JPH09130018A - Wiring substrate and its manufacture - Google Patents

Wiring substrate and its manufacture

Info

Publication number
JPH09130018A
JPH09130018A JP7282081A JP28208195A JPH09130018A JP H09130018 A JPH09130018 A JP H09130018A JP 7282081 A JP7282081 A JP 7282081A JP 28208195 A JP28208195 A JP 28208195A JP H09130018 A JPH09130018 A JP H09130018A
Authority
JP
Japan
Prior art keywords
wiring board
wiring
ceramic green
conductive material
green sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7282081A
Other languages
Japanese (ja)
Other versions
JP3231982B2 (en
Inventor
Yasuhiro Sasaki
康博 佐々木
Kenichi Yoneyama
健一 米山
Kiyohiro Sakasegawa
清浩 逆瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP28208195A priority Critical patent/JP3231982B2/en
Publication of JPH09130018A publication Critical patent/JPH09130018A/en
Application granted granted Critical
Publication of JP3231982B2 publication Critical patent/JP3231982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize low resistance of a wiring conductor which has extremely small deformation such as waving on the insulated substrate surface, excellent size accuracy and excellent mass productivity. SOLUTION: A wiring conductor 3 in the thickness of 50μm or more provided in an insulated base material formed of sintered ceramics is reactively hardened before lamination of the other ceramic green sheet having a predetermined wiring pattern using a conductive paste with a binder mainly composed of a high melting point metal and reactive hardening resin to form a conductive material. The wiring board obtained shows a waving at the surface of the insulated base material 2 of 20μmWCMmax or less when high region cutoff value is 2.5mm and standard length is 25mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子が収容
搭載される半導体素子収納用パッケージや、半導体素子
の他にコンデンサや抵抗体等の各種電子部品が搭載され
る混成集積回路装置等に用いられる配線導体の導通抵抗
が低抵抗である配線基板及びその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in a semiconductor element housing package in which a semiconductor element is housed and mounted, and in a hybrid integrated circuit device in which various electronic parts such as capacitors and resistors are mounted in addition to the semiconductor element. The present invention relates to a wiring board having a low conduction resistance of a wiring conductor and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、半導体素子収納用パッケージや混
成集積回路装置等に用いられる配線基板は、一般にアル
ミナ質焼結体等の電気絶縁性のセラミック焼結体から成
る絶縁基体を用い、その上面の略中央部に設けた凹部周
辺から下面に、あるいはその内部及び表面に、タングス
テン(W)、モリブデン(Mo)、マンガン(Mn)等
の高融点金属から成る複数の配線導体を配設するととも
に、各配線導体を絶縁基体内に設けた前記同様の高融点
金属から成るスルーホール導体で接続した構造を成して
いる。
2. Description of the Related Art Conventionally, a wiring board used for a package for housing a semiconductor element, a hybrid integrated circuit device or the like generally uses an insulating base made of an electrically insulating ceramic sintered body such as an alumina sintered body. A plurality of wiring conductors made of a refractory metal such as tungsten (W), molybdenum (Mo), manganese (Mn), and the like, from the periphery to the lower surface of the concave portion provided at substantially the center of the substrate, or to the inside and the surface thereof. And a structure in which the wiring conductors are connected by through-hole conductors made of the same high melting point metal provided in the insulating base.

【0003】そして、前述のように構成された配線基板
は、例えば半導体素子収納用パッケージでは、その絶縁
基体の凹部底面に半導体素子をガラスあるいは樹脂、ロ
ウ材等の接着剤を介して接着固定するとともに、半導体
素子の各電極を凹部周辺に位置する配線導体にボンディ
ングワイヤを介して電気的に接続し、金属やセラミック
ス等から成る蓋体を前記凹部を塞ぐように前記接着剤と
同様の封止材を介して接合し、絶縁基体の凹部内に半導
体素子を気密に収容することにより最終製品としての半
導体装置となる。
In the wiring board constructed as described above, for example, in a package for housing a semiconductor element, the semiconductor element is adhered and fixed to the bottom surface of the recess of the insulating substrate via an adhesive such as glass, resin, or brazing material. At the same time, each electrode of the semiconductor element is electrically connected to a wiring conductor located around the recess via a bonding wire, and a lid made of metal or ceramics is sealed in the same manner as the adhesive so as to close the recess. The semiconductor device as a final product is obtained by joining the semiconductor elements in a hermetically sealed manner in the recesses of the insulating base by bonding the materials.

【0004】尚、前記配線基板は、絶縁基体に設けた配
線導体の一部に鉄−ニッケル−コバルト(Fe−Ni−
Co)合金や、鉄−ニッケル(Fe−Ni)合金等から
成る外部リード端子が銀ロウ等のロウ材を介して取着さ
れており、外部リード端子を外部電気回路に接続させる
ことによって半導体素子の各電極は配線導体、ボンディ
ングワイヤ及び外部リード端子を介して外部電気回路に
電気的に接続されている。
In the wiring board, iron-nickel-cobalt (Fe-Ni-) is formed on a part of the wiring conductor provided on the insulating base.
An external lead terminal made of a Co) alloy, an iron-nickel (Fe-Ni) alloy, or the like is attached via a brazing material such as silver brazing, and the external lead terminal is connected to an external electric circuit to form a semiconductor element. Each of the electrodes is electrically connected to an external electric circuit via a wiring conductor, a bonding wire and an external lead terminal.

【0005】しかしながら、前記従来の配線基板は、配
線導体及びスルーホール導体を形成するWやMoの電気
抵抗値が4〜8×10-6Ω・cmと極めて高いため、配
線間の電気抵抗値が小さいことが要求されるような配線
基板には適用できず、昨今の各種制御機器や情報通信機
器等をはじめとする用途では、配線導体のより低抵抗化
が望まれていた。
However, in the conventional wiring board, the electric resistance value of W and Mo forming the wiring conductor and the through-hole conductor is extremely high at 4 to 8 × 10 −6 Ω · cm, so that the electric resistance value between the wirings is high. It cannot be applied to a wiring board that is required to be small, and a lower resistance of the wiring conductor has been desired in applications such as various control devices and information communication devices in recent years.

【0006】そこで、前述のような配線基板における配
線導体の抵抗値を低減するために、配線基板を構成する
絶縁基体中に配線用空間部を形成し、該配線用空間部に
配線導体を充填したものが提案されている(特開昭63
−194号公報参照)。
Therefore, in order to reduce the resistance value of the wiring conductor in the wiring board as described above, a wiring space is formed in the insulating base body constituting the wiring board, and the wiring space is filled with the wiring conductor. Have been proposed (Japanese Patent Laid-Open No. Sho 63-63)
-194 gazette).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記配
線基板では、WやMo等の高融点金属粉末に溶媒と有機
系添加物から成るバインダーを添加混合した導電性ペー
ストを配線用空間部に充填しているため、所定の配線パ
ターンを有する他のセラミックグリーンシートを積層し
た場合、前記充填層が柔軟性を有することから変形を生
じ易く、焼成一体化すると得られた絶縁基体表面にうね
りを発生する恐れが大であった。
However, in the wiring board, the wiring space is filled with a conductive paste obtained by mixing a high melting point metal powder such as W or Mo with a binder made of a solvent and an organic additive. Therefore, when another ceramic green sheet having a predetermined wiring pattern is laminated, the filling layer has flexibility, so that deformation is likely to occur, and undulation occurs on the surface of the insulating substrate obtained by firing and integration. I was afraid.

【0008】その結果、近年の高周波化および高密度化
が進むICやLSI等の半導体素子を搭載する多層配線
基板は、高密度の微細配線パターンが形成され、更に半
導体素子をコンパクトに搭載するため、半導体素子を前
記多層配線基板に直接接続するフリップチップ接続法が
採用されており、係る多層配線基板には高い平坦度が要
求されているが、平坦度の良好な高品質の配線基板を歩
留り良く得ることが困難であるという課題があった。
As a result, a multi-layer wiring board on which semiconductor elements such as ICs and LSIs, which are becoming higher in frequency and higher in density in recent years, are mounted, are provided with a high-density fine wiring pattern, so that the semiconductor elements can be mounted compactly. The flip chip connection method for directly connecting a semiconductor element to the multilayer wiring board is adopted, and high flatness is required for the multilayer wiring board, but a high-quality wiring board with good flatness is obtained. There was a problem that it was difficult to get well.

【0009】また、前記導電性ペーストを配線用空間部
に充填するに際し、スクリーン印刷法や圧入法等では、
配線導体部の厚さが厚いため、充填に長時間を要し、そ
の間に導電性ペースト中の有機溶剤等が気化して粘性が
変化し、充填不良を生じる等、その管理が極めて難し
く、生産性を低下させる要因となっていた。
Further, when the wiring space is filled with the conductive paste, a screen printing method, a press-fitting method, etc.
Since the thickness of the wiring conductor is thick, it takes a long time to fill it, and during that time, the organic solvent in the conductive paste evaporates and the viscosity changes, resulting in poor filling. It was a factor that reduced the sex.

【0010】[0010]

【発明の目的】本発明は前記課題に鑑み成されたもの
で、その目的は絶縁基体内部に厚さが50μm以上の配
線導体を有する配線基板であっても、絶縁基体表面のう
ねり等の変形が極めて小さく、寸法精度が良好で量産効
果に優れた配線導体の低抵抗化を可能とした配線基板と
その製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to improve the deformation of the surface of an insulating substrate even if the wiring substrate has a wiring conductor with a thickness of 50 μm or more inside the insulating substrate. It is an object of the present invention to provide a wiring board and a method for manufacturing the wiring board, in which the resistance of the wiring conductor is extremely small, the dimensional accuracy is good, and the mass production effect is excellent, and the resistance is reduced.

【0011】[0011]

【課題を解決するための手段】本発明の配線基板は、セ
ラミック焼結体から成る絶縁基体にその厚さが50μm
以上である配線導体を一体的に形成して成る配線基板で
あって、前記配線導体はタングステン(W)やモリブデ
ン(Mo)等の高融点金属と反応硬化性樹脂を主成分と
するバインダーとの混合物から成る導電材を用いて形成
し、前記絶縁基体表面のうねりが高域カットオフ値2.
5mm、基準長さ25mmで20μmWCMmax以下で
あることを特徴とするものである。
The wiring board of the present invention has an insulating substrate made of a ceramic sintered body and a thickness of 50 μm.
A wiring board formed by integrally forming the above wiring conductor, wherein the wiring conductor comprises a refractory metal such as tungsten (W) or molybdenum (Mo) and a binder containing a reactive curable resin as a main component. 1. A conductive material made of a mixture is used, and the waviness on the surface of the insulating substrate is in a high cutoff value.
It is characterized by having a size of 5 mm and a standard length of 25 mm and being 20 μm W CM max or less.

【0012】また、係る厚さが50μm以上の導電材を
有するセラミックグリーンシートに、所定の配線パター
ンを有するセラミックグリーンシートを複数枚積層し、
還元性雰囲気または中性雰囲気中で焼成一体化した配線
基板の製造方法としては、前記導電材を、セラミックグ
リーンシートを打ち抜いて形成した空間部に、前記高融
点金属と反応硬化性樹脂を主成分とするバインダーから
成る導電性ペーストを充填した後、反応硬化させて形成
するか、あるいは前記導電性ペーストをシート状に成形
して反応硬化させた後、該硬化シートを前記空間部寸法
形状に打ち抜き加工し、該空間部に嵌め込んで形成する
か、または前記導電性ペーストを空間部形状の成形型に
充填して反応硬化させた後、該硬化体を前記空間部に嵌
め込んで形成することを特徴とするものである。
A plurality of ceramic green sheets having a predetermined wiring pattern are laminated on the ceramic green sheet having a conductive material having a thickness of 50 μm or more,
As a method of manufacturing a wiring substrate integrally fired in a reducing atmosphere or a neutral atmosphere, the conductive material is mainly composed of the refractory metal and the reaction curable resin in a space formed by punching out a ceramic green sheet. After filling with a conductive paste consisting of a binder, it is cured by reaction or formed, or after the conductive paste is formed into a sheet and cured by reaction, the cured sheet is punched into the dimension of the space. Formed by processing and fitting into the space, or by filling the conductive paste in a mold having a shape of the space and reaction curing, and then fitting the cured body into the space. It is characterized by.

【0013】本発明の配線基板において、導電材を構成
する反応硬化性樹脂は、反応硬化するものであればいず
れでも良いが、エポキシ化合物や多官能アクリレートが
主鎖にエーテル結合を有するもの、あるいは不飽和重合
体を含有することがより望ましく、前記多官能アクリレ
ートでは主鎖にエーテル結合を有し、かつ不飽和重合体
を含有するものが最も望ましい。
In the wiring board of the present invention, the reaction curable resin constituting the conductive material may be any one as long as it can be cured by reaction, but an epoxy compound or a polyfunctional acrylate having an ether bond in the main chain, or It is more preferable to contain an unsaturated polymer, and the polyfunctional acrylate most preferably has an ether bond in the main chain and contains an unsaturated polymer.

【0014】前記エポキシ化合物としては、グリシジル
エーテル型、グリシジルエステル型、グリシジルアミン
型、脂環型等が挙げられる。
Examples of the epoxy compound include glycidyl ether type, glycidyl ester type, glycidyl amine type, alicyclic type and the like.

【0015】また、前記エポキシ化合物の含有量は、高
融点金属粉体と溶媒、有機性添加物の混合物の流動性及
び成形性を維持するため、粘性が高くならないようにす
ることが望ましく、高融点金属粉体100重量部に対し
て1重量部以上、40重量部以下が望ましく、ハンドリ
ングの容易さからは10重量部以上30重量部以下が最
も好適である。
Further, the content of the epoxy compound is preferably such that the viscosity does not become high in order to maintain the fluidity and moldability of the mixture of the high melting point metal powder, the solvent and the organic additive. It is preferably 1 part by weight or more and 40 parts by weight or less with respect to 100 parts by weight of the melting point metal powder, and most preferably 10 parts by weight or more and 30 parts by weight or less from the viewpoint of easy handling.

【0016】更に前記エポキシ化合物の硬化剤として、
重付加型ではジエチレンジアミン、ヘキサヒドロ無水フ
タル酸等が、触媒型ではベンジルジメチルアミン、芳香
族スルホニウム塩等が、縮合型ではメチロール基含有メ
ラミン樹脂等が挙げられ、その含有量は、高融点金属粉
体100重量部に対して1重量部以上、40重量部以下
が望ましく、10重量部以上30重量部以下が最も好適
である。
Further, as a curing agent for the epoxy compound,
The polyaddition type includes diethylenediamine, hexahydrophthalic anhydride, etc., the catalyst type includes benzyldimethylamine, aromatic sulfonium salts, etc., and the condensation type includes methylol group-containing melamine resin, and the content thereof is high melting point metal powder. The amount is preferably 1 part by weight or more and 40 parts by weight or less with respect to 100 parts by weight of the body, and most preferably 10 parts by weight or more and 30 parts by weight or less.

【0017】また、前記多官能アクリレートとは、1分
子中に2個以上のアクリロイル基を有する化合物であ
り、例えばエチレングリコールジアクリレートやプロピ
レングリコールジアクリレート、ネオペンチルグリコー
ルジアクリレート、アルキルジアクリレート、グリセリ
ントリアクリレート、ジペンタエリスリトールヘキサア
クリレート、トリメチロールプロパントリアクリレー
ト、PO変性トリメチロールプロパントリアクリレー
ト、ビスフェノールAジアクリレート等を挙げることが
できる。
The polyfunctional acrylate is a compound having two or more acryloyl groups in one molecule, such as ethylene glycol diacrylate, propylene glycol diacrylate, neopentyl glycol diacrylate, alkyl diacrylate, glycerin. Examples thereof include triacrylate, dipentaerythritol hexaacrylate, trimethylolpropane triacrylate, PO-modified trimethylolpropane triacrylate, and bisphenol A diacrylate.

【0018】とりわけ、主鎖にエーテル結合を有し、熱
分解性が良好なポリエチレングリコールジアクリレート
やポリイソプロピレングリコールジアクリレート等を代
表とするポリアルキレングリコールジアクリレート等が
より好適である。
Among them, polyalkylene glycol diacrylate represented by polyethylene glycol diacrylate or polyisopropylene glycol diacrylate, which has an ether bond in the main chain and has good thermal decomposability, is more preferable.

【0019】また、前記多官能アクリレートの含有量
は、高融点金属粉体と溶媒及び有機性添加物の混合物の
流動性及び成形性を維持するために、粘性が高くならな
いようにすることが望ましく、高融点金属原料粉体10
0重量部に対して5重量部以上で、かつ硬化、即ち単量
体の縮合反応による成形体の収縮という点からは、40
重量部以下がより望ましく、なかでも成形体のハンドリ
ングの容易さからは、8〜20重量部が最も好適であ
る。
The content of the polyfunctional acrylate is preferably such that the viscosity does not become high in order to maintain the fluidity and moldability of the mixture of the high melting point metal powder, the solvent and the organic additive. , Refractory metal raw material powder 10
It is more than 5 parts by weight with respect to 0 parts by weight, and in terms of curing, that is, shrinkage of the molded body due to the condensation reaction of the monomer, it is 40
It is more preferable that the amount is not more than 10 parts by weight, and most preferably 8 to 20 parts by weight from the viewpoint of easy handling of the molded product.

【0020】一方、前記不飽和重合体は、分子中に不飽
和二重結合を有する高分子化合物であり、例えば不飽和
ポリエステルやポリジエン系の高分子化合物が該当す
る。
On the other hand, the unsaturated polymer is a polymer compound having an unsaturated double bond in the molecule, and examples thereof include unsaturated polyester and polydiene polymer compounds.

【0021】前記不飽和ポリエステルは、多官能酸と多
官能アルコールとの縮合物であって、かつ分子中に不飽
和二重結合を有するものと定義され、かかる樹脂は、一
般には飽和二塩基酸、多価アルコール及び不飽和二塩基
酸から公知の製法により得られるものであるが、これら
の原料は特に制限されるものではない。
The unsaturated polyester is defined as a condensate of a polyfunctional acid and a polyfunctional alcohol and has an unsaturated double bond in the molecule. Such a resin is generally a saturated dibasic acid. , A polyhydric alcohol and an unsaturated dibasic acid can be obtained by a known production method, but these raw materials are not particularly limited.

【0022】具体的には、オルソフタル酸、イソフタル
酸、無水フタル酸、こはく酸、アジピン酸、セバシン
酸、無水エンドメチレンテトラヒドロフタル酸、無水メ
チルテトラヒドロフタル酸、無水テトラヒドロフタル
酸、クロレンディック酸またはマレイン酸とピペリレン
との付加物の如き飽和二塩基酸、エチレングリコール、
ジエチレングリコール、プロピレングリコール、ジプロ
ピレングリコール、ネオペンチルグリコール、水添ビス
フェノールAまたはビスフェノールAのエチレンオキサ
イドもしくはプロピレンオキサイド付加物、1,3ーブ
タンジオール、1,4ーブタンジオール、1,6−ヘキ
サンジオールまたはグリセリンの如き多価アルコール、
及び無水マレイン酸、フマル酸またはイタコン酸の如き
不飽和二塩基酸等を、160〜240℃程度の温度で反
応せしめることにより目的とする不飽和ポリエステルが
得られる。
Specifically, orthophthalic acid, isophthalic acid, phthalic anhydride, succinic acid, adipic acid, sebacic acid, endomethylenetetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, tetrahydrophthalic anhydride, chlorendic acid or Saturated dibasic acids such as adducts of maleic acid and piperylene, ethylene glycol,
Diethylene glycol, propylene glycol, dipropylene glycol, neopentyl glycol, hydrogenated bisphenol A or ethylene oxide or propylene oxide adduct of bisphenol A, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol or glycerin. Polyhydric alcohol,
The desired unsaturated polyester is obtained by reacting an unsaturated dibasic acid such as maleic anhydride, fumaric acid or itaconic acid at a temperature of about 160 to 240 ° C.

【0023】また、前記不飽和重合体の含有量は、硬化
時に充分な保形性を有していることが望ましいことか
ら、高融点金属原料粉体100重量部に対して5重量部
以上で、かつ前記混合物の粘性を低くして成形性を維持
するためには40重量部以下がより望ましく、なかでも
成形体のハンドリングの容易さからは15〜30重量部
が最も好適である。
Further, the content of the unsaturated polymer is preferably 5 parts by weight or more based on 100 parts by weight of the high melting point metal raw material powder, since it is desirable that the unsaturated polymer has sufficient shape retention property upon curing. Further, in order to reduce the viscosity of the mixture and maintain the moldability, it is more preferably 40 parts by weight or less, and most preferably 15 to 30 parts by weight from the viewpoint of easy handling of the molded product.

【0024】更に、本発明の溶媒は、前記多官能アクリ
レートや不飽和重合体を相溶するものであれば特に限定
するものではなく、例えば、トルエン、キシレン、ベン
ゼン、フタル酸エステル等の芳香族溶剤やヘキサノー
ル、オクタノール、デカノール、オキシアルコール等の
高級アルコール類、あるいは酢酸エステル、グリセライ
ド等のエステル類を用いることができる。
Further, the solvent of the present invention is not particularly limited as long as it is compatible with the polyfunctional acrylate and the unsaturated polymer, and examples thereof include aromatic compounds such as toluene, xylene, benzene and phthalic acid ester. Solvents, higher alcohols such as hexanol, octanol, decanol, and oxyalcohol, or esters such as acetic acid ester and glyceride can be used.

【0025】とりわけ、前記フタル酸エステル、オキシ
アルコール等は好適に用いることができ、更に、溶媒を
緩やかに揮発させるために、前記溶媒を2種類以上併用
することもできる。
Above all, the phthalic acid ester, oxyalcohol and the like can be preferably used, and in addition, two or more kinds of the above solvents can be used together in order to slowly volatilize the solvent.

【0026】また、前記溶媒の含有量は、鋳込み成形の
場合には前記混合物の粘性を低くすることが望ましく、
高融点金属原料粉体100重量部に対して5重量部以
上、かつ成形体の強度を高くして保形性を維持するため
には50重量部以下がより望ましく、とりわけ成形体の
ハンドリングの容易さからは、10〜30重量部が最も
好適である。
The content of the solvent is preferably such that the viscosity of the mixture is low in the case of casting.
5 parts by weight or more relative to 100 parts by weight of the high-melting-point metal raw material powder, and 50 parts by weight or less are more preferable in order to increase the strength of the molded product and maintain the shape retention, and particularly easy handling of the molded product. From this, 10 to 30 parts by weight is most suitable.

【0027】また、グリーンシートの成形性という点か
らは、前記溶媒の含有量は、高融点金属原料粉体100
重量部に対して30重量部以上、70重量部以下がより
望ましく、とりわけ成形体のハンドリングの容易さから
は、40〜60重量部であることが最も好適である。
From the standpoint of moldability of the green sheet, the content of the solvent is 100% of the high melting point metal raw material powder.
The amount is more preferably 30 parts by weight or more and 70 parts by weight or less with respect to parts by weight, and particularly preferably 40 to 60 parts by weight from the viewpoint of easy handling of the molded body.

【0028】更に、本発明の前記多官能アクリレートや
不飽和重合体には、硬化反応促進剤または重合開始剤等
と称される硬化触媒や、分散剤等、その他の有機性添加
物を用いることができる。
Further, for the polyfunctional acrylate or unsaturated polymer of the present invention, a curing catalyst called a curing reaction accelerator or a polymerization initiator, a dispersant, and other organic additives are used. You can

【0029】前記硬化触媒としては、有機過酸化物やア
ゾ化合物を使用することができ、例えば、ケトンパーオ
キサイド、ジアシルパーオキサイド、パーオキシケター
ル、アルキルパーエステル、ハイドロパーオキサイド、
パーオキシカーボネート、t−ブチルパーオキシ−2−
エチルヘキサノエート、ビス(4−t−ブチルシクロヘ
キシル)パーオキシジカーボネート、ジクミルパーオキ
サイド等の有機過酸化物や、アゾビス、イソブチロニト
リル等のアゾ化合物が挙げられる。
As the curing catalyst, an organic peroxide or an azo compound can be used. Examples thereof include ketone peroxide, diacyl peroxide, peroxyketal, alkyl perester, hydroperoxide, and the like.
Peroxycarbonate, t-butylperoxy-2-
Examples thereof include organic peroxides such as ethylhexanoate, bis (4-t-butylcyclohexyl) peroxydicarbonate and dicumyl peroxide, and azo compounds such as azobis and isobutyronitrile.

【0030】また、前記分散剤としては、一般に無機材
料粉末の混練物の調合に用いられる任意の界面活性剤を
用いることができるが、とりわけ、ポリオキシアルキル
アクリル酸アンモニウム塩、ナフタレンスルホン酸塩ホ
ルマリン縮合体、ソルビタンエステル等が好ましく、そ
の含有量は高融点金属原料粉体100重量部に対して
0.5〜2重量部が望ましい。
As the dispersant, any surfactant generally used in the preparation of a kneaded mixture of inorganic material powders can be used. In particular, ammonium polyoxyalkyl acrylate, naphthalene sulfonate formalin are used. Condensates, sorbitan esters and the like are preferable, and the content thereof is preferably 0.5 to 2 parts by weight with respect to 100 parts by weight of the high melting point metal raw material powder.

【0031】尚、前記高融点金属原料粉末はタングステ
ン(W)、モリブデン(Mo)、レニウム(Re)、ル
テニウム(Ru)等であればいずれでも良い。
The refractory metal raw material powder may be any of tungsten (W), molybdenum (Mo), rhenium (Re), ruthenium (Ru) and the like.

【0032】一方、前記配線導体の厚さが50μm未満
の場合には、シート抵抗値が2〜3mΩ/sq程度と大
きくなり、配線導体の低抵抗化が実現できないことか
ら、その厚さは50μm以上となり、配線導体のシート
抵抗値と配線基板の設計の点からは最大1mm程度まで
が適用範囲となる。
On the other hand, when the thickness of the wiring conductor is less than 50 μm, the sheet resistance value becomes as large as about 2 to 3 mΩ / sq, and the resistance of the wiring conductor cannot be reduced. Therefore, the thickness thereof is 50 μm. As described above, from the viewpoint of the sheet resistance value of the wiring conductor and the design of the wiring board, the applicable range is up to about 1 mm.

【0033】また、前記絶縁基体表面のうねりが、高域
カットオフ値2.5mm、基準長さ25mmで、20μ
mWCMmaxを越えると、前述のフリップチップ接続法
での接続不良を生じる他、配線パターンの印刷形成時に
塗布厚さにばらつきを生じ、その結果、配線導体の抵抗
値が大きく変化するため、前記うねりは20μmWCM
ax以下が必要であり、より望ましくは10μmWCM
ax以下である。
The waviness of the surface of the insulating substrate is 20 μm at a high cutoff value of 2.5 mm and a reference length of 25 mm.
If mW CM max is exceeded, in addition to the above-mentioned connection failure by the flip-chip connection method, the coating thickness varies when the wiring pattern is printed, and as a result, the resistance value of the wiring conductor greatly changes. Swell is 20 μm W CM m
ax or less is required, more preferably 10 μm W CM m
It is ax or less.

【0034】前記製造方法における反応硬化の方法とし
ては、加熱硬化の他に、紫外線硬化やX線硬化方法等を
用いることもでき、加熱硬化方法は、複雑形状品に適
し、紫外線硬化やX線硬化方法は、肉厚が薄い形状品に
好適であり、配線導体の厚さが50〜100μm程度の
場合に最適である。
As the reaction curing method in the above-mentioned manufacturing method, in addition to heat curing, UV curing or X-ray curing method can be used. The heat curing method is suitable for a product having a complicated shape, and UV curing or X-ray curing is possible. The curing method is suitable for a product having a thin wall thickness, and is most suitable when the wiring conductor has a thickness of about 50 to 100 μm.

【0035】また、導電性ペーストを鋳込む際の鋳型
は、反応硬化後、離型ができればその材質はいずれでも
良いが、各種ゴム製または表面をシリコンやテフロンコ
ーティングしたものが好適であり、前記鋳型あるいは空
間部に導電性ペーストを充填するには、ディスペンサー
等の射出器で流し込むことができる。
The mold for casting the conductive paste may be made of any material as long as it can be released from the mold after the reaction curing, but it is preferably made of various rubbers or whose surface is coated with silicon or Teflon. To fill the mold or the space with the conductive paste, it can be poured with an injector such as a dispenser.

【0036】一方、導電性ペーストで成形したグリーン
シートは硬化させてもセラミックグリーンシートと同様
に打ち抜くことが可能である。
On the other hand, the green sheet formed of the conductive paste can be punched out in the same manner as the ceramic green sheet even if it is cured.

【0037】また前記硬化体はいずれも十分な強度を有
するため、重量や形状の管理が容易に行え、真空チャッ
ク等で簡単に移動させること等もでき、極めてハンドリ
ング性に優れており、生産性が著しく向上する。
Further, since all of the above-mentioned cured products have sufficient strength, the weight and shape can be easily controlled, and they can be easily moved by a vacuum chuck or the like, and they are extremely easy to handle, and their productivity is high. Is significantly improved.

【0038】[0038]

【作用】本発明の配線基板及びその製造方法によれば、
配線導体はタングステン(W)やモリブデン(Mo)等
の高融点金属と反応硬化性樹脂を主成分とするバインダ
ーとの混合物から成る導電材を用いて形成したことか
ら、配線用空間部に充填した導電材が適度の硬さを有す
るため、所定の配線パターンを有する他のセラミックグ
リーンシートを積層しても変形を生じることがなく、焼
成一体化後の絶縁基体表面は平坦となる。
According to the wiring board and the method of manufacturing the same of the present invention,
Since the wiring conductor was formed by using a conductive material made of a mixture of a refractory metal such as tungsten (W) and molybdenum (Mo) and a binder whose main component is a reaction curable resin, the wiring space was filled. Since the conductive material has an appropriate hardness, no deformation occurs even if another ceramic green sheet having a predetermined wiring pattern is laminated, and the surface of the insulating substrate after firing and integration becomes flat.

【0039】また、係る厚さが50μm以上の配線導体
を有する配線基板の製造方法として、前記配線導体を形
成するための導電材を、予め配線用空間部に高融点金属
と反応硬化性樹脂を主成分とするバインダーから成る導
電性ペーストを充填した後、反応硬化させて形成する
か、あるいは前記導電性ペーストをシート上に成形して
反応硬化させた後、該硬化シートを前記空間部寸法形状
に打ち抜き加工し、該空間部に嵌め込んで形成するか、
または前記導電性ペーストを空間部形状の成形型に充填
して反応硬化させた後、該硬化成形体を前記配線用空間
部に嵌め込んで形成することから、前記他のセラミック
グリーンシートを積層する段階では導電材は適度の硬さ
を保持しており、該導電材該当部で変形を生じることは
なく、焼成一体化後に焼成基板表面にうねりが発生する
ことはない。
Further, as a method of manufacturing a wiring board having a wiring conductor having a thickness of 50 μm or more, a conductive material for forming the wiring conductor is preliminarily filled with a refractory metal and a reaction curable resin in the wiring space. It is formed by filling a conductive paste composed of a binder as a main component and then reacting and curing it, or after molding the conductive paste on a sheet and reacting and curing the cured sheet, the cured sheet is formed into the dimension and shape of the space. Punched into, and fitted into the space, or
Alternatively, the conductive paste is filled in a space-shaped forming die, and the mixture is reacted and cured, and then the cured formed body is fitted into the wiring space to form the other ceramic green sheets. At the stage, the conductive material retains an appropriate hardness, no deformation occurs at the conductive material corresponding portion, and no undulation occurs on the surface of the fired substrate after firing and integration.

【0040】更に、本発明では、多官能アクリレート等
の硬化性樹脂を用いることによって、その混合物の粘度
を低くして配線用空間部または成形型の細部まで容易に
充填でき、射出成形のように成形型中に高圧注入をする
必要がなく、しかもフローマーク等の欠陥のない外観の
良好な成形体を反応硬化させて得ることができる。
Further, in the present invention, by using a curable resin such as a polyfunctional acrylate, the viscosity of the mixture can be lowered and the space for wiring or the details of the molding die can be easily filled. It is not necessary to inject into a molding die under high pressure, and a molded product having a good appearance without defects such as flow marks can be obtained by reaction curing.

【0041】また、前記混合物は溶媒を含んだ状態で3
次元架橋硬化するために、脱脂時に熱分解温度の低い溶
媒が、架橋した有機物系バインダーが熱分解する前に、
先立って抜けムラを生じさせつつ揮発するため、硬化し
た有機物系バインダーが熱分解する際は、先に溶媒が抜
けることにより形成された無数の気孔を通って、気散さ
れることになり、脱脂が容易に終了することになる。
Further, the mixture is mixed with the solvent in a state of 3
In order to be dimensionally crosslinked and cured, the solvent with a low thermal decomposition temperature during degreasing, before the thermal decomposition of the crosslinked organic binder,
Since it volatilizes while causing uneven slipping out in advance, when the cured organic binder is thermally decomposed, it will be dispersed through the numerous pores formed by the solvent being removed first, and degreasing will be performed. Will end easily.

【0042】また、脱脂工程の前に脱溶媒の乾燥工程を
設けることにより、前記同様に容易に脱脂が終了する。
By providing a desolvation drying step before the degreasing step, the degreasing can be easily completed as described above.

【0043】[0043]

【発明の実施の形態】次に、本発明の配線基板を図面に
基づき詳細に説明する。図1は、本発明の配線基板を半
導体素子の他にコンデンサや抵抗体等の各種電子部品が
搭載される混成集積回路装置等に用いられる多層配線基
板に適用した場合の一実施例を示す要部断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a wiring board of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an embodiment in which the wiring board of the present invention is applied to a multilayer wiring board used in a hybrid integrated circuit device or the like in which various electronic components such as capacitors and resistors are mounted in addition to semiconductor elements. FIG.

【0044】図1において、1は絶縁基体2の内部に複
数個の厚さが50μm以上の配線導体3が一体的に形成
され、各配線導体3は絶縁基体2内に設けたスルーホー
ル導体4を介して電気的に接続された配線基板であり、
例えば絶縁基体2の上面に半導体素子やコンデンサ、抵
抗体等の電子部品5を搭載するとともに、各電子部品5
の電極端子は、それぞれがスルーホール導体4等を介し
て電気的に接続されて所定の電気回路を形成することに
なる。
In FIG. 1, a plurality of wiring conductors 3 having a thickness of 50 μm or more are integrally formed inside an insulating substrate 2, and each wiring conductor 3 is a through-hole conductor 4 provided in the insulating substrate 2. Is a wiring board electrically connected via
For example, an electronic component 5 such as a semiconductor element, a capacitor, or a resistor is mounted on the upper surface of the insulating substrate 2, and each electronic component 5
The electrode terminals are electrically connected to each other through the through-hole conductors 4 and the like to form a predetermined electric circuit.

【0045】本発明の配線基板は、配線導体を形成する
際、導電材のバインダーの主成分である硬化性樹脂を8
0〜150℃で熱硬化させる場合には、エポキシ、不飽
和ポリエステル、フェノール、ユリア、メラミン、ポリ
ウレタン等の樹脂が挙げられ、光硬化させる場合には、
エポキシアクリレート、ウレタンアクリレート等が好適
である。
In the wiring board of the present invention, when the wiring conductor is formed, the curable resin which is the main component of the binder of the conductive material is used.
When heat-curing at 0 to 150 ° C., resins such as epoxy, unsaturated polyester, phenol, urea, melamine, and polyurethane can be mentioned.
Epoxy acrylate, urethane acrylate and the like are preferable.

【0046】また、タングステン(W)やモリブデン
(Mo)等の高融点金属粉体100重量部に対して、例
えば、前記硬化性樹脂を1〜50重量部と、アクリルや
ブチラール、セルロース系の有機系添加物を0.5〜3
0重量部、フタルエステル等の芳香族やヘキサトル等の
高級アルコール類等の有機溶剤を1〜70重量部の範囲
で添加して導電性ペーストを調製する。
Further, for example, 1 to 50 parts by weight of the above-mentioned curable resin and 100 parts by weight of high melting point metal powder such as tungsten (W) or molybdenum (Mo) and acrylic, butyral, or cellulose-based organic material. 0.5 to 3 system additives
An electrically conductive paste is prepared by adding 0 part by weight, an organic solvent such as aromatics such as phthalester or higher alcohols such as hexatol in the range of 1 to 70 parts by weight.

【0047】この際、前記有機系添加物と有機溶剤の種
類とその添加量を種々組み合わせることにより、充填工
程やシート成形工程、鋳込み成形工程、更に印刷工程
等、各種工程に最適な導電性ペーストを調製できる。
At this time, the conductive paste most suitable for various processes such as a filling process, a sheet molding process, a cast molding process, a printing process, etc., by combining various kinds of the organic additives and the organic solvent and their addition amounts. Can be prepared.

【0048】前記導電性ペーストは、公知の硬化手段に
より反応硬化させることができ、これを配線用空間部に
充填した導電材として所定の配線パターンを形成した他
のセラミックグリーンシートを積層し、還元性雰囲気ま
たは中性雰囲気中で焼成一体化することにより作製され
る。
The conductive paste can be reactively hardened by a known hardening means, and another ceramic green sheet having a predetermined wiring pattern formed as a conductive material filling the wiring space is laminated and reduced. It is produced by firing and integration in a neutral atmosphere or a neutral atmosphere.

【0049】[0049]

【実施例】【Example】

(実施例1)アルミナ質焼結体から成る絶縁基体とし
て、Al2 3 、SiO2 、MgO、CaO等の原料粉
末に公知の有機バインダー、可塑剤、溶剤を添加混合し
て泥漿を調製し、該泥漿を周知のドクターブレード法や
カレンダーロール法等のテープ成形技術により厚さ約3
00μmのセラミックグリーンシートを成形した後、予
め該セラミックグリーンシートの所定位置に打ち抜き加
工を施して層内配線用空間部とスルーホールを形成し
た。
(Example 1) As an insulating substrate made of an alumina sintered body, a slurry was prepared by adding and mixing a known organic binder, a plasticizer, and a solvent to raw material powders of Al 2 O 3 , SiO 2 , MgO, CaO and the like. The thickness of the slurry is about 3 by a well-known tape molding technique such as a doctor blade method or a calendar roll method.
After a ceramic green sheet having a thickness of 00 μm was formed, a punching process was performed in advance on predetermined positions of the ceramic green sheet to form a space portion for intra-layer wiring and a through hole.

【0050】次に、粒径が0.5〜10μmのモリブデ
ン(Mo)粉末に、表1及び表2に示すバインダー組成
物を添加混合し、次いで消泡剤を1重量%加えて更に真
空脱泡して導電性ペーストを調製した。
Next, the binder compositions shown in Tables 1 and 2 were added to and mixed with molybdenum (Mo) powder having a particle size of 0.5 to 10 μm, and then 1% by weight of a defoaming agent was added to the mixture, followed by vacuum degassing. A conductive paste was prepared by bubbling.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】かくして得られた導電性ペーストを用い
て、配線用空間部に直接流し込んだ後、加熱硬化して配
線用空間部に厚さが300μmの導電材を有するセラミ
ックグリーンシートを作製した。
The conductive paste thus obtained was poured directly into the wiring space and then cured by heating to produce a ceramic green sheet having a conductive material with a thickness of 300 μm in the wiring space.

【0054】その後、その上下面に厚さ300μmの他
のセラミックグリーンシートをそれぞれ2枚づつ積層
し、水素(H2 )や窒素(N2 )の混合ガスから成る還
元性雰囲気中、もしくはアルゴン(Ar)ガス等の中性
雰囲気中、約1600℃の温度で焼成することにより、
厚さ約250μmの配線導体を内在した5層から成る評
価用の配線基板を作製した。
Thereafter, two ceramic green sheets each having a thickness of 300 μm are laminated on the upper and lower surfaces thereof, respectively, in a reducing atmosphere composed of a mixed gas of hydrogen (H 2 ) and nitrogen (N 2 ), or with an argon ( By firing at a temperature of about 1600 ° C. in a neutral atmosphere such as Ar) gas,
A wiring board for evaluation consisting of five layers containing wiring conductors having a thickness of about 250 μm was prepared.

【0055】尚、硬化性樹脂を用いず、エチルセルロー
スとブチラールを有機性添加物とするバインダーを用い
て焼成一体化した前記同様の5層の積層体から成る配線
基板を比較例とした。
As a comparative example, a wiring substrate made of the same five-layer laminate as described above, which was fired and integrated using a binder containing ethyl cellulose and butyral as an organic additive without using a curable resin was used.

【0056】かくして得られた評価用の配線基板を用い
て、厚さが50μm以上の配線導体が内蔵されている絶
縁基体の該当部分表面を横切るように、表面粗さ計を用
いて触針法にて、高域カットオフ値2.5mm、基準長
さ25mmの条件で表面うねりを測定したところ、比較
例が56μmWCMmaxであるのに対して、例1乃至例
3はいずれも12μmWCMmax以下と極めて小さいも
のであった。
Using the thus obtained wiring board for evaluation, a stylus method is used by using a surface roughness meter so as to cross the relevant portion surface of the insulating substrate containing the wiring conductor having a thickness of 50 μm or more. The surface waviness was measured under the conditions of a high cutoff value of 2.5 mm and a reference length of 25 mm, and the comparative example was 56 μmW CM max, whereas all of Examples 1 to 3 were 12 μmW CM max. It was extremely small as below.

【0057】また、シート抵抗を測定したところ、その
ばらつきは1mΩ/sqに対して比較例が±0.2に対
して、例1乃至例3はいずれも±0.03以内と望まし
いものであった。
Further, when the sheet resistance was measured, it was desirable that the variation was ± 0.2 for the comparative example with respect to 1 mΩ / sq, and within ± 0.03 for each of the examples 1 to 3. It was

【0058】更に、前記評価用の配線基板を150℃の
温度で2000時間保持する高温放置試験を行い、配線
基板を浸透探傷液で処理して顕微鏡で目視検査を行い、
配線基板のクラックの有無を確認したがいずれもクラッ
クは認められず、従来品と何ら遜色のないことが確認で
きた。
Furthermore, a high-temperature storage test in which the wiring board for evaluation was held at a temperature of 150 ° C. for 2000 hours was performed, the wiring board was treated with a penetrant flaw detection liquid, and visually inspected with a microscope.
The presence or absence of cracks in the wiring board was confirmed, but no cracks were found, and it was confirmed that there was no difference from the conventional product.

【0059】(実施例2)実施例1と同様にして成形し
たセラミックグリーンシートと表3に示す組成の導電性
ペーストを用い、シート状に成形した後、加熱硬化し、
打ち抜き加工した硬化シートを配線用空間部に嵌め込
み、厚さが300μmの導電材を有するセラミックグリ
ーンシートを作製した。尚、バインダーの種類は表2に
記載した。
Example 2 A ceramic green sheet molded in the same manner as in Example 1 and a conductive paste having the composition shown in Table 3 were used to form a sheet, which was then heat cured.
The punched hardened sheet was fitted into the wiring space to produce a ceramic green sheet having a conductive material with a thickness of 300 μm. The types of binders are shown in Table 2.

【0060】[0060]

【表3】 [Table 3]

【0061】その後、実施例1と同様にして厚さ約25
0μmの配線導体を内在した5層から成る評価用の配線
基板を作製した。また、比較例は実施例1と同一とし
た。
Thereafter, in the same manner as in Example 1, the thickness is about 25.
A wiring board for evaluation consisting of 5 layers having a wiring conductor of 0 μm therein was prepared. In addition, the comparative example is the same as the example 1.

【0062】かくして得られた評価用の配線基板を用い
て、実施例1の評価方法と同様にして表面うねりを求め
たところ、比較例の56μmWCMmaxに対して、例1
及び例2はいずれも13μmWCMmax以下と極めて小
さいものであった。
[0062] Thus obtained using the wiring board for evaluation, it was determined the surface waviness in the same manner as in the evaluation method of Example 1, with respect to 56μmW CM max of Comparative Example, Example 1
In each of Example 2 and Example 2, the value was 13 μmW CM max or less, which was extremely small.

【0063】また、シート抵抗のばらつきは1mΩ/s
qに対して比較例の±0.2に対して、例1及び例2は
いずれも±0.05以内であった。
The variation in sheet resistance is 1 mΩ / s.
For q, ± 0.2 for the comparative example was within ± 0.05 for both Example 1 and Example 2.

【0064】更に、高温放置試験ではいずれも配線基板
にクラックは認められなかった。
Further, no crack was found on the wiring board in the high temperature storage test.

【0065】(実施例3)実施例1と同様にして成形し
たセラミックグリーンシートと表4に示す組成の導電性
ペーストを用い、該導電性ペーストを配線用空間部と同
一形状の成形型に鋳込んで加熱硬化し、この硬化体を配
線用空間部に嵌め込み、厚さが300μmの導電材を有
するセラミックグリーンシートを作製した。尚、バイン
ダーの種類は表2に記載した。
(Example 3) A ceramic green sheet molded in the same manner as in Example 1 and a conductive paste having the composition shown in Table 4 were used, and the conductive paste was cast into a mold having the same shape as the wiring space. Then, it was heated and hardened, and the hardened body was fitted into the space for wiring to prepare a ceramic green sheet having a conductive material having a thickness of 300 μm. The types of binders are shown in Table 2.

【0066】[0066]

【表4】 [Table 4]

【0067】その後、実施例1と同様にして厚さ約25
0μmの配線導体を内在した5層から成る評価用の配線
基板を作製した。また、比較例は実施例1と同一とし
た。
Thereafter, in the same manner as in Example 1, the thickness is about 25.
A wiring board for evaluation consisting of 5 layers having a wiring conductor of 0 μm therein was prepared. In addition, the comparative example is the same as the example 1.

【0068】かくして得られた評価用の配線基板を用い
て、実施例1の評価方法と同様にして表面うねりを求め
たところ、比較例の56μmWCMmaxに対して、例1
乃至例3はいずれも8μmWCMmax以下と最も小さい
ものであった。
Using the wiring board for evaluation thus obtained, the surface waviness was determined in the same manner as in the evaluation method of Example 1. As a result, in comparison with the comparative example of 56 μmW CM max,
All of Examples 3 to 8 were the smallest with 8 μmW CM max or less.

【0069】また、シート抵抗のばらつきも1mΩ/s
qに対して比較例の±0.2に対して、例1乃至例3は
いずれも±0.01以内と極めて良好なものであった。
The variation in sheet resistance is also 1 mΩ / s.
In contrast to q of ± 0.2 in Comparative Example, all of Examples 1 to 3 were within ± 0.01, which was extremely good.

【0070】更に、高温放置試験ではいずれも配線基板
にクラックは認められず、従来品と何ら遜色のないこと
も確認できた。
Further, in the high temperature storage test, no cracks were found on the wiring board, and it was confirmed that the wiring board was comparable to the conventional product.

【0071】尚、本発明は前述の実施例に限定されるも
のではなく、本発明の要旨を逸脱しない範囲であれば種
々の変更が可能である。
The present invention is not limited to the above-mentioned embodiments, but various modifications can be made without departing from the gist of the present invention.

【0072】例えば、前述の実施例では本発明の配線基
板を混成集積回路装置に使用される各種電子部品を搭載
する多層配線基板に適用した場合の例で説明したが、図
2は実施例と同様の多層配線基板の他の例を示す要部断
面図であって、絶縁基体2の表面に厚さが50μm以上
の配線導体3が露出した配線基板1であり、電子部品5
は絶縁基体2の表面の配線導体3がスルーホール導体4
を介して絶縁基体2内部の配線導体3と接続されてい
る。
For example, in the above-described embodiment, an example in which the wiring board of the present invention is applied to a multilayer wiring board on which various electronic parts used in a hybrid integrated circuit device are mounted has been described. FIG. 11 is a cross-sectional view of an essential part showing another example of the same multilayer wiring board, which is the wiring board 1 in which the wiring conductors 3 having a thickness of 50 μm or more are exposed on the surface of the insulating base 2;
Is the wiring conductor 3 on the surface of the insulating substrate 2 and the through-hole conductor 4
Is connected to the wiring conductor 3 inside the insulating substrate 2.

【0073】更に、図3は半導体素子を収容する半導体
素子収納用パッケージに適用した場合の他の例を示す要
部断面図である。
Further, FIG. 3 is a cross-sectional view of a main part showing another example when applied to a semiconductor element housing package for housing a semiconductor element.

【0074】図3において、1は厚さが50μm以上の
配線導体3を絶縁基体2中に一体的に形成した半導体素
子収納用パッケージを成す配線基板であり、絶縁基体2
の上面中央部に半導体素子6を収容するための空所を形
成する凹部7が設けてあり、その凹部7周辺から配線導
体3がスルーホール導体4を介して下面に引き出され、
凹部7周辺部には半導体素子6の各電極がボンディング
ワイヤ8を介して電気的に接続され、絶縁基体2の下面
に導出された部位には、外部電気回路と接続する外部リ
ード端子9が電気的に接続されて、外部リード端子9に
半導体素子6の各電極が電気的に導通するようになって
おり、最終的に前記凹部7の上部には、金属やセラミッ
クス等から成る蓋体10を凹部7を塞ぐように封止材を
介して接合し、半導体素子6を絶縁基体2の凹部7内に
気密に収容されている。
In FIG. 3, reference numeral 1 denotes a wiring board which constitutes a package for housing a semiconductor element in which a wiring conductor 3 having a thickness of 50 μm or more is integrally formed in an insulating base 2.
A recess 7 is formed at the center of the upper surface of the recess to form a space for housing the semiconductor element 6, and the wiring conductor 3 is drawn from the periphery of the recess 7 to the lower surface via the through-hole conductor 4.
The electrodes of the semiconductor element 6 are electrically connected to the periphery of the recess 7 via the bonding wires 8, and the external lead terminals 9 for connecting to an external electric circuit are electrically connected to the portion led out to the lower surface of the insulating base 2. Are electrically connected to each other so that the electrodes of the semiconductor element 6 are electrically connected to the external lead terminals 9. Finally, a lid 10 made of metal, ceramics or the like is provided above the recess 7. The semiconductor element 6 is hermetically housed in the recess 7 of the insulating base 2 by being bonded via a sealing material so as to close the recess 7.

【0075】[0075]

【発明の効果】本発明の配線基板によれば、絶縁基体中
に設けた厚さが50μm以上の配線導体を、高融点金属
と反応硬化性樹脂を主成分とするバインダーとの混合物
から成る導電材を用いて形成し、前記絶縁基体表面のう
ねりが高域カットオフ値2.5mm、基準長さ25mm
で20μmWCMmax以下であること、またその製造方
法として、前記導電材を配線用空間部に導電性ペースト
を充填した後、反応硬化させて形成するか、あるいは前
記導電性ペーストをシート状に成形して反応硬化させた
後、前記空間部寸法形状に打ち抜き加工し、該空間部に
嵌め込んで形成するか、または前記導電性ペーストを空
間部形状の成形型に充填して反応硬化させた後、該硬化
成形体を前記空間部に嵌め込んで形成することから、絶
縁基体表面のうねり等の変形が極めて小さく、寸法精度
が良好で同時に抵抗値の安定した低抵抗値の配線導体を
絶縁基体に強固に取着させておくことが可能となり、フ
リップチップ接続法にも好適であり、量産効果にも極め
て優れ、その結果、配線導体を伝わる電気信号の電圧降
下を小さなものと成すことができ、配線導体の低抵抗化
が要求されている各種制御機器や情報通信機器等をはじ
めとする用途に極めて有用である。
According to the wiring board of the present invention, a wiring conductor having a thickness of 50 μm or more provided in an insulating substrate is made of a mixture of a refractory metal and a binder whose main component is a reaction curable resin. Material, and the undulations on the surface of the insulating substrate have a high cutoff value of 2.5 mm and a reference length of 25 mm.
20 μmW CM max or less, and as a manufacturing method thereof, the conductive material is formed by filling the space for wiring with a conductive paste and then curing by reaction, or by molding the conductive paste into a sheet shape. And then reaction-cured, punched into the dimension of the space and formed by fitting into the space, or after filling the space-shaped mold with the conductive paste and reaction-curing Since the cured molded body is formed by being fitted in the space, the wiring base having a low resistance value in which the deformation of the surface of the insulating substrate is extremely small, the dimensional accuracy is good, and the resistance value is stable at the same time, is formed. It can be firmly attached to the wire, is suitable for the flip-chip connection method, and is extremely excellent in mass production. As a result, the voltage drop of the electric signal transmitted through the wiring conductor is small. Succoth can, is very useful in applications including various types of control devices and information communication devices such as the resistance of the wiring conductors is required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の配線基板を混成集積回路装置に使用さ
れる各種電子部品を搭載する多層配線基板に適用した場
合の一実施例を示す要部断面図である。
FIG. 1 is a cross-sectional view of essential parts showing an embodiment in which a wiring board of the present invention is applied to a multilayer wiring board on which various electronic components used in a hybrid integrated circuit device are mounted.

【図2】本発明の配線基板を混成集積回路装置に使用さ
れる各種電子部品を搭載する多層配線基板に適用した場
合の他の実施例を示す要部断面図である。
FIG. 2 is a cross-sectional view of essential parts showing another embodiment in which the wiring board of the present invention is applied to a multilayer wiring board on which various electronic components used in a hybrid integrated circuit device are mounted.

【図3】本発明の配線基板を半導体素子収納用パッケー
ジに適用した場合の他の実施例を示す要部断面図であ
る。
FIG. 3 is a cross-sectional view of essential parts showing another embodiment in which the wiring board of the present invention is applied to a package for housing a semiconductor element.

【符号の説明】[Explanation of symbols]

1 配線基板 2 絶縁基体 3 配線導体 1 wiring board 2 insulating substrate 3 wiring conductor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】セラミック焼結体から成る絶縁基体に厚さ
が50μm以上の配線導体を一体的に形成した配線基板
であって、前記配線導体が反応硬化性樹脂を主たるバイ
ンダーとした導電材から成り、前記絶縁基体表面のうね
りが、高域カットオフ値2.5mm、基準長さ25mm
で20μmWCMmax以下であることを特徴とする配線
基板。
1. A wiring board in which a wiring conductor having a thickness of 50 μm or more is integrally formed on an insulating substrate made of a ceramic sintered body, wherein the wiring conductor is made of a conductive material containing a reaction curable resin as a main binder. And the waviness of the surface of the insulating substrate has a high cutoff value of 2.5 mm and a reference length of 25 mm.
Wiring board characterized in that it is less than 20 μm W CM max.
【請求項2】厚さが50μm以上の導電材を有するセラ
ミックグリーンシートに、所定の配線パターンを有する
セラミックグリーンシートを複数枚積層し、還元性雰囲
気または中性雰囲気中で焼成一体化する配線基板の製造
方法であって、前記導電材は、セラミックグリーンシー
トを打ち抜いて形成した空間部に、反応硬化性樹脂を主
たるバインダーとする導電性ペーストを充填した後、反
応硬化させて形成したことを特徴とする配線基板の製造
方法。
2. A wiring board in which a plurality of ceramic green sheets having a predetermined wiring pattern are laminated on a ceramic green sheet having a conductive material having a thickness of 50 μm or more, and fired and integrated in a reducing atmosphere or a neutral atmosphere. The conductive material is formed by punching a ceramic green sheet into a space portion, filling a conductive paste containing a reactive curable resin as a main binder, and then curing the conductive paste. And a method for manufacturing a wiring board.
【請求項3】厚さが50μm以上の導電材を有するセラ
ミックグリーンシートに、所定の配線パターンを有する
セラミックグリーンシートを複数枚積層し、還元性雰囲
気または中性雰囲気中で焼成一体化する配線基板の製造
方法であって、前記導電材は、セラミックグリーンシー
トを打ち抜いて形成した空間部に、反応硬化性樹脂を主
たるバインダーとする導電性ペーストで成形したグリー
ンシートを反応硬化させた後、前記空間部寸法形状に打
ち抜き加工した硬化シートを嵌め込んで形成したことを
特徴とする配線基板の製造方法。
3. A wiring board in which a plurality of ceramic green sheets having a predetermined wiring pattern are laminated on a ceramic green sheet having a conductive material having a thickness of 50 μm or more, and fired and integrated in a reducing atmosphere or a neutral atmosphere. The conductive material, in the space portion formed by punching out the ceramic green sheet, after reaction curing a green sheet molded with a conductive paste having a reactive curable resin as a main binder, the space A method for manufacturing a wiring board, characterized in that the wiring board is formed by fitting a hardened sheet punched into the shape of a part.
【請求項4】厚さが50μm以上の導電材を有するセラ
ミックグリーンシートに、所定の配線パターンを有する
セラミックグリーンシートを複数枚積層し、還元性雰囲
気または中性雰囲気中で焼成一体化する配線基板の製造
方法であって、前記導電材は、セラミックグリーンシー
トを打ち抜いて形成した空間部に、反応硬化性樹脂を主
たるバインダーとする導電性ペーストを前記空間部形状
の成形型に充填して反応硬化させた後、該硬化体を前記
空間部に嵌め込んで形成したことを特徴とする配線基板
の製造方法。
4. A wiring board in which a plurality of ceramic green sheets having a predetermined wiring pattern are laminated on a ceramic green sheet having a conductive material having a thickness of 50 μm or more, and fired and integrated in a reducing atmosphere or a neutral atmosphere. In the manufacturing method of the conductive material, a space formed by punching out a ceramic green sheet is filled with a conductive paste containing a reactive curable resin as a main binder in a molding die having the shape of the space and is cured by reaction. A method of manufacturing a wiring board, characterized in that the cured body is fitted into the space portion and then formed.
JP28208195A 1995-10-30 1995-10-30 Wiring board and method of manufacturing the same Expired - Fee Related JP3231982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28208195A JP3231982B2 (en) 1995-10-30 1995-10-30 Wiring board and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28208195A JP3231982B2 (en) 1995-10-30 1995-10-30 Wiring board and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09130018A true JPH09130018A (en) 1997-05-16
JP3231982B2 JP3231982B2 (en) 2001-11-26

Family

ID=17647884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28208195A Expired - Fee Related JP3231982B2 (en) 1995-10-30 1995-10-30 Wiring board and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3231982B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11284345A (en) * 1998-03-31 1999-10-15 Kyocera Corp Ceramic multi-layer wiring board
JP2002232142A (en) * 2001-01-30 2002-08-16 Kyocera Corp Multilayer wiring board and its producing method
WO2005081311A1 (en) * 2004-02-24 2005-09-01 Sanyo Electric Co., Ltd. Circuit device and manufacturing method thereof
KR100874047B1 (en) * 2004-02-24 2008-12-12 산요덴키가부시키가이샤 Circuit device and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11284345A (en) * 1998-03-31 1999-10-15 Kyocera Corp Ceramic multi-layer wiring board
JP2002232142A (en) * 2001-01-30 2002-08-16 Kyocera Corp Multilayer wiring board and its producing method
WO2005081311A1 (en) * 2004-02-24 2005-09-01 Sanyo Electric Co., Ltd. Circuit device and manufacturing method thereof
JPWO2005081311A1 (en) * 2004-02-24 2007-08-02 三洋電機株式会社 Circuit device and manufacturing method thereof
KR100874047B1 (en) * 2004-02-24 2008-12-12 산요덴키가부시키가이샤 Circuit device and manufacturing method thereof
US7714232B2 (en) 2004-02-24 2010-05-11 Sanyo Electric Co., Ltd. Circuit device and method of manufacturing the same
JP4785139B2 (en) * 2004-02-24 2011-10-05 オンセミコンダクター・トレーディング・リミテッド Circuit device and manufacturing method thereof

Also Published As

Publication number Publication date
JP3231982B2 (en) 2001-11-26

Similar Documents

Publication Publication Date Title
US6582541B2 (en) Monolithic ceramic substrate, manufacturing and designing methods therefor, and electronic device
JPH06326433A (en) Conductor paste composition
JPH0811696B2 (en) Multi-layer glass ceramic substrate and manufacturing method thereof
JP3231982B2 (en) Wiring board and method of manufacturing the same
US20110091686A1 (en) Low temperature co-fired ceramic material, low temperature co-fired ceramic body, and multilayer ceramic substrate
JPH11177238A (en) Manufacture of glass ceramic multilayer substrate
JP2009241456A (en) Dielectric substrate
JP2735776B2 (en) Multilayer alumina wiring board and package for housing semiconductor element
JP4077625B2 (en) Low temperature fired porcelain composition and method for producing low temperature fired porcelain
JPS6357393B2 (en)
JPH06291435A (en) Conductive paste and ceramic wiring substrate forming conductor thereof as well as manufacture thereof
JP3493277B2 (en) Method for manufacturing plasma display panel substrate, plasma display panel substrate obtained by the method, and plasma display panel
JP2513382B2 (en) Method for manufacturing multilayer glass ceramic substrate
JP3420424B2 (en) Wiring board
JPH10256730A (en) Multilayer ceramic board
JP3145621B2 (en) Wiring board and manufacturing method thereof
JP2002198646A (en) Method of manufacturing multilayer wiring board
JPS61222193A (en) Substrate for electronic circuit
JPS5895643A (en) Sintered body having coefficient of thermal expansion approximating to silicon
JP4530864B2 (en) Wiring board with built-in capacitor
JP3934811B2 (en) High thermal expansion glass ceramic sintered body and manufacturing method thereof, wiring board and mounting structure thereof
JPS6332751B2 (en)
JP3181019B2 (en) Wiring board manufacturing method
JP5619950B2 (en) Dielectric substrate manufacturing method
JP2504349B2 (en) Multi-layer glass ceramic substrate and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees