JP4275796B2 - Method for producing zinc oxide dispersion - Google Patents

Method for producing zinc oxide dispersion Download PDF

Info

Publication number
JP4275796B2
JP4275796B2 JP09485799A JP9485799A JP4275796B2 JP 4275796 B2 JP4275796 B2 JP 4275796B2 JP 09485799 A JP09485799 A JP 09485799A JP 9485799 A JP9485799 A JP 9485799A JP 4275796 B2 JP4275796 B2 JP 4275796B2
Authority
JP
Japan
Prior art keywords
zinc
zinc oxide
methanol
oxide dispersion
propanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09485799A
Other languages
Japanese (ja)
Other versions
JP2000290014A (en
Inventor
和男 田口
良和 宮武
博之 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP09485799A priority Critical patent/JP4275796B2/en
Publication of JP2000290014A publication Critical patent/JP2000290014A/en
Application granted granted Critical
Publication of JP4275796B2 publication Critical patent/JP4275796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、可視光の透明性が高く、しかも紫外線防止効果に優れた酸化亜鉛分散液の製造法に関する。
【0002】
【従来の技術】
酸化亜鉛は、紫外線防止効果を有することから、種々の化粧料に配合されている。このうち、微粒子酸化亜鉛は、機械的粉砕により製造できるほか、ゾル−ゲル法などの湿式法により製造することもできる。湿式法としては、水溶液中で調製した硫酸亜鉛もしくは塩化亜鉛のヒドロゾル中のコロイド粒子を陰イオン界面活性剤で親油的に転換したのち有機溶媒でフラッシングし、次いで当該有機溶媒を乾燥除去して得られる微粒子酸化亜鉛(特公平5−77644号)がある。
【0003】
しかしながら、水溶液中でヒドロゾルを調製して得られる微粒子酸化亜鉛分散液は、酸化亜鉛の凝集により白色であり、化粧料に適用した場合には白っぽく、透明感のない仕上がりになった。また、製造効率も非常に悪かった。
【0004】
【発明が解決しようとする課題】
本発明の目的は、外観が透明な微粒子酸化亜鉛分散液を効率良く製造する方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、微粒子の凝集の原因として水中での酸化亜鉛同士の水素結合に着目し、水素結合性が弱い分散系での微粒子酸化亜鉛の調製を検討した。その結果、亜鉛塩を原料として、メタノール性又はプロパノール性のアルカリ条件下で酸化亜鉛微粒子を調製すれば、透明な一次粒子の分散液を効率良く製造できることを見出した。
【0006】
本発明は、亜鉛塩をメタノール、プロパノール、又はメタノールとエタノールとプロパノールのうちの2種以上の混合溶媒に溶解した溶液と、アルカリ金属の水酸化物をメタノール、プロパノール、又はメタノールとエタノールとプロパノールのうちの2種以上の混合溶媒に溶解した溶液とを混合し、かつ混合する際及び混合後のpHを9未満に調整することを特徴とする酸化亜鉛分散液の製造方法を提供するものである。
【0007】
【発明の実施の形態】
本発明において、酸化亜鉛分散液は、メタノール中、プロパノール中、又はメタノールとエタノールとプロパノールのうち2種以上の混合溶液(以下、単に「混合溶媒」という場合がある)中で調製される。すなわち、亜鉛塩のメタノール、プロパノール又は混合溶媒溶液と、アルカリのメタノール、プロパノール又は混合溶媒溶液とを混合して、酸化亜鉛の分散液を得る。ここで用いられる亜鉛塩としては、例えば塩化亜鉛、硝酸亜鉛、酢酸亜鉛、ステアリン酸亜鉛、オレイン酸亜鉛、サリチル酸亜鉛などが挙げられ、塩化亜鉛、酢酸亜鉛が好ましく、特に塩化亜鉛が製造効率の点から好ましい。アルカリとしては、例えばアルカリ金属の水酸化物、アルカリ金属のメトキシド、アルカリ金属のエトキシドなどが挙げられ、水酸化カリウム、水酸化ナトリウム、ナトリウムメトキシドが好ましい。また、メタノール中、プロパノール中又は混合溶媒中における亜鉛塩及びアルカリの濃度は、それぞれ0.01〜6mol/L程度、特に0.05〜5mol/Lが好ましい。亜鉛塩とアルカリとを混合した分散液中の亜鉛濃度は、0.1mol/Lを超える濃度が好ましく、特に0.2mol/L以上、更に0.3mol/L以上が好ましい。これは亜鉛の濃度が高いほど、酸化亜鉛微粒子の生産性が高く、使用するメタノール、プロパノール又は混合溶媒の量も少なくなるためである。また、亜鉛濃度が高いほど、酸化亜鉛分散液の吸収端波長が例えば330nm以上の長波長側にシフトし、より広範囲の紫外線を遮蔽できる。なお、混合溶媒を用いる場合には、亜鉛塩溶液とアルカリ溶液の溶媒は異なっていても良く、例えば亜鉛塩とアルカリのいずれか一方をメタノール溶液とし、他方をエタノール溶液、プロパノール溶液又は混合溶媒溶液として混合しても良い。
【0008】
亜鉛塩とアルカリとを混合する際の分散液のpHは、9未満に調整され、pHは8.5以下、特に8.2以下が好ましい。pHが9以上では酸化亜鉛が凝集する傾向があるのに対し、pHが9未満では酸化亜鉛が高分散し、所望の透明な一次粒子の分散液が得られる。ここで、分散液のpHとは、常温(20〜40℃)で測定した時、校正されたpH計で表示される値のことを言う。
亜鉛塩:アルカリの当量比は1:0.3〜1:1.1の範囲で混合させることが好ましく、特に1:0.35〜1:0.95、更に1:0.4〜1:0.9が好ましい。上記の範囲では生成する酸化亜鉛が高分散し、所望の分散液が得られる。亜鉛塩とアルカリとを混合する際の温度は特に限定されないが、メタノール等の溶媒の沸点の関係から65℃以下が好ましく、60℃以下が特に好ましい。また、亜鉛塩とアルカリとの混合方法は、連続式、バッチ式いずれも可能である。副生する塩の粒子は、通常の濾過や遠心分離などにより除去することができ、そうすることが酸化亜鉛微粒子の安定性の観点から好ましい。
【0009】
このようにして得られる分散液中の酸化亜鉛微粒子は、およそ粒径1〜20nm、好ましくは1〜10nmの範囲に分布し、平均粒径1〜10nmの範囲のものである。
【0010】
得られた分散液に、更に極性基を有する疎水性化合物を添加することにより、酸化亜鉛微粒子を表面処理し、分散を安定化することができる。ここで用いられる極性基を有する疎水性化合物としては、メタノール、プロパノールもしくは混合溶媒、又はこれらと混合できる溶媒に溶解するものであれば特に限定されず、脂肪酸類、長鎖アルキル硫酸類、長鎖モノアルキルリン酸類、長鎖ジアルキルリン酸類、アシルアミノ酸類、アルキルアミノ酸類、アミド誘導体類、アミン誘導体類、グアニジン誘導体類、アルキルベタイン類等が挙げられる。
これらの極性基を有する疎水性化合物は、酸化亜鉛1重量部に対して0.01〜1重量部、特に0.05〜0.9重量部添加するのが好ましい。
【0011】
このようにして添加された極性基を有する疎水性化合物は、分散液中の酸化亜鉛微粒子に吸着し、疎水性の酸化亜鉛とすることができる。
次いで、必要に応じて分散媒を濃縮することにより、親油性微粒子酸化亜鉛を0.5〜50重量%、好ましくは0.5〜30重量%含有する酸化亜鉛分散液を得ることができる。
【0012】
本発明により得られる酸化亜鉛分散液は、例えば化粧水、乳液、クリーム、化粧油等のスキンケア商品をはじめ、ファンデーション、パウダー、口紅、頬紅、アイシャドー、ネイルエナメル等のメークアップ化粧料などの広範な化粧料に配合できる。
【0013】
【発明の効果】
本発明によれば、メタノール、プロパノール又は混合溶媒を分散媒とすることにより、透明性が高く、しかも紫外線防止効果に優れた酸化亜鉛分散液を効率良く製造することができる。
【0014】
【実施例】
実施例1
塩化亜鉛20.4gをメタノールに溶解させて100mLとした(原料液とした塩化亜鉛の濃度は1.5mol/Lである)。続いて、30±1℃に保持した当該原料液に、水酸化ナトリウム10.8gをメタノールに混合した200mLのアルカリ溶液を滴下し、スラリー300mLを得た(アルカリ溶液の水酸化ナトリウムの濃度は1.35mol/L、塩化亜鉛と水酸化ナトリウムとの当量比は1:0.9、混合後の亜鉛濃度は0.5mol/Lである)。得られたスラリーのpHをpH計(D−12、堀場製作所社製)により測定したところ、8.2であった。更に当該スラリーを遠心分離機(HIMAC SCR20B、日立工機社製)にて1500Gで5分間遠心分離し、無色透明なゾルを得た。この酸化亜鉛分散液の吸収スペクトルを分光光度計(UV・160A,島津製作所社製)により測定したところ、吸収端波長は330nmであった。尚、吸収端波長は、波長に対する吸光度曲線に基づき、曲線の変曲点における接線と波長軸との交点にて求めた。
【0015】
実施例2
塩化亜鉛16.4gをメタノール/エタノール混合溶液(混合割合1:1)に溶解させて100mLとした(原料液とした塩化亜鉛の濃度は1.2mol/Lである)。続いて、30±1℃に保持した当該原料液に、水酸化ナトリウム8.2gをメタノール/エタノール混合溶液に混合した200mLのアルカリ溶液を滴下し、スラリー300mLを得た(アルカリ溶液の水酸化ナトリウムの濃度は1.0mol/L、塩化亜鉛と水酸化ナトリウムとの当量比は1:0.85、混合後の亜鉛濃度は0.4mol/Lである)。得られたスラリーのpHを実施例1と同様に測定したところ、8.1であった。更に当該スラリーを実施例1と同様に遠心分離し、無色透明なゾルを得た。この酸化亜鉛分散液の吸収スペクトルを実施例1と同様に測定したところ、吸収端波長324nmであった。
【0016】
実施例3
塩化亜鉛16.4gをメタノールに溶解させて100mLとした(原料液とした塩化亜鉛の濃度は1.2mol/Lである)。続いて、30±1℃に保持した当該原料液に、水酸化ナトリウム8.2gをエタノールに混合した200mLのアルカリ溶液を滴下し、スラリー300mLを得た(アルカリ溶液の水酸化ナトリウムの濃度は1.0mol/L、塩化亜鉛と水酸化ナトリウムとの当量比は1:0.85、混合後の亜鉛濃度は0.4mol/Lである)。得られたスラリーのpHを実施例1と同様に測定したところ、7.8であった。更に当該スラリーを実施例1と同様に遠心分離し、無色透明なゾルを得た。この酸化亜鉛分散液の吸収スペクトルを実施例1と同様に測定したところ、吸収端波長324nmであった。
【0017】
実施例4
塩化亜鉛6.1gを2−プロパノールに溶解させて100mLとした(原料液とした塩化亜鉛の濃度は0.5mol/Lである)。続いて、30±1℃に保持した当該原料液に、水酸化ナトリウム2.5gを2−プロパノールに混合した200mLのアルカリ溶液を滴下し、スラリー300mLを得た(アルカリ溶液の水酸化ナトリウムの濃度は0.3mol/L、塩化亜鉛と水酸化ナトリウムとの当量比は1:0.7、混合後の亜鉛濃度は0.15mol/Lである)。得られたスラリーのpHを実施例1と同様に測定したところ、7.0であった。更に当該スラリーを実施例1と同様に遠心分離し、無色透明なゾルを得た。この酸化亜鉛分散液の吸収スペクトルを実施例1と同様に測定したところ、吸収端波長320nmであった。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a zinc oxide dispersion having a high visible light transparency and an excellent effect of preventing ultraviolet rays.
[0002]
[Prior art]
Zinc oxide is blended in various cosmetics because it has an effect of preventing ultraviolet rays. Among these, the fine particle zinc oxide can be produced by mechanical pulverization or can be produced by a wet method such as a sol-gel method. As a wet method, colloidal particles in a hydrosol of zinc sulfate or zinc chloride prepared in an aqueous solution are lipophilically converted with an anionic surfactant, then flushed with an organic solvent, and then the organic solvent is dried and removed. There is obtained fine zinc oxide (Japanese Patent Publication No. 5-77644).
[0003]
However, the fine particle zinc oxide dispersion obtained by preparing a hydrosol in an aqueous solution is white due to aggregation of zinc oxide, and when applied to a cosmetic, it is whitish and has a transparent finish. Also, the production efficiency was very bad.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for efficiently producing a fine particle zinc oxide dispersion having a transparent appearance.
[0005]
[Means for Solving the Problems]
The inventors focused on hydrogen bonding between zinc oxides in water as a cause of the aggregation of the fine particles, and studied the preparation of fine particle zinc oxide in a dispersion system having weak hydrogen bonding properties. As a result, it has been found that if zinc oxide fine particles are prepared using a zinc salt as a raw material under methanolic or propanolic alkaline conditions, a transparent primary particle dispersion can be efficiently produced.
[0006]
In the present invention, a solution in which a zinc salt is dissolved in methanol, propanol, or a mixed solvent of two or more of methanol, ethanol, and propanol, and an alkali metal hydroxide are methanol, propanol, or methanol, ethanol, and propanol. Provided is a method for producing a zinc oxide dispersion characterized by mixing a solution dissolved in two or more of these mixed solvents, and adjusting the pH after mixing and after mixing to less than 9. .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the zinc oxide dispersion is prepared in methanol, propanol, or a mixed solution of two or more of methanol, ethanol and propanol (hereinafter sometimes simply referred to as “mixed solvent”). That is, a zinc oxide dispersion is obtained by mixing a methanol, propanol or mixed solvent solution of a zinc salt with an alkaline methanol, propanol or mixed solvent solution. Examples of the zinc salt used here include zinc chloride, zinc nitrate, zinc acetate, zinc stearate, zinc oleate, and zinc salicylate. Zinc chloride and zinc acetate are preferred, and zinc chloride is particularly effective in terms of production efficiency. To preferred. Examples of the alkali include alkali metal hydroxides, alkali metal methoxides, alkali metal ethoxides, and potassium hydroxide, sodium hydroxide, and sodium methoxide are preferable. The concentrations of zinc salt and alkali in methanol, propanol or mixed solvent are each preferably about 0.01 to 6 mol / L, particularly preferably 0.05 to 5 mol / L. The zinc concentration in the dispersion obtained by mixing a zinc salt and an alkali is preferably more than 0.1 mol / L, particularly preferably 0.2 mol / L or more, and more preferably 0.3 mol / L or more. This is because the higher the zinc concentration, the higher the productivity of the zinc oxide fine particles and the smaller the amount of methanol, propanol or mixed solvent used. Further, as the zinc concentration is higher, the absorption edge wavelength of the zinc oxide dispersion is shifted to a longer wavelength side of, for example, 330 nm or more, and a wider range of ultraviolet rays can be shielded. When a mixed solvent is used, the solvent of the zinc salt solution and the alkali solution may be different. For example, one of the zinc salt and the alkali is a methanol solution, and the other is an ethanol solution, a propanol solution, or a mixed solvent solution. May be mixed.
[0008]
The pH of the dispersion when mixing the zinc salt and the alkali is adjusted to less than 9, and the pH is preferably 8.5 or less, particularly preferably 8.2 or less. When the pH is 9 or more, zinc oxide tends to aggregate, whereas when the pH is less than 9, zinc oxide is highly dispersed, and a desired transparent primary particle dispersion can be obtained. Here, the pH of the dispersion means a value displayed on a calibrated pH meter when measured at room temperature (20 to 40 ° C.).
The equivalent ratio of zinc salt: alkali is preferably mixed in the range of 1: 0.3 to 1: 1.1, particularly 1: 0.35 to 1: 0.95, more preferably 1: 0.4 to 1: 0.9 is preferred. In the above range, the generated zinc oxide is highly dispersed, and a desired dispersion is obtained. Although the temperature at the time of mixing a zinc salt and an alkali is not specifically limited, 65 degrees C or less is preferable from the relationship of the boiling points of solvents, such as methanol, and 60 degrees C or less is especially preferable. Further, the mixing method of the zinc salt and the alkali can be either a continuous type or a batch type. By-product salt particles can be removed by ordinary filtration, centrifugation, or the like, which is preferable from the viewpoint of the stability of the zinc oxide fine particles.
[0009]
The zinc oxide fine particles in the dispersion thus obtained have a particle size of approximately 1 to 20 nm, preferably 1 to 10 nm, and an average particle size of 1 to 10 nm.
[0010]
By further adding a hydrophobic compound having a polar group to the obtained dispersion, it is possible to surface-treat the zinc oxide fine particles and stabilize the dispersion. The hydrophobic compound having a polar group used here is not particularly limited as long as it is soluble in methanol, propanol or a mixed solvent, or a solvent that can be mixed with these, fatty acids, long-chain alkyl sulfates, long-chains. Examples thereof include monoalkyl phosphates, long-chain dialkyl phosphates, acyl amino acids, alkyl amino acids, amide derivatives, amine derivatives, guanidine derivatives, alkyl betaines and the like.
The hydrophobic compound having these polar groups is preferably added in an amount of 0.01 to 1 part by weight, particularly 0.05 to 0.9 part by weight, based on 1 part by weight of zinc oxide.
[0011]
The thus added hydrophobic compound having a polar group can be adsorbed on the zinc oxide fine particles in the dispersion to form hydrophobic zinc oxide.
Subsequently, the dispersion medium is concentrated as necessary to obtain a zinc oxide dispersion containing 0.5 to 50% by weight, preferably 0.5 to 30% by weight of lipophilic fine particle zinc oxide.
[0012]
Zinc oxide dispersions obtained by the present invention are widely used in skin care products such as lotions, emulsions, creams and cosmetic oils, as well as makeup cosmetics such as foundations, powders, lipsticks, blushers, eye shadows and nail enamels. Can be blended into various cosmetics.
[0013]
【The invention's effect】
According to the present invention, by using methanol, propanol, or a mixed solvent as a dispersion medium, it is possible to efficiently produce a zinc oxide dispersion liquid that is highly transparent and excellent in the effect of preventing ultraviolet rays.
[0014]
【Example】
Example 1
20.4 g of zinc chloride was dissolved in methanol to make 100 mL (the concentration of zinc chloride used as a raw material solution was 1.5 mol / L). Subsequently, 200 mL of an alkaline solution in which 10.8 g of sodium hydroxide was mixed with methanol was dropped into the raw material liquid maintained at 30 ± 1 ° C. to obtain 300 mL of a slurry (the concentration of sodium hydroxide in the alkaline solution was 1). .35 mol / L, the equivalent ratio of zinc chloride to sodium hydroxide is 1: 0.9, and the zinc concentration after mixing is 0.5 mol / L). It was 8.2 when pH of the obtained slurry was measured with a pH meter (D-12, manufactured by Horiba Ltd.). Further, the slurry was centrifuged at 1500 G for 5 minutes with a centrifuge (HIMAC SCR20B, manufactured by Hitachi Koki Co., Ltd.) to obtain a colorless and transparent sol. When the absorption spectrum of this zinc oxide dispersion was measured with a spectrophotometer (UV 160A, manufactured by Shimadzu Corporation), the absorption edge wavelength was 330 nm. The absorption edge wavelength was determined at the intersection of the tangent and the wavelength axis at the inflection point of the curve based on the absorbance curve with respect to the wavelength.
[0015]
Example 2
16.4 g of zinc chloride was dissolved in a methanol / ethanol mixed solution (mixing ratio 1: 1) to make 100 mL (the concentration of zinc chloride used as a raw material solution is 1.2 mol / L). Subsequently, 200 mL of an alkaline solution in which 8.2 g of sodium hydroxide was mixed with a methanol / ethanol mixed solution was dropped into the raw material liquid maintained at 30 ± 1 ° C. to obtain 300 mL of a slurry (sodium hydroxide in an alkaline solution). Is 1.0 mol / L, the equivalent ratio of zinc chloride to sodium hydroxide is 1: 0.85, and the zinc concentration after mixing is 0.4 mol / L). The pH of the obtained slurry was measured in the same manner as in Example 1. As a result, it was 8.1. Further, the slurry was centrifuged in the same manner as in Example 1 to obtain a colorless and transparent sol. When the absorption spectrum of this zinc oxide dispersion was measured in the same manner as in Example 1, the absorption edge wavelength was 324 nm.
[0016]
Example 3
16.4 g of zinc chloride was dissolved in methanol to make 100 mL (the concentration of zinc chloride used as a raw material solution was 1.2 mol / L). Subsequently, 200 mL of an alkaline solution in which 8.2 g of sodium hydroxide was mixed with ethanol was added dropwise to the raw material liquid maintained at 30 ± 1 ° C. to obtain 300 mL of a slurry (the concentration of sodium hydroxide in the alkaline solution was 1). 0.0 mol / L, the equivalent ratio of zinc chloride to sodium hydroxide is 1: 0.85, and the zinc concentration after mixing is 0.4 mol / L). The pH of the obtained slurry was measured in the same manner as in Example 1. As a result, it was 7.8. Further, the slurry was centrifuged in the same manner as in Example 1 to obtain a colorless and transparent sol. When the absorption spectrum of this zinc oxide dispersion was measured in the same manner as in Example 1, the absorption edge wavelength was 324 nm.
[0017]
Example 4
6.1 g of zinc chloride was dissolved in 2-propanol to make 100 mL (the concentration of zinc chloride used as a raw material solution was 0.5 mol / L). Subsequently, 200 mL of an alkaline solution in which 2.5 g of sodium hydroxide was mixed with 2-propanol was added dropwise to the raw material liquid maintained at 30 ± 1 ° C. to obtain 300 mL of a slurry (concentration of sodium hydroxide in the alkaline solution). Is 0.3 mol / L, the equivalent ratio of zinc chloride to sodium hydroxide is 1: 0.7, and the zinc concentration after mixing is 0.15 mol / L). The pH of the obtained slurry was measured in the same manner as in Example 1. As a result, it was 7.0. Further, the slurry was centrifuged in the same manner as in Example 1 to obtain a colorless and transparent sol. When the absorption spectrum of this zinc oxide dispersion was measured in the same manner as in Example 1, the absorption edge wavelength was 320 nm.

Claims (5)

亜鉛塩をメタノール、プロパノール、又はメタノールとエタノールとプロパノールのうちの2種以上の混合溶媒に溶解した溶液と、アルカリ金属の水酸化物をメタノール、プロパノール、又はメタノールとエタノールとプロパノールのうちの2種以上の混合溶媒に溶解した溶液とを混合し、かつ混合する際及び混合後のpHを9未満に調整することを特徴とする酸化亜鉛分散液の製造方法。A solution in which a zinc salt is dissolved in methanol, propanol, or a mixed solvent of two or more of methanol, ethanol, and propanol, and an alkali metal hydroxide, methanol, propanol, or two of methanol, ethanol, and propanol A method for producing a zinc oxide dispersion , comprising mixing a solution dissolved in the above mixed solvent, and adjusting the pH after mixing and after mixing to less than 9. 亜鉛濃度が0.1 mol /Lを超え0.5 mol /L以下である、請求項1記載の酸化亜鉛分散液の製造方法 The method for producing a zinc oxide dispersion according to claim 1, wherein the zinc concentration is more than 0.1 mol / L and not more than 0.5 mol / L. 亜鉛塩が塩化亜鉛である請求項1又は2記載の酸化亜鉛分散液の製造方法 The method for producing a zinc oxide dispersion according to claim 1 or 2, wherein the zinc salt is zinc chloride . アルカリ金属の水酸化物が水酸化ナトリウムである、請求項1〜3のいずれか1項記載の酸化亜鉛分散液の製造方法 The method for producing a zinc oxide dispersion according to any one of claims 1 to 3, wherein the alkali metal hydroxide is sodium hydroxide . 混合中及び混合後の pH を9未満に調整した後、副生する塩の粒子を除去する、請求項1〜4のいずれか1項記載の酸化亜鉛分散液の製造方法 The method for producing a zinc oxide dispersion according to any one of claims 1 to 4, wherein the salt particles produced as a by-product are removed after adjusting the pH to less than 9 during and after mixing .
JP09485799A 1999-04-01 1999-04-01 Method for producing zinc oxide dispersion Expired - Fee Related JP4275796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09485799A JP4275796B2 (en) 1999-04-01 1999-04-01 Method for producing zinc oxide dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09485799A JP4275796B2 (en) 1999-04-01 1999-04-01 Method for producing zinc oxide dispersion

Publications (2)

Publication Number Publication Date
JP2000290014A JP2000290014A (en) 2000-10-17
JP4275796B2 true JP4275796B2 (en) 2009-06-10

Family

ID=14121715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09485799A Expired - Fee Related JP4275796B2 (en) 1999-04-01 1999-04-01 Method for producing zinc oxide dispersion

Country Status (1)

Country Link
JP (1) JP4275796B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10324305A1 (en) * 2003-05-30 2004-12-16 Bayer Ag Process for the production of spherical zinc oxide particles
DE102004003675A1 (en) * 2004-01-24 2005-08-11 Degussa Ag Dispersion and coating preparation containing nanoscale zinc oxide
CN101460403B (en) * 2006-05-23 2011-06-15 橡胶纳米产品(私有)有限公司 Non-polar capped nano transition metal oxides and sulfides
CN101965315A (en) * 2008-03-10 2011-02-02 塔塔化学有限公司 Process for the preparation of nano zinc oxide particles
JP2010132545A (en) * 2008-12-05 2010-06-17 Korea Electronics Telecommun Method for forming metal oxide and method for forming transistor structure containing the same

Also Published As

Publication number Publication date
JP2000290014A (en) 2000-10-17

Similar Documents

Publication Publication Date Title
JP2781433B2 (en) Aqueous dispersion system of titanium dioxide and method for producing the same
JP2852487B2 (en) Titanium dioxide aqueous dispersion
JP3224750B2 (en) Fine particle titanium dioxide silicone dispersion
KR100831820B1 (en) Metal oxide/silica composite and cosmetic comprising the same
JPH0661457B2 (en) Oil dispersion and method for producing the same
JP2005529939A (en) High concentration aqueous dispersion containing hydrophilic metal oxide fine particles and dispersion aid
JP3330610B2 (en) Photochromic composite oxide and cosmetic containing the photochromic composite oxide
KR20050111621A (en) Porous titanium oxide powder and method for production thereof
WO1995016637A1 (en) Ultrafine iron-containing rutile titanium dioxide particle and process for producing the same
JP4890251B2 (en) Metal oxide dispersion method
JPH0614194B2 (en) Electrostatic developing powder containing color pigment
US8168157B2 (en) Production method of fine particle zinc oxide powder and cosmetics containing the same
JP3020408B2 (en) High concentration titanium dioxide aqueous dispersion
KR20090064550A (en) Porous titanium oxide and method for producing the same
JP4275796B2 (en) Method for producing zinc oxide dispersion
JP2009501754A (en) Dispensing containing barium sulfate
JPS62198608A (en) Cosmetic
JP2577465B2 (en) Method for producing titanium oxide / iron oxide composite sol and cosmetic containing the sol
JP2003192349A (en) Close-cropped titanium oxide powder and its production method
JP3559180B2 (en) Zinc oxide dispersion
JP2001130912A (en) Porous titanium oxide, method for producing the same, and cosmetic containing the same
JP5010183B2 (en) Method for producing disintegrating zinc oxide powder
JP3115760B2 (en) Iron-containing ultrafine titanium dioxide dispersion
CN111110575B (en) Preparation method of physical sun-screening agent for cosmetics
JP2567861B2 (en) Cosmetics and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees