JPH09131509A - Humidity controller and humidity controlling device - Google Patents

Humidity controller and humidity controlling device

Info

Publication number
JPH09131509A
JPH09131509A JP7291222A JP29122295A JPH09131509A JP H09131509 A JPH09131509 A JP H09131509A JP 7291222 A JP7291222 A JP 7291222A JP 29122295 A JP29122295 A JP 29122295A JP H09131509 A JPH09131509 A JP H09131509A
Authority
JP
Japan
Prior art keywords
humidity
anode
cathode
humidity controller
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7291222A
Other languages
Japanese (ja)
Inventor
Shiro Yamauchi
四郎 山内
Noriaki Mitsuta
憲明 光田
Takeaki Hanada
武明 花田
Hiroshi Baba
弘士 馬場
Hideo Maeda
秀雄 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7291222A priority Critical patent/JPH09131509A/en
Publication of JPH09131509A publication Critical patent/JPH09131509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve dehumidifying efficiency by uniformalizing the distribution of current passing through a hydrogen ion conductive solid high molecular electrolyte membrane. SOLUTION: The hydrogen ion conductive solid high molecular electrolyte membrane 15 is held between an anode 20 and a cathode 21, power feeding bodies 22, 23 are arranged to surround the outer periphery of the anode 20 and the cathode 21, and are joined with the anode 20 and the cathode 21 by welding or soldering. As a result, since the current distribution in the solid high molecular weight electrolyte membrane is uniformalized and the reaction occurs on the whole surface of the anode 20 and the cathode 21, humidity controllability is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、水素イオン導電
性の固体高分子電解質膜を用いた湿度調整器及び湿度調
整装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a humidity controller and a humidity controller using a hydrogen ion conductive solid polymer electrolyte membrane.

【0002】[0002]

【従来の技術】図5は、例えば特開昭61−21671
4号公報に記載された従来の湿度調整器の構成図であ
る。図5において、水素イオン導電性の固体高分子電解
質膜からなる陽イオン交換膜1の各面にそれぞれ陰極2
をホットプレス法によって接合し、陽極3を無電解めっ
き法によって接合することにより、電気化学セルを構成
している。なお、水素イオン導電性の固体高分子電解質
膜としては、例えばデュポン(Du Pont)社製の
ナフィオン117(NAFION:登録商標)が用いら
れている。陰極2の背面には陰極集電体4を配設し、陽
極3の背面には陽極集電体5を配設している。さらに、
陰極集電体4の背面には陰極端子板6を配設し、陽極集
電体5の背面には陽極端子板7を配設している。そし
て、各構成要素1〜7は枠体8によって固定している。
2. Description of the Related Art FIG. 5 shows, for example, JP-A-61-21671.
It is a block diagram of the conventional humidity regulator described in the 4th publication. In FIG. 5, a cathode 2 is provided on each surface of a cation exchange membrane 1 composed of a hydrogen ion conductive solid polymer electrolyte membrane.
Are joined by a hot pressing method, and the anode 3 is joined by an electroless plating method to form an electrochemical cell. As the hydrogen ion conductive solid polymer electrolyte membrane, for example, Nafion 117 (NAFION: registered trademark) manufactured by Du Pont is used. A cathode current collector 4 is provided on the back surface of the cathode 2, and an anode current collector 5 is provided on the back surface of the anode 3. further,
A cathode terminal plate 6 is provided on the back surface of the cathode current collector 4, and an anode terminal plate 7 is provided on the back surface of the anode current collector 5. The components 1 to 7 are fixed by the frame 8.

【0003】ポンプ9で除湿の対象となる空気を陰極集
電体4の間隙部に形成された陰極室10及び陽極集電体
5の間隙部に形成された陽極室11に供給することによ
って、両室10、11に供給された空気中の水蒸気が陽
イオン交換膜1に吸収される。この状態で、両端子板
6、7間に1.4Vの直流電圧を印加すると、陰極2で
酸素の電解還元反応が起こり、陽極3で酸素の発生反応
が起こるとともに、陰極2の背面から水が漏出してく
る。漏出した水を水溜め12に貯留し、陰極2で脱酸素
された残余ガスが排出口13から空気中に放出される。
また、陽極3から発生する酸素は、余剰空気とともに排
出口14から空気中に放出される。
By supplying air to be dehumidified by the pump 9 to the cathode chamber 10 formed in the gap of the cathode current collector 4 and the anode chamber 11 formed in the gap of the anode current collector 5, Water vapor in the air supplied to both chambers 10 and 11 is absorbed by the cation exchange membrane 1. When a DC voltage of 1.4 V is applied between both terminal plates 6 and 7 in this state, an electrolytic reduction reaction of oxygen occurs at the cathode 2, an oxygen generation reaction occurs at the anode 3, and water is discharged from the back surface of the cathode 2. Leaks out. The leaked water is stored in the water reservoir 12, and the residual gas deoxidized by the cathode 2 is released from the exhaust port 13 into the air.
Further, the oxygen generated from the anode 3 is released into the air from the exhaust port 14 together with the surplus air.

【0004】次に陽イオン交換膜1と両極2、3とを接
合した電気化学セルの動作原理について説明する。図7
において、両極2、3間に直流電源(図示せず)から電
圧1.4Vを印加すると、陽極3では水が分解されて式
(1)の反応により陽極室11内の湿度が低下する。 2H2O→O2+4H++4e- ・・・・・(1) このとき、陽極3に発生した水素イオン(H+)は陽イ
オン交換膜1を通って陰極2に達する。また、電子(e
-)は直流電源(図示せず)の回路を通って陰極2に達
する。そして、陰極2では式(2)により酸素を消費し
て水を発生し、一部の水素イオンは式(3)の反応によ
り水素を発生する。 O2+4H++4e-→2H2O ・・・・・(2) 2H++2e-→H2 ・・・・・(3) さらに、水素イオン(H+)とともに平均3分子程度の
水が陽極3から陰極2へ移動する。したがって、陰極2
では式(2)の反応により陽極室11内の水蒸気から水
を生成するとともに、陽極3から陰極2へ水が移動する
ので、陽極室11内の湿度が低下する。
Next, the principle of operation of the electrochemical cell in which the cation exchange membrane 1 and the electrodes 2 and 3 are joined will be described. FIG.
When a voltage of 1.4 V is applied between the both electrodes 2 and 3 from a DC power source (not shown), water is decomposed in the anode 3 and the humidity in the anode chamber 11 is lowered by the reaction of the formula (1). 2H 2 O → O 2 + 4H + + 4e - ····· (1) At this time, the hydrogen ions generated in the anode 3 (H +) reach the cathode 2 through the cation exchange membrane 1. In addition, electronic (e
- ) Reaches the cathode 2 through the circuit of the DC power supply (not shown). Then, in the cathode 2, oxygen is consumed by the formula (2) to generate water, and some hydrogen ions generate hydrogen by the reaction of the formula (3). O 2 + 4H + + 4e → 2H 2 O (2) 2H + + 2e → H 2 (3) Further, together with hydrogen ions (H + ), about 3 molecules of water are used as an anode. 3 to cathode 2. Therefore, the cathode 2
Then, since water is generated from the water vapor in the anode chamber 11 by the reaction of the equation (2) and the water moves from the anode 3 to the cathode 2, the humidity in the anode chamber 11 decreases.

【0005】[0005]

【発明が解決しようとする課題】従来の湿度調整器は以
上のように、各極2、3と各端子板6、7との間を各集
電体4、5がそれぞれ当接して電気的な接続がなされて
いるので、温度変化による相互間の熱膨張率の差により
電気的な接触の安定性が低下して、陽イオン交換膜1内
を流れる電流分布に偏りを生じるため、除湿効率が低下
するという問題点があった。
As described above, in the conventional humidity controller, the current collectors 4 and 5 are brought into contact with each other between the poles 2 and 3 and the terminal plates 6 and 7, respectively, so that the electrical condition can be improved. Since the various connections are made, the stability of electrical contact is reduced due to the difference in the coefficient of thermal expansion between them due to temperature changes, and the current distribution flowing in the cation exchange membrane 1 is biased. However, there was a problem that

【0006】また、陽イオン交換膜1と両極2、3とを
接合した平面状の電気化学セルが一組で構成されている
ので、除湿の対象となる空気の流れの方向により除湿効
率が変わるという問題点があった。
Further, since a pair of flat electrochemical cells in which the cation exchange membrane 1 and the electrodes 2 and 3 are joined are constituted, the dehumidification efficiency changes depending on the direction of the air flow to be dehumidified. There was a problem.

【0007】[0007]

【課題を解決するための手段】請求項1の発明に係る湿
度調整器は、水素イオン導電性の固体高分子電解質膜を
陽極と陰極とで挟持し、各極にそれぞれ給電体を接合し
て電気化学的な湿度調整素子を構成し、各給電体間に直
流電源を接続して、陽極側で除湿し陰極側で加湿を行う
湿度調整器において、各極の外周を囲むように各給電体
をそれぞれ配置し、各給電体と各極とを接合したもので
ある。
According to a first aspect of the present invention, there is provided a humidity controller in which a hydrogen ion conductive solid polymer electrolyte membrane is sandwiched between an anode and a cathode, and a power feeding member is connected to each electrode. In a humidity controller that constitutes an electrochemical humidity adjustment element, connects a DC power supply between each power supply, dehumidifies on the anode side and humidifies on the cathode side, each power supply surrounds the outer circumference of each pole. Are arranged respectively, and each power feeding body and each pole are joined.

【0008】請求項2の発明に係る湿度調整器は、水素
イオン導電性の固体高分子電解質膜を陽極と陰極とで挟
持し、各極にそれぞれ給電体を接合して電気化学的な湿
度調整素子を構成し、各給電体間に直流電源を接続し
て、陽極側で除湿し陰極側で加湿を行う湿度調整器にお
いて、給電体を格子状に形成し、格子の各枠内に湿度調
整素子をそれぞれ配置し、各給電体と各極とを接合した
ものである。
In the humidity controller according to the second aspect of the present invention, a solid polymer electrolyte membrane having hydrogen ion conductivity is sandwiched between an anode and a cathode, and a power supply member is connected to each electrode to adjust the electrochemical humidity. In a humidity controller that configures an element and connects a DC power supply between each power supply, dehumidifies on the anode side and humidifies on the cathode side, the power supply is formed in a grid shape and humidity is adjusted in each frame of the grid. The elements are respectively arranged and each power feeding body and each pole are joined.

【0009】請求項3の発明に係る湿度調整器は、請求
項1に記載の湿度調整器において、陽極及び陰極を、水
蒸気が通過可能な複数の孔を有する金属箔に白金めっき
して固体高分子電解質膜に接合した多孔部材と、この多
孔部材の表面に形成した固体高分子電解質と白金粉末と
を混合した触媒層とで構成したものである。
A humidity controller according to a third aspect of the present invention is the humidity controller according to the first aspect, wherein the anode and the cathode are platinum-plated on a metal foil having a plurality of holes through which water vapor can pass. It is composed of a porous member bonded to a molecular electrolyte membrane and a catalyst layer formed by mixing the solid polymer electrolyte and platinum powder formed on the surface of the porous member.

【0010】請求項4の発明に係る湿度調整器は、請求
項3に記載の湿度調整器において、金属箔をニッケル箔
としたものである。
A humidity adjuster according to a fourth aspect of the present invention is the humidity adjuster according to the third aspect, wherein the metal foil is a nickel foil.

【0011】請求項5の発明に係る湿度調整器は、請求
項3又は請求項4に記載の湿度調整器において、多孔部
材と給電体とを溶接により接合したものである。
A humidity controller according to a fifth aspect of the present invention is the humidity controller according to the third or fourth aspect, in which the porous member and the power feeder are joined by welding.

【0012】請求項6の発明に係る湿度調整器は、請求
項3又は請求項4に記載の湿度調整器において、多孔部
材と給電体とをハンダ付により接合したものである。
A humidity controller according to a sixth aspect of the present invention is the humidity controller according to the third or fourth aspect, in which the porous member and the power feeder are joined by soldering.

【0013】請求項7の発明に係る湿度調整装置は、請
求項1〜請求項6に記載の湿度調整器を多面体の少なく
とも一面が開口するように他の各面に配置したものであ
る。
According to a seventh aspect of the present invention, there is provided a humidity control device in which the humidity control device according to the first to sixth aspects is arranged on each of the other faces so that at least one face of the polyhedron is open.

【0014】請求項8の発明に係る湿度調整装置は、請
求項7に記載の湿度調整装置において、多面体を六面体
としたものである。
According to an eighth aspect of the present invention, there is provided a humidity adjusting device according to the seventh aspect, wherein the polyhedron is a hexahedron.

【0015】[0015]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.図1は実施の形態1の構成を示す説明図
である。図1において、15は水素イオン導電性の固体
高分子電解質膜で、例えばデュポン(Du Pont)
社製のナフィオン117(NAFION:登録商標)を
使用している。16、17は厚みが50μm〜60μm
のニッケル箔又はチタン箔に水蒸気が通過可能な複数の
孔16a、17aを有する多孔部材で、無電解めっき法
(例えば、特開昭57−134586号)などの公知技
術により触媒としての白金めっきを施し、それぞれ固体
高分子電解質膜15の各面にホットプレス(例えば、1
50℃、1分間、20Kg/cm2)で加圧・加温接合
している。この場合、固体高分子電解質膜15の各面に
多孔部材18、19をホットプレスで加圧・加温接合す
るので、接合後に固体高分子電解質膜15が多孔部材1
6、17の孔16a、17aからわずかではあるが突出
する。18、19は多孔部材16、17の表面に形成し
た触媒層で、水素イオン導電性の固体高分子電解質を含
んだ溶液に白金粉末を混合して、多孔部材16、17の
表面に塗布したものである。なお、16及び18で陽極
20を、17及び19で陰極21を構成している。2
2、23は銅材にニッケルめっきした格子状の給電体
で、各極20、21とそれぞれろう付け(例えば、94
0℃の真空炉内)により接合している。なお、15、2
0〜23で湿度調整素子24を構成している。25は湿
度調整素子10の外周を固定したフレームで、多孔部材
16、17とほぼ同じ熱膨張率の樹脂(例えば、液晶ポ
リマー)を使用している。26、27はそれぞれ陽極2
0及び陰極21から導出した端子、28は各端子26、
27間に接続した直流電源である。
Embodiment 1 FIG. FIG. 1 is an explanatory diagram showing the configuration of the first embodiment. In FIG. 1, reference numeral 15 is a hydrogen ion conductive solid polymer electrolyte membrane, for example, Du Pont.
Nafion 117 (NAFION: registered trademark) manufactured by the company is used. The thickness of 16 and 17 is 50 μm to 60 μm
The nickel foil or titanium foil having a plurality of holes 16a, 17a through which water vapor can pass, and platinum plating as a catalyst is formed by a known technique such as an electroless plating method (for example, JP-A-57-134586). Hot pressing (eg, 1) on each surface of the solid polymer electrolyte membrane 15 respectively.
Bonding is performed under pressure and temperature at 50 ° C. for 1 minute at 20 Kg / cm 2 . In this case, since the porous members 18 and 19 are bonded to each surface of the solid polymer electrolyte membrane 15 by hot pressing and heating, the solid polymer electrolyte membrane 15 is bonded to the porous member 1 after bonding.
The holes 16a and 17a of the holes 6a and 17 protrude slightly, respectively. Reference numerals 18 and 19 denote catalyst layers formed on the surfaces of the porous members 16 and 17, which are obtained by mixing platinum powder with a solution containing a hydrogen ion conductive solid polymer electrolyte and coating the surfaces of the porous members 16 and 17. Is. It should be noted that 16 and 18 form an anode 20, and 17 and 19 form a cathode 21. 2
Reference numerals 2 and 23 are grid-shaped power supply members made of nickel plated on copper material and brazed to the respective electrodes 20 and 21 (for example, 94
Bonding is performed in a vacuum furnace at 0 ° C. 15 and 2
The humidity adjusting element 24 is composed of 0 to 23. Reference numeral 25 denotes a frame in which the outer periphery of the humidity adjusting element 10 is fixed, and uses a resin (for example, liquid crystal polymer) having a thermal expansion coefficient substantially the same as that of the porous members 16 and 17. 26 and 27 are anode 2 respectively
0 and the terminal derived from the cathode 21, 28 is each terminal 26,
It is a DC power supply connected between 27.

【0016】次に、湿度調整素子24の動作について説
明する。図2において、直流電源28を端子26、27
に接続して、両極20、21間に5Vの直流電圧を印加
する。陽極20では水が電気分解されて、式(4)の反
応により陽極20側の除湿空間の湿度が低下する。 2H2O→O2+4H++4e- ・・・・・(4) このときに発生する水素イオンH+は、固体高分子電解
質膜15を通る。そして、電子e-は外部回路を通って
陰極21に達し、式(5)の反応により酸素を消費して
水を発生する。 O2+4H++4e-→2H2O ・・・・・(5) また、一部の水素イオンH+は、式(6)の反応により
水素になる。 2H++2e-→H2 ・・・・・(6)
Next, the operation of the humidity adjusting element 24 will be described. In FIG. 2, the DC power supply 28 is connected to terminals 26, 27.
Then, a DC voltage of 5 V is applied between both electrodes 20, 21. Water is electrolyzed in the anode 20, and the humidity in the dehumidifying space on the anode 20 side is lowered by the reaction of the formula (4). 2H 2 O → O 2 + 4H + + 4e - ····· (4) hydrogen ions H generated at this time + passes through the polymer electrolyte membrane 15. Then, the electron e reaches the cathode 21 through the external circuit and consumes oxygen by the reaction of the formula (5) to generate water. O 2 + 4H + + 4e → 2H 2 O (5) Further, some hydrogen ions H + become hydrogen by the reaction of the formula (6). 2H + + 2e - → H 2 ····· (6)

【0017】さらに、水素イオンH+とともに平均3分
子程度の水が陽極20から陰極21へ移動する。従っ
て、陰極21では式(5)の反応により生成する水とと
もに、更に余分の水が陽極20から陰極21へ移動し
て、陽極20側の除湿空間の湿度を低下させる。また、
固体高分子電解質膜15が多孔部材16、17の孔16
a、17aから突出しているので、触媒層18、19と
の反応面積が増加して、除湿性能に向上した。また、触
媒層18、19は固体高分子電解質の成分と白金粉末と
を混合して形成してあるので、白金粉末が層状に分布し
ている。したがって、触媒層18、19の厚み全体で3
次元的に反応面が存在するので、反応面積が増加して、
除湿性能が向上する。以上のように構成したことによ
り、除湿性能は従来の湿度調整器が0.1g/h/10
0cm2に対し、本願発明では0.7g/h/100c
2が得られた。さらに、給電体22、23を格子状に
配置して各極20、21間に電流が均等に流れるように
したので、有効反応面積を400cm2/ユニットにし
ても単位面積当たりの性能が低下することなく、従来の
4倍の面積に拡大することができた。
Further, together with the hydrogen ions H + , water having an average of about 3 molecules moves from the anode 20 to the cathode 21. Therefore, in the cathode 21, excess water moves from the anode 20 to the cathode 21 together with the water generated by the reaction of the formula (5), and the humidity of the dehumidifying space on the anode 20 side is lowered. Also,
The solid polymer electrolyte membrane 15 has holes 16 in the porous members 16 and 17.
Since they are projected from a and 17a, the reaction area with the catalyst layers 18 and 19 is increased, and the dehumidification performance is improved. Further, since the catalyst layers 18 and 19 are formed by mixing the solid polymer electrolyte component and platinum powder, the platinum powder is distributed in layers. Therefore, the total thickness of the catalyst layers 18 and 19 is 3
Since the reaction surface exists dimensionally, the reaction area increases,
Dehumidification performance is improved. With the above configuration, the conventional dehumidifier has a dehumidifying performance of 0.1 g / h / 10.
With respect to 0 cm 2 , in the present invention, 0.7 g / h / 100c
m 2 was obtained. Further, since the power supply members 22 and 23 are arranged in a grid pattern so that the currents evenly flow between the respective poles 20 and 21, even if the effective reaction area is 400 cm 2 / unit, the performance per unit area decreases. It was possible to expand the area to 4 times the conventional size.

【0018】図3は湿度調整器の除湿特性を示す説明図
である。図3の試験条件は容器の容積が50リットル、
湿度調整素子の面積が100cm2である。図3におい
て、29は容器外の湿度を示す曲線、30は従来の湿度
調整器の除湿特性を示す曲線、31は本願の発明による
湿度調整器の除湿特性を示す曲線である。図3におい
て、容器外の湿度を曲線29のようにほぼ90%に保持
した状態で、容器内の除湿を行った場合に、従来のもの
では曲線30に示すように湿度が50%以下には下がら
ない。しかし、本願の発明のものでは、曲線31で示す
ように1時間で湿度が40%以下、5時間で約10%と
なり最終的には約5%程度まで湿度を下げることができ
る。
FIG. 3 is an explanatory view showing the dehumidifying characteristics of the humidity controller. The test condition of FIG. 3 is that the container volume is 50 liters,
The area of the humidity adjusting element is 100 cm 2 . In FIG. 3, 29 is a curve showing the humidity outside the container, 30 is a curve showing the dehumidifying characteristics of the conventional humidity controller, and 31 is a curve showing the dehumidifying characteristics of the humidity controller according to the present invention. In FIG. 3, when the inside of the container is dehumidified while the humidity outside the container is kept at about 90% as shown by the curve 29, the conventional one shows that the humidity is 50% or less as shown by the curve 30. It does not fall. However, according to the invention of the present application, as shown by the curve 31, the humidity is 40% or less in 1 hour, becomes about 10% in 5 hours, and finally the humidity can be reduced to about 5%.

【0019】実施の形態2.図4は実施の形態2の湿度
調整装置を示す斜視図である。図4において、32は窓
32aが開口した枠体、33は枠体32に固着した実施
の形態1の図1及び図2で示した湿度調整器で、枠体3
2の窓32aを含めて六面体になるように窓32aを除
いた他の五面に配置してある。34は各湿度調整器33
の外面に配置した複数の孔34aを有する保護カバー
で、孔34aの開口面積が対向した湿度調整器33の有
効反応面積の50%以上の開孔率になるように選定して
いる。なお、少なくとも50%の開孔率であれば、湿度
調整器33の性能低下等の影響が及ばないことが実験の
結果で判った。
Embodiment 2. FIG. 4 is a perspective view showing the humidity adjusting device according to the second embodiment. In FIG. 4, reference numeral 32 is a frame body having a window 32a opened, and 33 is the humidity controller fixed to the frame body 32 shown in FIGS. 1 and 2 of the first embodiment.
The two windows 32a are arranged in five faces other than the window 32a so as to form a hexahedron. 34 is each humidity controller 33
With a protective cover having a plurality of holes 34a arranged on the outer surface of, the opening area of the holes 34a is selected so as to have an opening ratio of 50% or more of the effective reaction area of the humidity controller 33 facing each other. It has been found from the results of experiments that the porosity of at least 50% does not affect the performance of the humidity adjuster 33.

【0020】上記構成において、窓32aが大気側で各
湿度調整器33が突出した側を被除湿空間、即ち容器な
どの内側になるように枠体32を固定する。このような
構成によれば、窓32aに相当する壁面などの開口面積
が小さくても、効率のよい除湿効果を得ることができ
る。
In the above structure, the frame 32 is fixed so that the window 32a is on the atmosphere side and the side on which each humidity adjuster 33 projects is the inside of the dehumidified space, that is, the container or the like. With such a configuration, an efficient dehumidifying effect can be obtained even if the opening area such as the wall surface corresponding to the window 32a is small.

【0021】[0021]

【発明の効果】請求項1の発明によれば、陽極及び陰極
の外周を囲むように給電体をそれぞれ配置し、各給電体
と各極とを接合したことにより、各給電体と各極との間
の電気的な接続が良く、固体高分子電解質膜内の電流分
布が均一化されるので、陽極及び陰極の表面全体で反応
が起こるため、湿度調整能力を向上させることができ
る。
According to the first aspect of the present invention, the power feeding bodies are arranged so as to surround the outer circumferences of the anode and the cathode, and the respective power feeding bodies and the respective poles are joined to each other. Since the electric connection between the two is good and the current distribution in the solid polymer electrolyte membrane is made uniform, a reaction occurs on the entire surface of the anode and the cathode, so that the humidity adjusting ability can be improved.

【0022】請求項2の発明によれば、給電体を格子状
に形成し、格子の枠内に湿度調整素子をそれぞれ配置
し、各給電体と各極とを接合したことにより、有効反応
面積を大きくしても各給電体と各極との間の電気的な接
続が良く、固体高分子電解質膜内の電流分布が均一化さ
れるので、陽極及び陰極の表面全体で反応が起こるた
め、湿度調整能力を向上させることができる。
According to the second aspect of the present invention, the effective feeding area is formed by forming the feeder in the form of a grid, arranging the humidity adjusting elements in the frame of the grid, and joining the feeders with the poles. Even if it is large, the electrical connection between each power supply and each electrode is good, and the current distribution in the solid polymer electrolyte membrane is made uniform, so that the reaction occurs on the entire surface of the anode and cathode, The humidity adjusting ability can be improved.

【0023】請求項3の発明によれば、請求項1に記載
の湿度調整器において、陽極及び陰極を水蒸気が通過可
能な複数の孔を有する金属箔に白金めっきして固体高分
子電解質膜に接合した多孔部材と、この多孔部材の表面
に形成した固体高分子電解質と白金粉末とを混合した触
媒層とで構成したことにより、多孔部材の孔を通して固
体高分子電解質膜と触媒層との接触して反応面積が増加
すること、及び白金粉末が固体高分子電解質の成分内に
均一に分布3次元的に接触して反応面積が増加すること
により、湿度調整能力を向上させることができる。
According to the third aspect of the present invention, in the humidity controller according to the first aspect, the anode and the cathode are platinum-plated on a metal foil having a plurality of holes through which water vapor can pass to form a solid polymer electrolyte membrane. By comprising the joined porous member and the catalyst layer formed by mixing the solid polymer electrolyte and platinum powder formed on the surface of the porous member, the contact between the solid polymer electrolyte membrane and the catalyst layer through the pores of the porous member. As a result, the reaction area is increased, and the platinum powder is uniformly distributed in the components of the solid polymer electrolyte, and the reaction area is increased by three-dimensional contact, so that the humidity adjusting ability can be improved.

【0024】請求項4の発明によれば、請求項3に記載
の湿度調整器において、金属箔をニッケル箔としたこと
により、請求項3と同様の効果が得られる。
According to the invention of claim 4, in the humidity controller according to claim 3, since the metal foil is nickel foil, the same effect as that of claim 3 can be obtained.

【0025】請求項5の発明によれば、請求項3又は請
求項4に記載の湿度調整器において、多孔部材と給電体
とを溶接により接合したことにより、請求項3又は請求
項4の発明と同様の効果が得られるとともに、電気的な
接続が良くなるので、さらに湿度調整能力の向上を図る
ことができる。
According to the invention of claim 5, in the humidity controller according to claim 3 or 4, the porous member and the power feeder are joined by welding, whereby the invention of claim 3 or 4 is achieved. The effect similar to that is obtained, and the electrical connection is improved, so that the humidity adjusting ability can be further improved.

【0026】請求項6の発明によれば、請求項3又は請
求項4に記載の湿度調整器において、多孔部材と給電体
とをハンダ付により接合したことにより、請求項3又は
請求項4の発明と同様の効果が得られるとともに、電気
的な接続が良くなるので、さらに湿度調整能力の向上を
図ることができる。
According to the invention of claim 6, in the humidity controller according to claim 3 or 4, the porous member and the power feeder are joined by soldering, whereby the humidity controller according to claim 3 or 4 is obtained. Since the same effect as that of the invention is obtained and the electrical connection is improved, the humidity adjusting ability can be further improved.

【0027】請求項7の発明によれば、請求項1〜請求
項6に記載の湿度調整器を多面体の少なくとも一面が開
口するように他の各面に配置したことにより、被除湿部
の開口が小さい所に複数個の湿度調整器を配置すること
ができるので、効率よく除湿を行うことができる。
According to the invention of claim 7, the humidity controller according to any one of claims 1 to 6 is arranged on each of the other faces so that at least one face of the polyhedron is opened, so that the opening of the dehumidifying portion is performed. Since a plurality of humidity adjusters can be arranged in a small area, the dehumidification can be performed efficiently.

【0028】請求項8の発明によれば、請求項7に記載
の湿度調整器において、多面体を六面体とすることによ
り、簡単な構造で請求項7の発明と同様の効果が得られ
る。
According to the eighth aspect of the present invention, in the humidity adjuster according to the seventh aspect, since the polyhedron is a hexahedron, the same effect as the invention of the seventh aspect can be obtained with a simple structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施の形態1の構成を示す正面図である。FIG. 1 is a front view showing a configuration of a first embodiment.

【図2】 図1のII−II線の断面図である。FIG. 2 is a sectional view taken along line II-II of FIG.

【図3】 除湿特性を示す説明図である。FIG. 3 is an explanatory diagram showing dehumidification characteristics.

【図4】 実施の形態2の構成を示す説明図である。FIG. 4 is an explanatory diagram showing the configuration of the second embodiment.

【図5】 従来の湿度調整器の構成図である。FIG. 5 is a configuration diagram of a conventional humidity adjuster.

【符号の説明】[Explanation of symbols]

15 固体高分子電解質膜、16,17 多孔部材、1
8,19 触媒層、20 陽極、21 陰極、22,2
3 給電体、24 湿度調整素子、33 湿度調整器。
15 solid polymer electrolyte membrane, 16, 17 porous member, 1
8,19 Catalyst layer, 20 Anode, 21 Cathode, 22,2
3 feeder, 24 humidity adjusting element, 33 humidity adjuster.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 馬場 弘士 兵庫県尼崎市塚口本町8丁目1番1号 菱 彩テクニカ株式会社内 (72)発明者 前田 秀雄 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroshi Baba Inventor Hiroshi Baba 8-1-1 Tsukaguchi Honcho, Amagasaki-shi, Hyogo Inside Ryosai Technica Co., Ltd. (72) Hideo Maeda 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Sanryo Electric Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 水素イオン導電性の固体高分子電解質膜
を陽極と陰極とで挟持し、上記各極にそれぞれ給電体を
接合して電気化学的な湿度調整素子を構成し、上記各給
電体間に直流電源を接続して、上記陽極側で除湿し上記
陰極側で加湿を行う湿度調整器において、上記各極の外
周を囲むように上記各給電体をそれぞれ配置し、上記各
給電体と上記各極とを接合したことを特徴とする湿度調
整器。
1. A hydrogen ion conductive solid polymer electrolyte membrane is sandwiched between an anode and a cathode, and a power feeding member is joined to each of the above electrodes to form an electrochemical humidity adjusting element. In a humidity controller that connects a DC power supply between them, dehumidifies on the anode side and humidifies on the cathode side, arranges each of the power feeding bodies so as to surround the outer periphery of each of the electrodes, and each of the power feeding bodies. A humidity controller characterized in that the above-mentioned respective electrodes are joined.
【請求項2】 水素イオン導電性の固体高分子電解質膜
を陽極と陰極とで挟持し、上記各極にそれぞれ給電体を
接合して電気化学的な湿度調整素子を構成し、上記各給
電体間に直流電源を接続して、上記陽極側で除湿し上記
陰極側で加湿を行う湿度調整器において、上記給電体を
格子状に形成し、上記格子の各枠内に上記湿度調整素子
をそれぞれ配置し、上記各給電体と上記各極とを接合し
たことを特徴とする湿度調整器。
2. A hydrogen ion conductive solid polymer electrolyte membrane is sandwiched between an anode and a cathode, and a power feeding member is joined to each of the electrodes to form an electrochemical humidity adjusting element. In the humidity adjuster that connects a DC power supply between and dehumidifies on the anode side and humidifies on the cathode side, the feeder is formed in a grid shape, and the humidity adjusting elements are respectively provided in each frame of the grid. A humidity adjuster characterized in that the humidity adjuster is arranged and the respective power feeding bodies and the respective poles are joined.
【請求項3】 請求項1に記載の湿度調整器において、
陽極及び陰極は、水蒸気が通過可能な複数の孔を有する
金属箔に白金めっきして固体高分子電解質膜に接合した
多孔部材と、この多孔部材の表面に形成した固体高分子
電解質と白金粉末とを混合した触媒層とで構成したこと
を特徴とする湿度調整器。
3. The humidity controller according to claim 1, wherein
The anode and the cathode are a porous member obtained by platinizing a metal foil having a plurality of holes through which water vapor can pass and bonded to a solid polymer electrolyte membrane, and a solid polymer electrolyte and platinum powder formed on the surface of the porous member. A humidity controller characterized in that it is composed of a catalyst layer in which is mixed.
【請求項4】 請求項3に記載の湿度調整器において、
金属箔がニッケル箔であることを特徴とする湿度調整
器。
4. The humidity controller according to claim 3,
A humidity controller characterized in that the metal foil is nickel foil.
【請求項5】 請求項3又は請求項4に記載の湿度調整
器において、多孔部材と給電体とを溶接により接合した
ことを特徴とする湿度調整器。
5. The humidity adjuster according to claim 3 or 4, wherein the porous member and the power feeder are joined by welding.
【請求項6】 請求項3又は請求項4に記載の湿度調整
器において、多孔部材と給電体とをハンダ付により接合
したことを特徴とする湿度調整器。
6. The humidity controller according to claim 3 or 4, wherein the porous member and the power feeder are joined by soldering.
【請求項7】 請求項1〜請求項6に記載の湿度調整器
を多面体の少なくとも一面が開口するように他の各面に
配置したことを特徴とする湿度調整装置。
7. A humidity controller, wherein the humidity controller according to any one of claims 1 to 6 is arranged on each of the other surfaces of the polyhedron so that at least one surface of the polyhedron is open.
【請求項8】 請求項7に記載の湿度調整装置におい
て、多面体は六面体であることを特徴とする湿度調整装
置。
8. The humidity adjusting device according to claim 7, wherein the polyhedron is a hexahedron.
JP7291222A 1995-11-09 1995-11-09 Humidity controller and humidity controlling device Pending JPH09131509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7291222A JPH09131509A (en) 1995-11-09 1995-11-09 Humidity controller and humidity controlling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7291222A JPH09131509A (en) 1995-11-09 1995-11-09 Humidity controller and humidity controlling device

Publications (1)

Publication Number Publication Date
JPH09131509A true JPH09131509A (en) 1997-05-20

Family

ID=17766060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7291222A Pending JPH09131509A (en) 1995-11-09 1995-11-09 Humidity controller and humidity controlling device

Country Status (1)

Country Link
JP (1) JPH09131509A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290916A (en) * 1988-09-28 1990-03-30 Mitsubishi Electric Corp Electric apparatus
JPH0380914A (en) * 1989-08-23 1991-04-05 Mitsubishi Electric Corp Control box
JPH07213848A (en) * 1993-10-05 1995-08-15 Mitsubishi Electric Corp Electrochemical element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290916A (en) * 1988-09-28 1990-03-30 Mitsubishi Electric Corp Electric apparatus
JPH0380914A (en) * 1989-08-23 1991-04-05 Mitsubishi Electric Corp Control box
JPH07213848A (en) * 1993-10-05 1995-08-15 Mitsubishi Electric Corp Electrochemical element

Similar Documents

Publication Publication Date Title
US3012086A (en) Fuel cell
US6743541B2 (en) Monopolar cell pack of proton exchange membrane fuel cell and direct methanol fuel cell
JP7386246B2 (en) Modular electrolyser unit for generating gaseous hydrogen at high pressure and purity
US6054228A (en) Fuel cell system for low pressure operation
US4804592A (en) Composite electrode for use in electrochemical cells
EP0068508B1 (en) Methanol fuel cell
CA1093147A (en) Fuel cell system utilizing ion exchange membranes and bipolar plates
ES2237427T3 (en) BARRIER DEVICE AND UNIFIED FLOW CONTROL DEVICE FOR ELECTROCHEMICAL REACTORS.
WO2002015312A1 (en) Polymer electrolyte type fuel cell
KR19980081482A (en) Gas diffusion electrode for polymer membrane fuel cell
WO2002003489A1 (en) Polyelectrolyte fuel cell
GB2039133A (en) Wet proofed conductive current collector for electrochemical cells
JPS63141266A (en) Battery comprising methanol/air fuel cell having polymer electrolyte with high energy density and output density arranged tubularly
US7960071B2 (en) Separator for fuel cell using a metal plate coated with titanium nitride, method for manufacturing the same, and polymer electrolyte membrane fuel cell comprising the separator
US5736017A (en) Solid high polymer electrolytic module and method of manufacturing the same
JPH06196187A (en) Activation of solid high polymer type fuel cell
JP2001126750A (en) Polymer electrolytic fuel cell and clamping method thereof
JPH09131509A (en) Humidity controller and humidity controlling device
US6328862B1 (en) Ozone generating electrolysis cell and method of fabricating the same
JPH0594830A (en) Vertical stripe cylindrical solid electrolyte fuel cell
JPH0529005A (en) Electrode/electrolyte joined body, manufacture thereof and fuel cell using the same
JPH11207133A (en) Solid high polymer electrolytic module and solid high polymer electrolyzer using the same
JPH0633284A (en) Water electrolytic cell
JP2004349013A (en) Fuel cell stack
JP3301558B2 (en) Flat solid electrolyte fuel cell