
That is, the gist of the present invention is (1) SiO
Characterized in that the ultrafine particle raw material is dispersed in the medium through a medium by a stirring mill and / or a ball mill in the presence of one or more sol selected from the group consisting of 2 sol, Al 2 O 3 sol and TiO 2 sol. A method for producing an ultrafine particle dispersion, (2) the ultrafine particle raw material is TiO 2 , ZnO,
CeO 2 , BaTiO 3 , CaTiO 3 , SrTiO 3
And the production method according to (1) above, which is one or more substances selected from the group consisting of SiC, and (3) above, wherein the average particle size of the primary particles of the ultrafine particle raw material is 0.001 to 0.5 μm. ) Or (2) the production method, (4) the concentration of ultrafine particles in the resulting dispersion is 0.1 to 20% by weight.
The production method according to any one of (1) to (3) above,
(5) The production method according to any one of (1) to (4) above, wherein the amount of solid content in the sol of the sol used is 10 to 10,000 parts by weight relative to 100 parts by weight of ultrafine particles.
(7) The production method according to any one of (1) to (5) above, wherein the average particle size of the medium is 0.001 to 1.0 mm.
The production method according to any one of the above (1) to (6), wherein the filling amount of the medium is 50 to 95% by volume of the apparatus volume, and (8) the obtained ultrafine particle dispersion liquid has a particle concentration of 0.
When the light transmittance was measured by UV-visible spectroscopic analysis using an optical cell with an optical path length of 1 mm adjusted to 5% by weight, a wavelength of 3
The manufacturing method according to any one of (1) to (7) above, wherein the minimum transmittance at 20 to 400 nm is 5% or less, and the average transmittance at wavelengths of 410 nm and 800 nm is 10% or more. .

【0011】[0011]

【発明の実施の形態】本発明の超微粒子分散液の製造方
法は、SiO2 ゾル、Al2 3 ゾル及びTiO2 ゾル
からなる群より選ばれる1種以上のゾルの存在下、撹拌
ミル及び/又はボールミルによりメディアを介して超微
粒子原料を媒質に分散させることを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing an ultrafine particle dispersion of the present invention comprises a stirring mill and a stirring mill in the presence of at least one sol selected from the group consisting of SiO 2 sol, Al 2 O 3 sol and TiO 2 sol. It is characterized in that the ultrafine particle raw material is dispersed in the medium through a medium by a ball mill.

【0012】1)超微粒子原料について 本発明において用いられる超微粒子原料は特に限定され
ないが、可視光線域において吸収がなく、同時に紫外線
の吸収性を有する物質が好ましい。つまり、バンドギャ
ップエネルギーに基づく励起子吸収端が紫外線の波長領
域に存在するような物質、即ち、バンドギャップエネル
ギーが3.0〜4.0eVの半導体化合物が好ましい。
例えばTiO2 、ZnO、CeO2 、BaTiO3 、C
aTiO3 、SrTiO3 及びSiCがその性質を強く
示すため、これらの物質からなる群より選ばれる1種以
上の物質が好適に用いられる。これらの中でもTi
2 、ZnO及びCeO2 が一般的に紫外線遮蔽剤とし
てよく用いられており、これらからなる群より選ばれる
1種以上のものがより好ましく、TiO2 又はZnOが
特に好ましい。
1) Ultrafine particle raw material The ultrafine particle raw material used in the present invention is not particularly limited, but a substance that does not absorb in the visible light region and at the same time has an absorptivity for ultraviolet rays is preferable. That is, a substance having an exciton absorption edge based on the bandgap energy in the wavelength region of ultraviolet rays, that is, a semiconductor compound having a bandgap energy of 3.0 to 4.0 eV is preferable.
For example, TiO 2 , ZnO, CeO 2 , BaTiO 3 , C
Since aTiO 3 , SrTiO 3 and SiC strongly exhibit their properties, one or more substances selected from the group consisting of these substances are preferably used. Among these, Ti
Generally, O 2 , ZnO and CeO 2 are often used as an ultraviolet shielding agent, one or more selected from the group consisting of these is more preferable, and TiO 2 or ZnO is particularly preferable.

【0013】なお、超微粒子原料は、その一次粒子が凝
集した状態、即ち塊状、粒状、粉状、泥状及び懸濁状態
で撹拌ミル及び/又はボールミルに投入することができ
る。また超微粒子は、コーティング、トポケミカル反
応、メカノケミカル反応、カプセル化、沈殿反応などに
より表面改質されていても良い。
The ultrafine particle raw material can be added to a stirring mill and / or a ball mill in a state where the primary particles are agglomerated, that is, in the form of lumps, particles, powder, mud and suspension. The ultrafine particles may be surface-modified by coating, topochemical reaction, mechanochemical reaction, encapsulation, precipitation reaction, or the like.

【0014】本発明に用いられる超微粒子の粒径に関し
ては、当該超微粒子が媒質中に分散されれば良く特に限
定されないが、超微粒子原料の一次粒子の平均粒径が
0.001〜0.5μmであることが好ましい。分散に
要するエネルギーの増加に比べて、可視光透明性及び紫
外線遮蔽性の向上度が小さくなるという観点から、平均
粒径は0.001μm以上が好ましく、安定な分散液を
形成させる観点から0.5μm以下が好ましい。さら
に、可視光線域における透明性及び紫外線域における遮
蔽性をより満足させる観点から0.003〜0.1μm
がより好ましく、0.005〜0.05μmが特に好ま
しい。
The particle size of the ultrafine particles used in the present invention is not particularly limited as long as the ultrafine particles are dispersed in the medium, but the average particle size of the primary particles of the ultrafine particle raw material is 0.001 to 0. It is preferably 5 μm. The average particle size is preferably 0.001 μm or more from the viewpoint that the degree of improvement in the visible light transparency and the ultraviolet shielding property is smaller than the increase in the energy required for dispersion, and from the viewpoint of forming a stable dispersion liquid, It is preferably 5 μm or less. Further, from the viewpoint of more satisfying the transparency in the visible light region and the shielding property in the ultraviolet region, 0.003 to 0.1 μm
Is more preferable, and 0.005-0.05 μm is particularly preferable.

【0015】本明細書において、超微粒子の一次粒子の
平均粒径とは平面投影時の長軸径、短軸径の算術平均で
あり、電子顕微鏡により測定される値である。なお、超
微粒子とは超微粒子原料中に含有される超微粒子をい
う。なお、超微粒子の形状は球状、板状又は針状等、特
に限定されない。
In the present specification, the average particle size of the primary particles of ultrafine particles is the arithmetic average of the major axis diameter and the minor axis diameter in plane projection, and is a value measured by an electron microscope. The ultrafine particles are ultrafine particles contained in the raw material for the ultrafine particles. The shape of the ultrafine particles is not particularly limited and may be spherical, plate-shaped or needle-shaped.

【0016】得られる分散液中の超微粒子の濃度は特に
限定されないが、0.1〜20重量%が好ましく、0.
5〜10重量%がより好ましく、1〜8重量%が特に好
ましい。超微粒子の再凝集を抑える観点から20重量%
以下が好ましく、生産性の観点から0.1重量%以上が
好ましい。超微粒子の再凝集が起こると分散性や分散安
定性の低下が顕著になり、目的とする高可視光透明性の
分散液を得ることが困難になる傾向がある。なお、本明
細書において分散液とは、特に記載のない限り、本発明
の方法によりゾルの存在下、超微粒子及び媒質が混合・
分散されたものをいう。
The concentration of ultrafine particles in the resulting dispersion is not particularly limited, but is preferably 0.1 to 20% by weight,
5 to 10% by weight is more preferable, and 1 to 8% by weight is particularly preferable. 20% by weight from the viewpoint of suppressing re-aggregation of ultrafine particles
The following is preferable, and 0.1% by weight or more is preferable from the viewpoint of productivity. When the re-aggregation of ultrafine particles occurs, the dispersibility and dispersion stability are significantly reduced, and it tends to be difficult to obtain the target dispersion liquid having high visible light transparency. In the present specification, the term “dispersion liquid” refers to a mixture of ultrafine particles and a medium in the presence of a sol according to the method of the present invention, unless otherwise specified.
Dispersed.

【0017】2)ゾルについて 本発明において用いられるゾルは、SiO2 ゾル、Al
2 3 ゾル及びTiO2 ゾルからなる群より選ばれる1
種以上のゾルである。本発明において用いられる超微粒
子のような粒子径の比較的小さい微粒子は凝集しやすい
性質があるので、媒質中に分散させてその機能をうまく
発現させることが難しい。本発明においても、用いる超
微粒子が凝集すると可視光線域における透明性が損なわ
れるため、超微粒子を媒質中に充分に分散させることが
重要である。そこで、分散性の良好なゾルであるSiO
2 ゾル、Al2 3 ゾル及びTiO2 ゾルからなる群よ
り選ばれる1種以上のゾルの存在下で超微粒子原料を媒
質に分散させることにより、媒質中での超微粒子の分散
性や分散安定性を向上させることができる。これは、S
iO2 ゾル、Al2 3 ゾル又はTiO2 ゾルが当該超
微粒子懸濁液に添加されると(1)メディアとしての役
割、及び(2)超微粒子表面に吸着し、静電的反発力を
付与する分散剤のような役割、を担っているためと考え
られる。
2) Sols Sols used in the present invention include SiO 2 sol and Al.
1 selected from the group consisting of 2 O 3 sol and TiO 2 sol
It is a sol of more than one species. Fine particles having a relatively small particle size, such as the ultrafine particles used in the present invention, tend to agglomerate, and thus it is difficult to disperse them in a medium to exhibit their function well. Also in the present invention, when the ultrafine particles to be used are aggregated, the transparency in the visible light region is impaired, so it is important to sufficiently disperse the ultrafine particles in the medium. Therefore, SiO which is a sol having good dispersibility
By dispersing the ultrafine particle raw material in the medium in the presence of one or more sol selected from the group consisting of 2 sol, Al 2 O 3 sol and TiO 2 sol, the dispersibility and dispersion stability of the ultrafine particles in the medium It is possible to improve the sex. This is S
When an iO 2 sol, Al 2 O 3 sol or TiO 2 sol is added to the ultrafine particle suspension, (1) it serves as a medium, and (2) it is adsorbed on the surface of the ultrafine particles and electrostatic repulsion force is exerted. It is considered that it has a role like a dispersant to be imparted.

【0018】本発明におけるゾルと超微粒子の量的な関
係は特に限定されないが、ゾルが多ければ多いほど超微
粒子の分散性の観点からは好ましい。具体的には、用い
るゾルのゾル中の固形分の量、即ちSiO2 ゾル、Al
2 3 ゾル及びTiO2 ゾルからなる群より選ばれる1
種以上のゾル中の固形分の量として、超微粒子100重
量部に対して10〜10000重量部が好ましく、50
〜5000重量部がより好ましく、100〜1000重
量部がさらに好ましい。超微粒子を分散させる効果を発
揮させる観点から10重量部以上が好ましく、可視光透
明性や紫外線遮蔽性を維持させる観点から10000重
量部以下が好ましい。
The quantitative relationship between the sol and the ultrafine particles in the present invention is not particularly limited, but the more the sol is, the more preferable from the viewpoint of dispersibility of the ultrafine particles. Specifically, the amount of solid content in the sol of the sol used, that is, SiO 2 sol, Al
1 selected from the group consisting of 2 O 3 sol and TiO 2 sol
The amount of the solid content in the sol of one kind or more is preferably 10 to 10,000 parts by weight with respect to 100 parts by weight of the ultrafine particles, and 50
˜5000 parts by weight is more preferred, and 100 to 1000 parts by weight is even more preferred. The amount is preferably 10 parts by weight or more from the viewpoint of exerting the effect of dispersing the ultrafine particles, and is preferably 10,000 parts by weight or less from the viewpoint of maintaining the visible light transparency and the ultraviolet shielding property.

【0019】ゾルを構成する粒子の粒径に関しては、超
微粒子の分散性や分散安定性が良好であれば良く特に限
定されないが、その粒子の一次粒子の平均粒径は0.0
01〜0.5μmが好ましい。安定な分散液を形成させ
る観点から0.5μm以下が好ましく、調製の容易さか
ら0.001μm以上が好ましい。さらに可視光線域に
おける透明性及び紫外線域における遮蔽性をより満足さ
せる観点から0.002〜0.1μmがより好ましく、
0.003〜0.05μmが特に好ましい。
The particle size of the particles constituting the sol is not particularly limited as long as the dispersibility and dispersion stability of the ultrafine particles are good, but the average particle size of the primary particles of the particles is 0.0
01 to 0.5 μm is preferable. From the viewpoint of forming a stable dispersion, it is preferably 0.5 μm or less, and more preferably 0.001 μm or more from the viewpoint of easy preparation. Further, from the viewpoint of further satisfying the transparency in the visible light region and the shielding property in the ultraviolet region, 0.002 to 0.1 μm is more preferable,
0.003 to 0.05 μm is particularly preferable.

【0020】本明細書において、ゾルを構成する粒子の
一次粒子の平均粒径とは平面投影時の長軸径、短軸径の
算術平均であり、電子顕微鏡により測定される値であ
る。なお、ゾルを構成する粒子の形状は球状、板状又は
針状等、特に限定されない。また、ゾルを構成する粒子
の濃度は特に限定されるものではなく、上述のゾルと超
微粒子の量的な関係を満たす程度であることが好まし
い。ゾルを構成する媒質としては、水又は有機溶媒のい
ずれも可能であり、当該分散液中の媒質と同じでも異な
っていても良い。
In the present specification, the average particle diameter of the primary particles of the particles constituting the sol is the arithmetic average of the major axis diameter and the minor axis diameter in plane projection, and is a value measured by an electron microscope. The shape of the particles forming the sol is not particularly limited, and may be spherical, plate-like, needle-like, or the like. Further, the concentration of particles constituting the sol is not particularly limited, and it is preferable that the concentration of the sol and the ultrafine particles is satisfied. The medium constituting the sol may be water or an organic solvent, and may be the same as or different from the medium in the dispersion liquid.

【0021】3)媒質について 本発明に用いられる分散液調製用の媒質としては、水又
は有機溶媒のいずれも可能である。また超微粒子の分散
性や分散安定性を向上させるために、分散剤や増粘剤を
添加しても良い。有機溶媒の例としては、メタノール、
エタノール等のアルコール類や、クロロホルム、1,2
−ジクロロエタン、トリクロロエチレン等のハロゲン系
炭化水素、トルエン、キシレン等の芳香族、N,N−ジ
メチルホルムアミド、ジメチルスルホキシド、ヘキサメ
チルホスホルアミド等のアミド類等の溶媒又はこれらの
混合溶媒が挙げられる。このうち、水、アルコール類又
はこれらの混合溶媒が好ましく、水、エタノール又はこ
れらの混合溶媒がより好ましい。
3) Medium As the medium for preparing the dispersion liquid used in the present invention, either water or an organic solvent can be used. Further, in order to improve dispersibility and dispersion stability of the ultrafine particles, a dispersant or a thickener may be added. Examples of organic solvents include methanol,
Alcohols such as ethanol, chloroform, 1, 2
Examples include halogen-based hydrocarbons such as dichloroethane and trichloroethylene, aromatics such as toluene and xylene, amides such as N, N-dimethylformamide, dimethylsulfoxide, and hexamethylphosphoramide, and mixed solvents thereof. Of these, water, alcohols and mixed solvents thereof are preferable, and water, ethanol and mixed solvents thereof are more preferable.

【0022】4)撹拌ミル、ボールミルについて 超微粒子を分散するに当たり、分散機は撹拌ミル及び/
又はボールミルを利用ことにより、当該分散液を最も効
率よく製造することができ、なかでも撹拌ミルを利用す
ることが好ましい。その際ホモミキサー、ホモジナイザ
ー等の他の分散機で予備分散を組み合わせることも可能
である。その理由は、予備分散により、凝集した超微粒
子を解砕・粉砕することにより、その後の分散に要する
負荷を低減し、効率良く超微粒子の分散を行うことが出
来るからである。
4) Stirring mill and ball mill In dispersing the ultrafine particles, the dispersing machine is a stirring mill and / or
Alternatively, a ball mill can be used to produce the dispersion liquid most efficiently, and it is preferable to use a stirring mill. At that time, it is also possible to combine the preliminary dispersion with another disperser such as a homomixer or a homogenizer. The reason is that by preliminarily dispersing, the agglomerated ultrafine particles are crushed and crushed, whereby the load required for the subsequent dispersion can be reduced and the ultrafine particles can be efficiently dispersed.

【0023】撹拌ミルとは容器中にメディアをいれ、こ
のメディアに挿入した撹拌機構によって力を伝達して粉
砕を行う粉砕機であって、塔式ミル、撹拌槽型ミル、流
通管型ミル、環状ミル等に分類される。撹拌ミルの中
で、撹拌槽型ミルの例には、アトライター(三井鉱山
(株)製)、サンドグラインダー(アイメックス(株)
製)があり、流通管型ミルの例には、ダイノーミル(ウ
ィリー・アー・バッコーフェンAG製)、スーパーアペ
ックスミル(コトブキ技研工業(株)製)、ウルトラビ
スコミル(アイメックス(株)製)があり、環状ミルの
例には、パールミル(ドライスヴェルケGmbH製)、
ダイヤモンドファインミル(三菱重工業(株)製)があ
る。ボールミルとは通常円筒状容器のミルの中にメディ
アをいれ、ミルを運動させることによって粉砕を行う粉
砕機であって、転動ミル、振動ボールミル、遊星ミル等
と分類される。このようなボールミルとしてはアクアマ
イザー(ホソカワミクロン(株)製)、ハイジー
((株)栗本鐵工所製)等がある。
The stirring mill is a crushing machine in which a medium is put in a container and a force is transmitted by a stirring mechanism inserted in the medium to perform crushing, and a tower type mill, a stirring tank type mill, a flow tube type mill, It is classified as a circular mill. Among the stirring mills, examples of stirring tank type mills are Attritor (manufactured by Mitsui Mining Co., Ltd.) and Sand Grinder (IMEX Co., Ltd.).
There are Dino Mill (made by Willy A. Bakofen AG), Super Apex Mill (made by Kotobuki Giken Kogyo Co., Ltd.), and Ultra Visco Mill (made by AIMEX Co., Ltd.). , An example of a circular mill is a pearl mill (made by Dreiswerke GmbH),
There is a diamond fine mill (manufactured by Mitsubishi Heavy Industries, Ltd.). The ball mill is a crusher that normally puts a medium in a mill of a cylindrical container and crushes by moving the mill, and is classified as a rolling mill, a vibrating ball mill, a planetary mill and the like. Examples of such ball mills include AQUAMIZER (manufactured by Hosokawa Micron Co., Ltd.) and HEIGY (manufactured by Kurimoto Iron Works Co., Ltd.).

【0024】撹拌ミル及び/又はボールミルを利用して
超微粒子を分散させる場合、分散機は開放型、密閉型の
いずれも可能である。使用するメディアは特に限定され
ないが、その平均粒径は0.001〜1.0mmが好ま
しく、0.01〜0.5mmがより好ましい。粒径が小
さいほど分散効率が上がるため、1.0mm以下が好ま
しく、分散液とメディアの分離性の観点から0.001
mm以上が好ましい。なお、メディアの平均粒径は平面
投影時の長軸径、短軸径の算術平均であり、顕微鏡によ
って測定される値である。
When the ultrafine particles are dispersed using a stirring mill and / or a ball mill, the disperser may be either an open type or a closed type. The medium used is not particularly limited, but its average particle size is preferably 0.001 to 1.0 mm, more preferably 0.01 to 0.5 mm. Since the smaller the particle size, the higher the dispersion efficiency, 1.0 mm or less is preferable, and 0.001 from the viewpoint of the separability of the dispersion liquid and the medium.
mm or more is preferable. The average particle size of the medium is the arithmetic average of the major axis diameter and the minor axis diameter at the time of plane projection, and is a value measured by a microscope.

【0025】また、メディアの充填量(嵩容積基準)は
特に限定されないが、充填量は装置容積(開放型の場合
は全容積)の50〜95容量%が好ましく、60〜92
容量%がより好ましく、70〜90容量%がさらに好ま
しい。メディアの量が多いほど分散効率が上がるため、
50容量%以上が好ましく、容積効率の低下及び動力の
増大の観点から95容量%以下が好ましい。メディアの
材質は、ガラスやジルコニア等のセラミックス、ステン
レス等の金属等が使用可能であるが、安価で化学的に安
定である点からガラスを使用することが好ましい。
The medium filling amount (bulk volume basis) is not particularly limited, but the filling amount is preferably 50 to 95% by volume of the apparatus volume (total volume in the case of the open type), and 60 to 92.
Volume% is more preferable, and 70 to 90 volume% is further preferable. As the amount of media increases, the distribution efficiency increases, so
50% by volume or more is preferable, and 95% by volume or less is preferable from the viewpoint of reduction in volumetric efficiency and increase in power. As the material of the medium, glass, ceramics such as zirconia, metal such as stainless steel, and the like can be used, but it is preferable to use glass because it is inexpensive and chemically stable.

【0026】5)製造工程について 最初の工程として、ゾル、超微粒子原料及び媒質を混合
して原料液を得る。混合に用いる混合機は特に限定され
るものではなく、分散に用いる撹拌ミル及び/又はボー
ルミルを用いても良い。
5) Manufacturing process As a first step, the sol, the ultrafine particle raw material and the medium are mixed to obtain a raw material liquid. The mixer used for mixing is not particularly limited, and a stirring mill and / or a ball mill used for dispersion may be used.

【0027】次の工程では、得られる原料液を、撹拌ミ
ル及び/又はボールミルによりメディアを介して処理
し、超微粒子を媒質に分散させる。撹拌ミルを利用する
場合、撹拌機の回転数については特に限定されないが、
撹拌羽根先端の周速度が高ければ高い程良く、7〜10
0m/sであることが好ましく、10〜60m/sであ
ることがより好ましく、13〜30m/sであることが
さらに好ましい。ボールミルを利用する場合、例えば遊
星ミルを使用する際、遠心加速度については特に限定さ
れないが、遠心加速度が高ければ高い程良く、20〜1
50Gであることが好ましい。ミルによる処理時間は特
に限定されるものではなく、1分〜10時間でよい。ま
た、撹拌ミルとボールミルの両方を用いる場合、どちら
を先に用いても良い。
In the next step, the obtained raw material liquid is treated with a stirring mill and / or a ball mill through the medium to disperse the ultrafine particles in the medium. When using a stirring mill, the number of revolutions of the stirrer is not particularly limited,
The higher the peripheral speed of the tip of the stirring blade, the better, 7-10
It is preferably 0 m / s, more preferably 10 to 60 m / s, and further preferably 13 to 30 m / s. When a ball mill is used, for example, when a planetary mill is used, the centrifugal acceleration is not particularly limited, but the higher the centrifugal acceleration, the better.
It is preferably 50G. The processing time by the mill is not particularly limited and may be 1 minute to 10 hours. When both the stirring mill and the ball mill are used, either one may be used first.

【0028】上記の方法によって得られる超微粒子分散
液は、可視光線域での高透明性、かつ紫外線の高遮蔽性
を有するものである。かかる光学特性は、例えば、紫外
線・可視光分光分析による光透過率の測定によりその定
量化が可能である。超微粒子分散液の好ましい光学特性
としては、得られる超微粒子分散液を水で粒子濃度0.
5重量%に調整し、光路長1mmの光学セルを用いて紫
外可視分光分析により光透過率を測定した場合、波長3
20〜400nmにおける最小の透過率が5%以下、か
つ波長410nm及び800nmにおける透過率の平均
値が10%以上である。410nm及び800nmにお
ける透過率の平均値は、さらに好ましくは30%以上で
あり、特に好ましくは50%以上である。この性能によ
り、可視光線域での透明性を満足させるとともに紫外域
での遮蔽性を満足させることができる。
The ultrafine particle dispersion obtained by the above method has a high transparency in the visible light region and a high ultraviolet ray shielding property. Such optical characteristics can be quantified by, for example, measuring the light transmittance by ultraviolet / visible light spectroscopic analysis. As preferable optical characteristics of the ultrafine particle dispersion liquid, the obtained ultrafine particle dispersion liquid is diluted with water to a particle concentration of 0.
When the light transmittance was measured by UV-visible spectroscopic analysis using an optical cell with an optical path length of 1 mm adjusted to 5% by weight, a wavelength of 3
The minimum transmittance at 20 to 400 nm is 5% or less, and the average transmittance at wavelengths of 410 nm and 800 nm is 10% or more. The average value of the transmittances at 410 nm and 800 nm is more preferably 30% or more, and particularly preferably 50% or more. With this performance, it is possible to satisfy the transparency in the visible light region and the shielding property in the ultraviolet region.

【0029】また、本発明の方法によって得られる超微
粒子分散液は、分散安定性についても優れたものであ
り、所望の性質を長期間保持できる。したがって、包装
材や化粧品の分野において好適に用いることができる。
The ultrafine particle dispersion obtained by the method of the present invention is also excellent in dispersion stability and can retain desired properties for a long period of time. Therefore, it can be suitably used in the fields of packaging materials and cosmetics.

【0030】[0030]

【実施例】以下に本発明の実施例及び比較例を示し、本
発明をさらに詳細に説明するが、本発明はこれらの実施
例等によって限定されるものではない。
The present invention will be described in more detail with reference to examples and comparative examples of the present invention, but the present invention is not limited to these examples.

【0031】実施例1 TiO2 ゾル(多木化学(株)製、TiO2 濃度4重量
%、平均粒径0.01μm)43.75g、ZnO超微
粒子(FINEX75、堺化学製、平均粒径0.01μ
m)1.75g及び水を混合して175gとし、原料液
とした(即ち、当該原料液のTiO2 及びZnOの濃度
はそれぞれ1.0重量%であり、TiO2 ゾルは固形分
としてZnOの等倍量含有するものである)。
Example 1 43.75 g of TiO 2 sol (manufactured by Taki Chemical Co., Ltd., TiO 2 concentration 4% by weight, average particle size 0.01 μm), ZnO ultrafine particles (FINEX75, manufactured by Sakai Chemical Industry, average particle size 0) .01μ
m) 1.75 g and water were mixed to obtain 175 g, which was used as a raw material liquid (that is, the concentration of TiO 2 and ZnO in the raw material liquid was 1.0% by weight, respectively, and the TiO 2 sol had a solid content of ZnO). It contains the same amount).

【0032】この原料液に平均粒径0.1mmのガラス
ビーズ(BZ−1、(株)井内盛栄堂製)325gを加
え、撹拌ミルである開放型のサンドグラインダー(TS
G−6H、アイメックス(株)製)を用いて、周速度7
m/sの条件で、2時間分散処理を行った。なお、ガラ
スビーズの充填量はサンドグラインダーの容積の55容
量%であった。得られた分散液中でのZnO超微粒子の
濃度は1.0重量%であった。
To this raw material solution, 325 g of glass beads (BZ-1, manufactured by Iuchi Seieidou Co., Ltd.) having an average particle diameter of 0.1 mm was added, and an open type sand grinder (TS
G-6H, manufactured by IMEX Co., Ltd., was used to measure the peripheral speed of 7
The dispersion treatment was performed for 2 hours under the condition of m / s. The filling amount of glass beads was 55% by volume of the volume of the sand grinder. The concentration of ZnO ultrafine particles in the obtained dispersion was 1.0% by weight.

【0033】得られた分散液を水で希釈し、ZnOが
0.5重量%懸濁した懸濁液10gを調製した。これに
ついて紫外可視分光光度計(島津製作所製UV−160
A)により光透過率を測定した。光路長1mmの石英セ
ルを用いて波長域200〜800nmでの光透過率を測
定した結果は図1の通りであった。
The dispersion thus obtained was diluted with water to prepare 10 g of a suspension in which 0.5% by weight of ZnO was suspended. About this UV-visible spectrophotometer (UV-160 manufactured by Shimadzu Corporation)
The light transmittance was measured according to A). The result of measuring the light transmittance in the wavelength range of 200 to 800 nm using a quartz cell having an optical path length of 1 mm is as shown in FIG.

【0034】この図では、波長320〜400nmにお
ける最小の透過率(320nmにおける値)が0%にな
っていると同時に、410nm及び800nmにおける
透過率の平均値が71%と可視光全域において光透過率
が非常に高い値になっており、超微粒子分散液は可視光
線域における高透明性及び紫外線域における高遮蔽性を
有していることがわかった。また得られた分散液を室温
で3カ月間静置した後、同様の方法で透過率を測定した
が、透過率に変化は無く、また超微粒子の顕著な沈降等
も認められず、分散の安定性が確かめられた。
In this figure, the minimum transmittance (value at 320 nm) in the wavelength range of 320 to 400 nm is 0%, and at the same time, the average value of the transmittances at 410 nm and 800 nm is 71%, which means that light is transmitted in the entire visible light range. The rate was extremely high, and it was found that the ultrafine particle dispersion had high transparency in the visible light region and high shielding property in the ultraviolet light region. Further, the obtained dispersion was allowed to stand at room temperature for 3 months, and then the transmittance was measured by the same method. However, there was no change in the transmittance, and no remarkable precipitation of ultrafine particles was observed. The stability was confirmed.

【0035】実施例2 Al2 3 ゾル(アルミナゾル−520、日産化学工業
(株)製、Al2 3濃度20.5重量%、平均粒径
0.04μm)64g、TiO2 超微粒子(石原産業
(株)製TTO−51(A)、ルチル型、平均粒径0.
02μm)4.375g及び水を混合して175gと
し、原料液とした(即ち、当該原料液のAl23 及び
TiO2 の濃度はそれぞれ7.5重量%及び2.5重量
%であり、Al2 3 ゾルは固形分としてTiO2 の3
倍量含有するものである)。
Example 2 64 g of Al 2 O 3 sol (alumina sol-520, manufactured by Nissan Chemical Industries, Ltd., Al 2 O 3 concentration 20.5% by weight, average particle size 0.04 μm), TiO 2 ultrafine particles (Ishihara) Sangyo Co., Ltd. TTO-51 (A), rutile type, average particle size 0.
02 μm) 4.375 g of water and 175 g of water were mixed to obtain a raw material liquid (that is, the concentrations of Al 2 O 3 and TiO 2 in the raw material liquid were 7.5% by weight and 2.5% by weight, respectively, Al 2 O 3 sol has 3 % of TiO 2 as solid content.
It contains double the amount).

【0036】この原料液を実施例1と同じ条件で、4時
間分散処理を行った。得られた分散液中でのTiO2
微粒子の濃度は、7.5重量%であった。得られた分散
液を水で希釈し、実施例1と同様の方法により波長域2
00〜800nmでの光透過率を測定したところ、波長
320〜400nmにおける最小の透過率(320nm
における値)が2.3%になっていると同時に、410
nm及び800nmにおける透過率の平均値が31%と
可視光全域において光透過率が高い値になっており、超
微粒子分散液は可視光線域における高透明性及び紫外線
域における高遮蔽性を有していることがわかった。また
得られた分散液を室温で3カ月間静置した後、同様の方
法で透過率を測定したが、透過率に変化は無く、また超
微粒子の顕著な沈降等も認められず分散の安定性が確か
められた。
This raw material liquid was subjected to a dispersion treatment for 4 hours under the same conditions as in Example 1. The concentration of TiO 2 ultrafine particles in the obtained dispersion was 7.5% by weight. The obtained dispersion liquid was diluted with water, and the wavelength range 2 was obtained by the same method as in Example 1.
When the light transmittance at 00 to 800 nm was measured, the minimum transmittance at a wavelength of 320 to 400 nm (320 nm
Value) is 2.3% and at the same time 410
The average value of the transmittance at 31 nm and 800 nm is 31% and the light transmittance is high in the entire visible light range, and the ultrafine particle dispersion liquid has high transparency in the visible light region and high shielding property in the ultraviolet light region. I found out. The transmittance of the obtained dispersion was allowed to stand for 3 months at room temperature, and then the transmittance was measured by the same method. However, there was no change in the transmittance and no remarkable precipitation of ultrafine particles was observed, and the dispersion was stable. The sex was confirmed.

【0037】実施例3 SiO2 ゾル(日産化学工業(株)製ST−C、SiO
2 濃度20.5重量%、平均粒径0.01μm)128
g、ZnO超微粒子(FINEX75、堺化学製、平均
粒径0.01μm)8.75g及び水を混合して175
gとし、原料液とした(即ち、当該原料液のSiO2
びZnOの濃度はそれぞれ15重量%及び5重量%であ
り、SiO2 ゾルは固形分としてZnOの3倍量含有す
るものである)。
Example 3 SiO 2 sol (ST-C, SiO manufactured by Nissan Chemical Industries, Ltd.)
2 Concentration 20.5% by weight, average particle diameter 0.01 μm) 128
g, ZnO ultrafine particles (FINEX75, manufactured by Sakai Chemical Industry Co., Ltd., average particle size 0.01 μm) 8.75 g and water were mixed to obtain 175
g as a raw material liquid (that is, the concentrations of SiO 2 and ZnO in the raw material liquid are 15% by weight and 5% by weight, respectively, and the SiO 2 sol contains 3 times the solid content of ZnO). .

【0038】この原料液を実施例1と同じ条件で、2時
間分散処理を行った。得られた分散液中でのZnO超微
粒子の濃度は5重量%であった。得られた分散液を水で
希釈し、実施例1と同様の方法により波長域200〜8
00nmでの光透過率を測定したところ、波長320〜
400nmにおける最小の透過率(320nmにおける
値)が0%になっていると同時に、410nm及び80
0nmにおける透過率の平均値が90%と可視光全域に
おいて光透過率が非常に高い値になっており、超微粒子
分散液は可視光線域における高透明性及び紫外線域にお
ける高遮蔽性を有していることがわかった。また得られ
た分散液を室温で3カ月間静置した後、同様の方法で透
過率を測定したが、透過率に変化は無く、また超微粒子
の顕著な沈降等も認められず分散の安定性が確かめられ
た。
This raw material liquid was subjected to a dispersion treatment for 2 hours under the same conditions as in Example 1. The concentration of the ZnO ultrafine particles in the obtained dispersion was 5% by weight. The obtained dispersion liquid was diluted with water and treated in the same manner as in Example 1 in the wavelength range of 200 to 8
When the light transmittance at 00 nm was measured, a wavelength of 320 to
The minimum transmittance at 400 nm (value at 320 nm) is 0%, while at the same time 410 nm and 80 nm.
The average value of the transmittance at 0 nm is 90% and the light transmittance is extremely high in the entire visible light range, and the ultrafine particle dispersion liquid has high transparency in the visible light region and high shielding property in the ultraviolet light region. I found out. The transmittance of the obtained dispersion was allowed to stand for 3 months at room temperature, and then the transmittance was measured by the same method. However, there was no change in the transmittance and no remarkable precipitation of ultrafine particles was observed, and the dispersion was stable. The sex was confirmed.

【0039】実施例4 SiO2 ゾル(日産化学工業(株)製ST−C、SiO
2 濃度20.5重量%、平均粒径0.01μm)4.8
8kgにTiO2 超微粒子(石原産業(株)製TTO−
51(A)、ルチル型、平均粒径0.02μm)1kg
及び水を混合して10kgとし、原料液とした(即ち、
当該原料液のSiO2 及びTiO2 の濃度はそれぞれ1
0重量%であり、シリカゾルは固形分としてTiO2
等倍量含有するものである)。
Example 4 SiO 2 sol (ST-C, SiO manufactured by Nissan Chemical Industries, Ltd.)
2 concentration 20.5% by weight, average particle diameter 0.01 μm) 4.8
8 kg of TiO 2 ultrafine particles (TTO- manufactured by Ishihara Sangyo Co., Ltd.)
51 (A), rutile type, average particle size 0.02 μm) 1 kg
And water were mixed to obtain 10 kg, which was used as a raw material liquid (that is,
The concentration of SiO 2 and TiO 2 in the raw material liquid is 1 each.
0% by weight, and the silica sol contains an equal amount of TiO 2 as a solid content).

【0040】この原料液に平均粒径0.25mmのガラ
スビーズ(UB1113L、(株)ユニオン製)で容量
の80%を充填した、撹拌ミルであるKDL−PILO
T型ダイノーミル(ウィリー・アー・バッコーフェン
製)を用いて、周速度14m/s、滞留時間8分の条件
で、8パス運転を行い、分散処理を行った。得られた分
散液中でのTiO2 超微粒子の濃度は、10重量%であ
った。
KDL-PILO, which is a stirring mill, is prepared by filling the raw material liquid with glass beads having an average particle size of 0.25 mm (UB1113L, manufactured by Union Co., Ltd.) to a volume of 80%.
Using a T-type Dyno mill (manufactured by Willie A. Bakofen), 8-pass operation was carried out under the conditions of a peripheral speed of 14 m / s and a residence time of 8 minutes to carry out a dispersion treatment. The concentration of TiO 2 ultrafine particles in the obtained dispersion was 10% by weight.

【0041】得られた分散液を水で希釈し、実施例1と
同様の方法により波長域200〜800nmでの光透過
率を測定したところ、波長320〜400nmにおける
最小の透過率(320nmにおける値)が0%になって
いると同時に、410nm及び800nmにおける透過
率の平均値が59%と可視光全域において光透過率が高
い値になっており、超微粒子分散液は可視光線域におけ
る高透明性及び紫外線域における高遮蔽性を有している
ことがわかった。また得られた分散液を室温で3カ月間
静置した後、同様の方法で透過率を測定したが、透過率
に変化は無く、また超微粒子の顕著な沈降等も認められ
ず分散の安定性が確かめられた。
The obtained dispersion was diluted with water and the light transmittance in the wavelength range of 200 to 800 nm was measured by the same method as in Example 1. The minimum transmittance in the wavelength of 320 to 400 nm (value at 320 nm) ) Is 0%, and the average value of the transmittances at 410 nm and 800 nm is 59%, which means that the light transmittance is high in the entire visible light range, and the ultrafine particle dispersion has a high transparency in the visible light range. It has been found that it has a high light blocking effect and a high shielding property in the ultraviolet region. The transmittance of the obtained dispersion was allowed to stand for 3 months at room temperature, and then the transmittance was measured by the same method. However, there was no change in the transmittance and no remarkable precipitation of ultrafine particles was observed, and the dispersion was stable. The sex was confirmed.

【0042】実施例5 SiO2 ゾル(ST−C、日産化学工業(株)製、Si
2 濃度20.5重量%、平均粒径0.01μm)61
g、TiO2 超微粒子(MT−600B、(株)テイカ
製、MT−600B、ルチル型、平均粒径0.05μ
m)87.5g及び水を混合して1000gとし、原料
液とした(即ち、当該原料液のSiO2 及びTiO2
濃度はそれぞれ1.25重量%及び8.75重量%であ
り、SiO 2 ゾルは固形分としてTiO2 の0.14倍
量含有するものである)。
Example 5 SiOTwoSol (ST-C, manufactured by Nissan Chemical Industries, Ltd., Si
OTwo(Concentration 20.5% by weight, average particle diameter 0.01 μm) 61
g, TiOTwoUltrafine particles (MT-600B, Teika Co., Ltd.)
Made, MT-600B, rutile type, average particle size 0.05μ
m) 87.5g and water are mixed to make 1000g,
Liquid (that is, SiO of the raw material liquid)TwoAnd TiOTwoof
The concentrations were 1.25 wt% and 8.75 wt% respectively.
, SiO TwoSol is TiO as solid contentTwo0.14 times
The amount is contained).

【0043】この原料液をホモジナイザー(TK−RO
BOMICS、特殊機化工業(製))を用い、1200
rpmで90分間予備分散したのち、7000rpmで
撹拌しつつ、実施例4と同じ条件で分散処理を行った。
A homogenizer (TK-RO) was added to this raw material liquid.
1200 using BOMICS, Tokushu Kika Kogyo (manufactured)
After preliminary dispersion at 90 rpm for 90 minutes, the dispersion treatment was performed under the same conditions as in Example 4 while stirring at 7,000 rpm.

【0044】得られた分散液(TiO2 の濃度は8.7
5重量%)を水で希釈し、実施例1と同様の方法により
波長域200〜800nmでの光透過率を測定したとこ
ろ、波長320〜400nmにおける最小の透過率が0
%になっていると同時に、410nm及び800nmに
おける透過率の平均値が16%と可視光全域において光
透過率が高い値になっており、超微粒子分散液は可視光
線域における高透明性及び紫外線域における高遮蔽性を
有していることがわかった。
The resulting dispersion (the concentration of TiO 2 was 8.7
5% by weight) was diluted with water, and the light transmittance in the wavelength range of 200 to 800 nm was measured by the same method as in Example 1. The minimum transmittance in the wavelength of 320 to 400 nm was 0.
At the same time, the average value of the transmittances at 410 nm and 800 nm is 16% and the light transmittance is high in the entire visible light range, and the ultrafine particle dispersion liquid has high transparency in the visible light range and ultraviolet rays. It was found to have a high shielding property in the area.

【0045】また得られた分散液を室温で3カ月間静置
した後、同様の方法で透過率を測定したが、透過率に変
化は無く、また超微粒子の顕著な沈降等も認められず、
分散の安定性が確かめられた。
Further, the dispersion thus obtained was allowed to stand at room temperature for 3 months, and then the transmittance was measured by the same method. However, there was no change in the transmittance and no remarkable precipitation of ultrafine particles was observed. ,
The stability of dispersion was confirmed.

【0046】実施例6 SiO2 ゾル(ST−C、日産化学工業(株)製、Si
2 濃度20.5重量%、平均粒径0.01μm)2
1.3g、CeO2 超微粒子(セリガードS−3018
−02、日本無機化学工業(株)製、CeO2 濃度2
4.6重量%、CeO2 平均粒径0.04μm(セリガ
ード平均粒径2μm))3.56g及び水を混合して1
75gとし、原料液とした(即ち、当該原料液のSiO
2 及びCeO2 の濃度はそれぞれ2.5重量%及び0.
5重量%であり、SiO2 ゾルは固形分としてTiO2
の5倍量含有するものである)。
Example 6 SiO 2 sol (ST-C, manufactured by Nissan Chemical Industries, Ltd., Si
O 2 concentration 20.5% by weight, average particle diameter 0.01 μm) 2
1.3 g, CeO 2 ultrafine particles (Seriguard S-3018
-02, manufactured by Japan Inorganic Chemical Industry Co., Ltd., CeO 2 concentration 2
4.6% by weight, 3.56 g of CeO 2 average particle size 0.04 μm (Seriguard average particle size 2 μm) and water were mixed to obtain 1
The raw material liquid was set to 75 g (that is, SiO 2 of the raw material liquid).
The concentrations of 2 and CeO 2 are 2.5% by weight and 0.
5% by weight, and the SiO 2 sol has a solid content of TiO 2
5 times the amount of).

【0047】この原料液を遊星ボールミル(ハイジーB
X254、(株)栗本鐵工所製)を用い、充填量50容
量%、100Gの条件で4時間分散処理を行った。得ら
れた分散液(CeO2 の濃度は0.5重量%)を水で希
釈し、実施例1と同様の方法により波長域200〜80
0nmでの光透過率を測定したところ、波長320〜4
00nmにおける最小の透過率が0%になっていると同
時に、410nm及び800nmにおける透過率の平均
値が12%と可視光全域において光透過率が高い値にな
っており、超微粒子分散液は可視光線域における高透明
性及び紫外線域における高遮蔽性を有していることがわ
かった。
A planetary ball mill (Heidi B
X254, manufactured by Kurimoto Iron Works Co., Ltd., was used for dispersion treatment for 4 hours under the conditions of a filling amount of 50% by volume and 100 G. The obtained dispersion liquid (concentration of CeO 2 is 0.5% by weight) is diluted with water, and the same procedure as in Example 1 is carried out to obtain a wavelength range of 200-80.
When the light transmittance at 0 nm was measured, the wavelength was 320-4.
The minimum transmittance at 00 nm is 0%, and at the same time, the average transmittance at 410 nm and 800 nm is 12%, which is a high light transmittance over the entire visible light range. It was found that it has high transparency in the light region and high shielding property in the ultraviolet region.

【0048】また、得られた分散液を室温で3カ月間静
置した後、同様の方法で透過率を測定したが、透過率に
変化は無く、また超微粒子の顕著な沈降等も認められ
ず、分散の安定性が確かめられた。
Further, the resulting dispersion was allowed to stand at room temperature for 3 months, and then the transmittance was measured by the same method. However, there was no change in the transmittance and remarkable precipitation of ultrafine particles was observed. The stability of dispersion was confirmed.

【0049】比較例1 SiO2 ゾル(日産化学工業(株)製ST−C、SiO
2 濃度20.5重量%、平均粒径0.01μm)122
g、TiO2 超微粒子(石原産業(株)製TTO−51
(A)、ルチル型、平均粒径0.02μm)5g及び水
を混合して1000gとし、原料液とした(即ち、当該
原料液のSiO2 及びTiO2 の濃度はそれぞれ2.5
重量%及び0.5重量%であり、SiO2 ゾルは固形分
としてTiO2 の5倍量含有するものである)。
Comparative Example 1 SiO 2 sol (ST-C, SiO manufactured by Nissan Chemical Industries, Ltd.)
2 Concentration 20.5% by weight, average particle diameter 0.01 μm) 122
g, TiO 2 ultrafine particles (TTO-51 manufactured by Ishihara Sangyo Co., Ltd.)
(A), rutile type, 5 g of average particle size 0.02 μm) and water were mixed to make 1000 g to make a raw material liquid (that is, the concentration of SiO 2 and TiO 2 in the raw material liquid was 2.5, respectively).
Wt% and 0.5 wt%, and the SiO 2 sol contains 5 times the amount of TiO 2 as a solid content).

【0050】この原料液を、高圧分散機(ナノマイザー
LA31、ナノマイザー((株)製)を用いて、圧力1
300kgf/cm2 、パス回数20回の条件で、分散
処理を行った。得られた分散液を水で希釈し、実施例1
と同様の方法により波長域200〜800nmでの光透
過率を測定したところ、波長320〜400nmにおけ
る最小の透過率(320nmにおける値)が0%になっ
ているものの、TiO2 超微粒子が完全に分散していな
い為に、410nm及び800nmにおける透過率の平
均値が4%と、可視光全域において光透過率が低い値に
なっており、可視光線域における高透明性を示さなかっ
た。
This raw material liquid was subjected to a pressure of 1 using a high pressure disperser (Nanomizer LA31, Nanomizer (manufactured by Co.)).
The dispersion treatment was performed under the conditions of 300 kgf / cm 2 and 20 passes. The resulting dispersion was diluted with water and used in Example 1.
When the light transmittance in the wavelength range of 200 to 800 nm was measured by the same method as described above, the minimum transmittance (value at 320 nm) in the wavelength of 320 to 400 nm was 0%, but the TiO 2 ultrafine particles were completely removed. Since it was not dispersed, the average value of the transmittances at 410 nm and 800 nm was 4%, which was a low value in the entire visible light range, and did not show high transparency in the visible light range.

【0051】比較例2 TiO2 超微粒子(石原産業(株)製TTO−51
(A)、ルチル型、平均粒径0.02μm)4.375
g及び水を混合して175gとし、原料液とした(即
ち、当該原料液のTiO2 の濃度は2.5重量%であ
り、SiO2 ゾル及びAl2 3 ゾルを含有していない
ものである)。
Comparative Example 2 TiO 2 ultrafine particles (TTO-51 manufactured by Ishihara Sangyo Co., Ltd.)
(A), rutile type, average particle size 0.02 μm) 4.375
g and water were mixed to make 175 g, which was used as a raw material liquid (that is, the raw material liquid had a TiO 2 concentration of 2.5 wt%, and did not contain SiO 2 sol and Al 2 O 3 sol. is there).

【0052】この原料液を実施例1と同じ条件で、4時
間分散処理を行った。得られた分散液を水で希釈し、実
施例1と同様の方法により波長域200〜800nmで
の光透過率を測定したところ、TiO2 超微粒子が凝集
しているため直ちに沈降してしまい、波長320〜40
0nmにおける最小の透過率が波長320nmの紫外線
領域において光透過率が96%と、紫外線域における高
遮蔽性を示さなかった。
This raw material liquid was dispersed for 4 hours under the same conditions as in Example 1. The obtained dispersion was diluted with water, and the light transmittance in the wavelength range of 200 to 800 nm was measured by the same method as in Example 1. As a result, TiO 2 ultrafine particles were aggregated and immediately precipitated, Wavelength 320-40
The minimum transmittance at 0 nm was 96% in the ultraviolet region with a wavelength of 320 nm, and the high transmittance was not shown in the ultraviolet region.

【0053】比較例3 ZnO超微粒子(FINEX75、堺化学製、平均粒径
0.01μm)4.375g及び水を混合して175g
とし、原料液とした(即ち、当該原料液のTiO2 の濃
度は2.5重量%であり、SiO2 ゾル及びAl2 3
ゾルを含有していないものである)。
Comparative Example 3 ZnO ultrafine particles (FINEX75, manufactured by Sakai Chemical Co., Ltd., average particle diameter 0.01 μm) 4.375 g and water were mixed to obtain 175 g.
To obtain a raw material liquid (that is, the concentration of TiO 2 in the raw material liquid is 2.5% by weight, and SiO 2 sol and Al 2 O 3
It does not contain a sol).

【0054】この原料液を実施例1と同じ条件で、2時
間分散処理を行った。得られた分散液を水で希釈し、実
施例1と同様の方法により波長域200〜800nmで
の光透過率を測定したところ、ZnO超微粒子が凝集し
ているため直ちに沈降してしまい、波長320〜400
nmにおける最小の透過率(320nmにおける値)が
99%と、紫外線域における高遮蔽性を示さなかった。
This raw material liquid was subjected to a dispersion treatment for 2 hours under the same conditions as in Example 1. The obtained dispersion was diluted with water, and the light transmittance in the wavelength range of 200 to 800 nm was measured by the same method as in Example 1. The ZnO ultrafine particles were immediately aggregated because they were aggregated, and the wavelength was measured. 320-400
The minimum transmittance in nm (value at 320 nm) was 99%, which means that the film did not exhibit high shielding properties in the ultraviolet region.

【0055】比較例4 TiO2 超微粒子(石原産業(株)製TTO−51
(A)、ルチル型、平均粒径0.02μm)4.375
g及び水を混合して175gとし、原料液とした(即
ち、当該原料液のTiO2 の濃度は2.5重量%であ
り、SiO2 ゾル及びAl2 3 ゾルを含有していない
ものである)。
Comparative Example 4 TiO 2 ultrafine particles (TTO-51 manufactured by Ishihara Sangyo Co., Ltd.)
(A), rutile type, average particle size 0.02 μm) 4.375
g and water were mixed to make 175 g, which was used as a raw material liquid (that is, the raw material liquid had a TiO 2 concentration of 2.5% by weight and contained neither SiO 2 sol nor Al 2 O 3 sol. is there).

【0056】この原料液に平均粒子径0.31mmのジ
ルコニアビーズ(ミクロハイカZ300、昭和シェル石
油(株)製)780gを加え、その他は実施例1と同じ
条件で、4時間分散処理を行った。なお、ビーズの充填
量はサンドグラインダーの容積の55容量%であった。
780 g of zirconia beads having an average particle diameter of 0.31 mm (Microhaika Z300, manufactured by Showa Shell Sekiyu KK) was added to this raw material liquid, and the dispersion treatment was carried out for 4 hours under the same conditions as in Example 1 except for the above. The amount of beads filled was 55% by volume of the volume of the sand grinder.

【0057】得られた分散液を水で希釈し、実施例1と
同様の方法により波長域200〜800nmでの光透過
率を測定したところ、TiO2 超微粒子が凝集している
ため直ちに沈降してしまい、波長320〜400nmに
おける最小の透過率(320nmにおける値)が97%
と、紫外線域における高遮蔽性を示さなかった。
The obtained dispersion was diluted with water, and the light transmittance in the wavelength range of 200 to 800 nm was measured by the same method as in Example 1. As a result, TiO 2 ultrafine particles were aggregated and immediately precipitated. And the minimum transmittance (value at 320 nm) at wavelengths of 320 to 400 nm is 97%.
And did not show high shielding properties in the ultraviolet range.

【0058】上記の結果から、本発明の方法で得られた
超微粒子分散液は、超微粒子が沈降することなく分散
し、しかも3ケ月後の分散液も超微粒子の沈降がほとん
ど認められず、好適な光学特性を示すものであることが
分かった。一方比較例における超微粒子分散液は、超微
粒子が沈降する等分散性が悪く、しかも所望の光学特性
を示さないものであることが分かった。
From the above results, the ultrafine particle dispersion obtained by the method of the present invention was dispersed without the ultrafine particles settling, and the sedimentation of the ultrafine particles was hardly observed in the dispersion after 3 months. It has been found to exhibit suitable optical characteristics. On the other hand, it was found that the ultrafine particle dispersions in Comparative Examples have poor dispersibility such as precipitation of ultrafine particles and do not exhibit desired optical characteristics.

【0059】[0059]

【発明の効果】本発明の方法によれば、分散性及び分散
安定性の極めて高い超微粒子分散液を得ることが可能で
ある。かかる超微粒子分散液は、可視光線域においては
高い光透過率を示し、紫外線域においては高い遮蔽性を
発現すると同時に、経時的な分散安定性に優れている。
According to the method of the present invention, it is possible to obtain an ultrafine particle dispersion having extremely high dispersibility and dispersion stability. Such an ultrafine particle dispersion has a high light transmittance in the visible light region, exhibits a high shielding property in the ultraviolet region, and is excellent in dispersion stability over time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、実施例1で得られた超微粒子分散液の
紫外可視分光光度計による光透過率の測定結果を示す図
である。
FIG. 1 is a diagram showing the measurement results of light transmittance of an ultrafine particle dispersion obtained in Example 1 by an ultraviolet-visible spectrophotometer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C01F 7/02 C01F 7/02 D C01G 23/053 C01G 23/053 // C09K 3/00 104 C09K 3/00 104Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C01F 7/02 C01F 7/02 D C01G 23/053 C01G 23/053 // C09K 3/00 104 C09K 3/00 104Z

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 SiO2 ゾル、Al2 3 ゾル及びTi
2 ゾルからなる群より選ばれる1種以上のゾルの存在
下、撹拌ミル及び/又はボールミルによりメディアを介
して超微粒子原料を媒質に分散させることを特徴とす
る、超微粒子分散液の製造方法。
1. SiO 2 sol, Al 2 O 3 sol and Ti
A method for producing an ultrafine particle dispersion, which comprises dispersing an ultrafine particle raw material into a medium through a medium with a stirring mill and / or a ball mill in the presence of at least one sol selected from the group consisting of O 2 sols. .
【請求項2】 超微粒子原料がTiO2 、ZnO、Ce
2 、BaTiO3、CaTiO3 、SrTiO3 及び
SiCからなる群より選ばれる1種以上の物質である請
求項1記載の製造方法。
2. Ultrafine particle raw material is TiO 2 , ZnO, Ce
The production method according to claim 1, wherein the material is one or more substances selected from the group consisting of O 2 , BaTiO 3 , CaTiO 3 , SrTiO 3 and SiC.
【請求項3】 超微粒子原料の一次粒子の平均粒径が
0.001〜0.5μmである請求項1又は2記載の製
造方法。
3. The production method according to claim 1, wherein the primary particles of the ultrafine particle raw material have an average particle size of 0.001 to 0.5 μm.
【請求項4】 得られる分散液中での超微粒子の濃度が
0.1〜20重量%である請求項1〜3いずれか記載の
製造方法。
4. The production method according to claim 1, wherein the concentration of ultrafine particles in the obtained dispersion is 0.1 to 20% by weight.
【請求項5】 用いるゾルのゾル中の固形分の量が、超
微粒子100重量部に対して10〜10000重量部で
ある請求項1〜4いずれか記載の製造方法。
5. The method according to claim 1, wherein the amount of solid content in the sol of the sol used is 10 to 10,000 parts by weight with respect to 100 parts by weight of the ultrafine particles.
【請求項6】 メディアの平均粒径が0.001〜1.
0mmである請求項1〜5いずれか記載の製造方法。
6. The average particle size of the media is 0.001-1.
It is 0 mm, The manufacturing method in any one of Claims 1-5.
【請求項7】 メディアの充填量が装置容積の50〜9
5容量%である請求項1〜6いずれか記載の製造方法。
7. The filling amount of media is 50 to 9 of the apparatus volume.
It is 5 volume%, The manufacturing method in any one of Claims 1-6.
【請求項8】 得られる超微粒子分散液を水で粒子濃度
0.5重量%に調整し、光路長1mmの光学セルを用い
て紫外可視分光分析により光透過率を測定した場合、波
長320〜400nmにおける最小の透過率が5%以
下、かつ波長410nm及び800nmにおける透過率
の平均値が10%以上である、請求項1〜7いずれか記
載の製造方法。
8. The ultrafine particle dispersion obtained is adjusted to a particle concentration of 0.5% by weight with water, and the light transmittance is measured by ultraviolet-visible spectroscopic analysis using an optical cell having an optical path length of 1 mm. The manufacturing method according to claim 1, wherein the minimum transmittance at 400 nm is 5% or less, and the average value of the transmittances at wavelengths 410 nm and 800 nm is 10% or more.
JP31727095A 1995-11-10 1995-11-10 Method for producing ultrafine particle dispersion Expired - Fee Related JP3301690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31727095A JP3301690B2 (en) 1995-11-10 1995-11-10 Method for producing ultrafine particle dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31727095A JP3301690B2 (en) 1995-11-10 1995-11-10 Method for producing ultrafine particle dispersion

Publications (2)

Publication Number Publication Date
JPH09132409A true JPH09132409A (en) 1997-05-20
JP3301690B2 JP3301690B2 (en) 2002-07-15

Family

ID=18086371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31727095A Expired - Fee Related JP3301690B2 (en) 1995-11-10 1995-11-10 Method for producing ultrafine particle dispersion

Country Status (1)

Country Link
JP (1) JP3301690B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029662A (en) * 2003-07-10 2005-02-03 Sony Corp Wet dispersion method and dispersion liquid for non-magnetic pigment
JP2008036626A (en) * 2006-07-14 2008-02-21 Toray Ind Inc Method for manufacturing inorganic particle dispersion, paste composition using this manufacturing method and method for manufacturing resin composition
JP2008239460A (en) * 2007-03-29 2008-10-09 Fujifilm Corp Metal oxide particulate dispersion and its production method
JP2008247619A (en) * 2007-03-29 2008-10-16 Fujifilm Corp Aqueous metal oxide fine particle dispersion and method for preparing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029662A (en) * 2003-07-10 2005-02-03 Sony Corp Wet dispersion method and dispersion liquid for non-magnetic pigment
JP2008036626A (en) * 2006-07-14 2008-02-21 Toray Ind Inc Method for manufacturing inorganic particle dispersion, paste composition using this manufacturing method and method for manufacturing resin composition
JP2008239460A (en) * 2007-03-29 2008-10-09 Fujifilm Corp Metal oxide particulate dispersion and its production method
JP2008247619A (en) * 2007-03-29 2008-10-16 Fujifilm Corp Aqueous metal oxide fine particle dispersion and method for preparing the same

Also Published As

Publication number Publication date
JP3301690B2 (en) 2002-07-15

Similar Documents

Publication Publication Date Title
US8668955B2 (en) Single step milling and surface coating process for preparing stable nanodispersions
JP2781433B2 (en) Aqueous dispersion system of titanium dioxide and method for producing the same
JP2852487B2 (en) Titanium dioxide aqueous dispersion
US6077341A (en) Silica-metal oxide particulate composite and method for producing silica agglomerates to be used for the composite
AU2006202179B2 (en) Lower-energy process for preparing passivated inorganic nanoparticles
JP3224750B2 (en) Fine particle titanium dioxide silicone dispersion
JP4018770B2 (en) Fan-shaped titanium oxide, method for producing fan-shaped or plate-shaped titanium oxide, and use thereof
EP2109585B1 (en) Process for the production of suspension of titanium (IV) oxide particles
WO1995016637A1 (en) Ultrafine iron-containing rutile titanium dioxide particle and process for producing the same
JP2013249229A (en) Titanium dioxide coated with silica
Iwasaki et al. Powder design for UV-attenuating agent with high transparency for visible light
JP3020408B2 (en) High concentration titanium dioxide aqueous dispersion
JP5597549B2 (en) Mesoporous zinc oxide powder and method for producing the same
KR20160079083A (en) Silicon-oxide-coated zinc oxide and method for manufacturing same, silicon-oxide-coated zinc-oxide-containing composition, and cosmetic
EP3747965B1 (en) Titanium dioxide aqueous dispersion and method for producing same
JP4063421B2 (en) Silica-metal oxide fine particle composite and method for producing silica aggregate particles used therefor
JP4201880B2 (en) Butterfly-like rutile titanium oxide, method for producing the same, and use thereof
JPH09132409A (en) Production of dispersion of ultrafine particles
WO2016136797A1 (en) Silicon oxide-coated zinc oxide, silicon oxide-coated zinc oxide-containing composition, and cosmetic product
JP2004115342A (en) Acicular titanium dioxide fine particle and method of manufacturing the same
JP4275796B2 (en) Method for producing zinc oxide dispersion
JP2008273759A (en) Zinc oxide and method for producing the same and ultraviolet shielding composition using the same
KR20030038046A (en) Zinc oxide nanoparticle, and aqueous dispersion containing the same
JP5874436B2 (en) Zinc oxide particles and method for producing the same
Li et al. Surface Treatment of Broad-Spectrum Ultraviolet Light Shielding Titania/Zinc Oxide Composites and Their Applications in Sunscreens

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120426

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130426

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees