JPH09129931A - Gan compd. semiconductor light emitting element - Google Patents

Gan compd. semiconductor light emitting element

Info

Publication number
JPH09129931A
JPH09129931A JP8267856A JP26785696A JPH09129931A JP H09129931 A JPH09129931 A JP H09129931A JP 8267856 A JP8267856 A JP 8267856A JP 26785696 A JP26785696 A JP 26785696A JP H09129931 A JPH09129931 A JP H09129931A
Authority
JP
Japan
Prior art keywords
type
light emitting
gan layer
type electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8267856A
Other languages
Japanese (ja)
Other versions
JP3223810B2 (en
Inventor
Shuji Nakamura
修二 中村
Masayuki Senoo
雅之 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP26785696A priority Critical patent/JP3223810B2/en
Publication of JPH09129931A publication Critical patent/JPH09129931A/en
Application granted granted Critical
Publication of JP3223810B2 publication Critical patent/JP3223810B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance the light emitting output. SOLUTION: A GaN compd. semiconductor light emitting element comprises an n-type GaN compd. semiconductor layer 3 on a substrate and p-type dopant doped p-type Ga compd. semiconductor layer 4A thereon. To this layer 4A p-type electrodes 5 are electrically connected by the annealing by which the electrodes 5 make weak the emission of light emitting parts facing at the positions of the electrodes 5 located at a part difficult to remove H from the semiconductor layer 4A and intense the emission of light emitting parts facing at the electrodes 5 located at a part easy to remove H.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として、青色発光ダ
イオード、青色発光レーザーダイオード等の発光デバイ
スに使用される窒化ガリウム系化合物半導体発光素子に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gallium nitride-based compound semiconductor light emitting device mainly used for light emitting devices such as blue light emitting diodes and blue light emitting laser diodes.

【0002】[0002]

【従来の技術】青色発光ダイオード、青色レーザーダイ
オード等に使用される実用的な半導体材料として、窒化
ガリウム(GaN)、窒化インジウムガリウム(InG
aN)、窒化ガリウムアルミニウム(GaAlN)、窒
化インジウムアルミニウムガリウム(InAlGaN)
等の窒化ガリウム系化合物半導体が注目されている。
2. Description of the Related Art Gallium nitride (GaN) and indium gallium nitride (InG) are practical semiconductor materials used for blue light emitting diodes, blue laser diodes and the like.
aN), gallium aluminum nitride (GaAlN), indium aluminum gallium nitride (InAlGaN)
The gallium nitride-based compound semiconductors such as the above have attracted attention.

【0003】例えば、GaNを用いた青色発光素子はM
IS(Metal-Insulater-Semiconductor)構造のものが
よく知られており、この構造を図1の断面図、および図
2の平面図を用いて説明する。これは基本的に、透光性
基板であるサファイア基板1の上に、AlNよりなるバ
ッファ層2と、n型GaN層3と、p型ドーパントをド
ープしたGaN層4よりなる構造を有している。p型ド
ーパントをドープしたGaN層4は、低抵抗の半導体で
はなく、実際は抵抗率が106Ω・cm以上の高抵抗な半
絶縁体(i型)となっている。
For example, a blue light emitting element using GaN is M
An IS (Metal-Insulator-Semiconductor) structure is well known, and this structure will be described with reference to the sectional view of FIG. 1 and the plan view of FIG. This basically has a structure including a buffer layer 2 made of AlN, an n-type GaN layer 3, and a GaN layer 4 doped with a p-type dopant on a sapphire substrate 1 which is a transparent substrate. There is. The p-type dopant-doped GaN layer 4 is not a low-resistance semiconductor, but is actually a high-resistance semi-insulator (i-type) having a resistivity of 10 6 Ω · cm or more.

【0004】さらにn型GaN層3には、例えばAl、
Inよりなるn型電極6(本明細書では、n型窒化ガリ
ウム系化合物半導体に形成される電極を全てn型電極と
いう。)が形成されている。一方、p型ドーパントをド
ープしたi型GaN層4にも、例えばAu、Inよりな
るp型電極5(同じく、本明細書では、p型ドーパント
がドープされた窒化ガリウム系化合物半導体に形成され
る電極を全てp型電極という。)が形成されている。p
型電極を接続する層は、正確にはp型でなくi型のGa
N層4である。ただ、このi型GaN層4は、p型ドー
パントをドープしたGaN層4であるので、ここに接続
する電極はp型電極という。
Further, for the n-type GaN layer 3, for example, Al,
An n-type electrode 6 made of In (in this specification, all electrodes formed on an n-type gallium nitride compound semiconductor are referred to as n-type electrodes) is formed. On the other hand, in the i-type GaN layer 4 doped with the p-type dopant, the p-type electrode 5 made of, for example, Au or In (similarly, in the present specification, it is formed in the gallium nitride-based compound semiconductor doped with the p-type dopant. All electrodes are referred to as p-type electrodes). p
The layer connecting the mold electrodes is not exactly p-type but i-type Ga.
It is the N layer 4. However, since this i-type GaN layer 4 is a GaN layer 4 doped with a p-type dopant, the electrode connected thereto is called a p-type electrode.

【0005】この構造の青色発光素子は、図2の平面図
に示すように、p型電極5をi型GaN層4の全面に形
成することにより電界を均一に広げ、GaN層4を全面
発光させて、光をサファイア基板側1から取り出す構造
としている。
As shown in the plan view of FIG. 2, in the blue light emitting device having this structure, the p-type electrode 5 is formed on the entire surface of the i-type GaN layer 4 to uniformly spread the electric field, and the GaN layer 4 is entirely illuminated. Thus, the light is extracted from the sapphire substrate side 1.

【0006】[0006]

【発明が解決しようとする課題】この構造の発光ダイオ
ードは、i型GaN層4を発光層とし、この発光層にp
型電極5を形成している。ところがこの構造の発光ダイ
オードは、順方向電圧が高く、しかも発光出力が低い欠
点がある。順方向電圧が高いのは、i型GaN層4がほ
ぼ絶縁体だからである。このような高抵抗なi型窒化ガ
リウム系化合物半導体を有する発光素子は、順方向電圧
が高く、発光出力は極めて悪い。
In the light emitting diode having this structure, the i-type GaN layer 4 is used as a light emitting layer, and the p-type light emitting layer is used as the light emitting layer.
The mold electrode 5 is formed. However, the light emitting diode having this structure has a drawback that the forward voltage is high and the light emission output is low. The forward voltage is high because the i-type GaN layer 4 is almost an insulator. A light emitting device having such a high-resistance i-type gallium nitride compound semiconductor has a high forward voltage, and the light emission output is extremely poor.

【0007】従って、本発明は、従来の青色発光素子の
発光出力を増大させるという難しい問題を解決すること
を目的に開発されたものである。
Therefore, the present invention was developed for the purpose of solving the difficult problem of increasing the light emission output of the conventional blue light emitting element.

【0008】[0008]

【課題を解決するための手段】本発明者は従来技術では
想像もできないような特異な発光状態によって、上記問
題が解決できることを見いだした。即ち、本発明の窒化
ガリウム系化合物半導体発光素子は、基板の上に、少な
くともn型窒化ガリウム系化合物半導体層と、p型ドー
パントをドープして水素を含むp型窒化ガリウム系化合
物半導体層とを成長させている。p型窒化ガリウム系化
合物半導体層には、アニーリング処理してp型電極を電
気的に接続している。さらに、本発明の窒化ガリウム系
化合物半導体発光素子は、p型電極を電気接続するアニ
ーリング処理で、p型窒化ガリウム系化合物半導体層の
表面に電気接続されるp型電極によって、p型窒化ガリ
ウム系化合物半導体層から水素の除去されにくい部分に
あるp型電極の位置に対応する発光部の発光を弱くし
て、水素の除去されやすい部分にあるp型電極の位置に
対応する発光部の発光を強くしている。
The inventor of the present invention has found that the above problems can be solved by a peculiar light emitting state that cannot be imagined by the prior art. That is, the gallium nitride-based compound semiconductor light-emitting device of the present invention has at least an n-type gallium nitride-based compound semiconductor layer and a p-type gallium nitride-based compound semiconductor layer containing hydrogen by doping with a p-type dopant on a substrate. Growing up. The p-type gallium nitride-based compound semiconductor layer is annealed to electrically connect the p-type electrode. Furthermore, the gallium nitride-based compound semiconductor light-emitting device of the present invention is a p-type gallium nitride-based compound semiconductor light-emitting device that is subjected to an annealing treatment for electrically connecting a p-type electrode with a p-type gallium nitride-based compound electrically connected to the surface of a p-type gallium nitride-based compound semiconductor layer. The light emission of the light emitting portion corresponding to the position of the p-type electrode in the portion where hydrogen is hardly removed from the compound semiconductor layer is weakened so that the light emission of the light emitting portion corresponding to the position of the p-type electrode in the portion where hydrogen is easily removed is emitted. I'm getting stronger.

【0009】以下、本発明の発光素子を図3を参照して
説明する。この発光素子は、サファイア基板1の上に、
バッファ層2と、n型GaN層3と、p型ドーパントを
ドープしたp型GaN層4Aを積層して、p型GaN層
4Aに、オーミックコンタクトさせる目的で、アニーリ
ングしたp型電極5を接続している。アニーリングする
ときに、p型GaN層4Aに含まれる水素が除去されて
p型GaN層4Aの抵抗は減少する。ただ、p型GaN
層4Aの全体から均一に水素は除去されない。p型Ga
N層4Aにp型電極5を形成してアニーリングを行う
と、p型電極5の真下の部分からは水素が結晶中から出
ることができず、水素の除去されにくい部分となってp
型電極5の下に残ったままとなる。したがって、p型電
極5を形成してアニーリングすることによって、p型電
極5が形成されたp型GaN層4Aの抵抗を大きく、形
成されない水素の除去されやすい部分の抵抗を小さくで
きる。つまり、p型GaN層4Aの電気抵抗の分布を調
整することができる。この状態でp型GaN層4Aに接
続されたp型電極5に通電すると、電流がp型電極5の
周縁部に集中して流れ、p型電極5の周縁近傍を他の部
分よりも強く発光させる。即ち、本発明の窒化ガリウム
系化合物半導体発光素子は、図1のi型層GaN層4を
均一に発光させる従来の発光素子とは逆に、p型GaN
層4Aと接触抵抗の小さいp型電極5の周縁近傍で局部
的に強く発光させることによって、総合的な発光出力を
著しく増大させるのである。以上、図3のホモ接合LE
Dについて説明したが、例えばダブルへテロ構造LED
の場合も同様に、p型電極の周縁近傍で強く発光させる
ことができる。
The light emitting device of the present invention will be described below with reference to FIG. This light emitting device is provided on the sapphire substrate 1.
A buffer layer 2, an n-type GaN layer 3, and a p-type GaN layer 4A doped with a p-type dopant are stacked, and an annealed p-type electrode 5 is connected to the p-type GaN layer 4A for ohmic contact. ing. Upon annealing, hydrogen contained in the p-type GaN layer 4A is removed, and the resistance of the p-type GaN layer 4A decreases. However, p-type GaN
Hydrogen is not uniformly removed from the entire layer 4A. p-type Ga
When the p-type electrode 5 is formed on the N layer 4A and annealed, hydrogen cannot escape from the crystal right under the p-type electrode 5 and becomes a part where hydrogen is difficult to be removed.
It remains under the mold electrode 5. Therefore, by forming the p-type electrode 5 and annealing, the resistance of the p-type GaN layer 4A in which the p-type electrode 5 is formed can be increased, and the resistance of a portion of the p-type GaN layer 4A where hydrogen is not easily formed can be reduced. That is, the distribution of the electric resistance of the p-type GaN layer 4A can be adjusted. In this state, when the p-type electrode 5 connected to the p-type GaN layer 4A is energized, a current concentrates on the peripheral portion of the p-type electrode 5 and emits light in the vicinity of the peripheral portion of the p-type electrode 5 more strongly than other portions. Let That is, the gallium nitride-based compound semiconductor light-emitting device of the present invention is different from the conventional light-emitting device in which the i-type GaN layer 4 of FIG.
By locally and strongly emitting light in the vicinity of the periphery of the layer 4A and the p-type electrode 5 having a small contact resistance, the overall light emission output is significantly increased. Above, the homozygous LE of FIG.
Although D has been described, for example, a double heterostructure LED
In this case, similarly, strong light can be emitted near the periphery of the p-type electrode.

【0010】p型電極5、およびn型電極6には、例え
ばAu、Al、In、Ni、Pt、Cr、Tiまたはこ
れらの金属の合金を使用することができる。p型電極5
の形状はドット、ストライプ、碁盤格子状等任意の形状
で形成することができる。また図4に示すように、互い
に独立してp型電極5を形成した後、これらの電極を電
気的に接続するために、導電性材料8でオーバーコート
することもできる。
For the p-type electrode 5 and the n-type electrode 6, for example, Au, Al, In, Ni, Pt, Cr, Ti or alloys of these metals can be used. p-type electrode 5
Can be formed in any shape such as dots, stripes, and checkerboard grids. Alternatively, as shown in FIG. 4, after the p-type electrodes 5 are formed independently of each other, they may be overcoated with a conductive material 8 in order to electrically connect these electrodes.

【0011】[0011]

【作用】本発明の窒化ガリウム系化合物半導体発光素子
は、p型GaN層4A上のp型電極5の周縁近傍に電流
が集中して流れるようにして、この部分の発光出力を大
きくできる。例えば、図3に示すように、p型電極5を
設けた発光素子は、電極5によって、p型GaN層4A
の電気抵抗を変化させることによって電流の流れ方を調
整できる。つまり、p型電極5が形成されたp型GaN
層の電気抵抗がアニーリングにより変化される。この結
果、p型電極5を形成した下部であって、p型電極5で
水素が除去されにくい部分となるp型GaN層4Aの電
気抵抗を、p型電極5の形成されない、水素が除去され
やすいp型GaN層4Aに比較して大きくしている。こ
の構造の発光素子は、p型電極5が形成された直下部で
ある、水素の除去されにく部分のp型GaN層は抵抗が
大きいので、電流が流れにくく、p型電極5周縁下部の
p型GaN層は抵抗が小さいので電流が流れやすい。従
って、p型電極5の周縁部に電流が集中しやすいので、
この部分に相当する発光部の発光出力を大きくすること
ができる。
In the gallium nitride-based compound semiconductor light-emitting device of the present invention, the current is concentrated and flows near the periphery of the p-type electrode 5 on the p-type GaN layer 4A, so that the emission output of this portion can be increased. For example, as shown in FIG. 3, a light emitting device provided with a p-type electrode 5 is provided with a p-type GaN layer 4A by the electrode 5.
The current flow can be adjusted by changing the electric resistance of the. That is, p-type GaN on which the p-type electrode 5 is formed
The electrical resistance of the layer is changed by annealing. As a result, the electric resistance of the p-type GaN layer 4A, which is the portion below the p-type electrode 5 where hydrogen is hard to be removed by the p-type electrode 5, is reduced by the hydrogen which is not formed by the p-type electrode 5. It is made larger than the p-type GaN layer 4A, which is easy. In the light emitting device having this structure, since the p-type GaN layer, which is a portion directly below the p-type electrode 5 and is hard to remove hydrogen, has a large resistance, it is difficult for current to flow, and the p-type electrode 5 has a lower peripheral portion. Since the p-type GaN layer has a small resistance, a current easily flows. Therefore, the electric current tends to concentrate on the peripheral portion of the p-type electrode 5,
The light emission output of the light emitting portion corresponding to this portion can be increased.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。但し、以下に示す実施例は本発明の技術思想を具
体化するための発光素子を例示するものであって、本発
明の発光素子は、構成部品の化学組成、全体の構造や配
置等を下記のものに特定するものではない。本発明の発
光素子は特許請求の範囲の要旨に含まれる範囲で変更す
ことができる。
Embodiments of the present invention will be described below with reference to the drawings. However, the examples shown below exemplify a light emitting device for embodying the technical idea of the present invention, and the light emitting device of the present invention has the following chemical composition of components, overall structure and arrangement, etc. It is not specific to one. The light emitting device of the present invention can be modified within the scope of the claims.

【0013】図3に示す窒化ガリウム系化合物半導体発
光素子は、透光性基板であるサファイア基板1のC面
に、MOCVD装置を用いて、GaNバッファ層2を2
00オングストロームの膜厚で成長させている。GaN
バッファ層2の上にSiをドープしたn型GaN層3を
4μmの膜厚で成長させている。さらにn型GaN層の
上に、Mgをドープしたp型GaN層4Aを設け、p型
GaN層4Aの上にはp型電極5をn型GaN層の上に
はn型電極6を設けている。
In the gallium nitride-based compound semiconductor light emitting device shown in FIG. 3, a GaN buffer layer 2 is formed on the C surface of a sapphire substrate 1 which is a transparent substrate by using a MOCVD device.
It is grown to a film thickness of 00 angstrom. GaN
An n-type GaN layer 3 doped with Si is grown on the buffer layer 2 to a film thickness of 4 μm. Further, a Mg-doped p-type GaN layer 4A is provided on the n-type GaN layer, a p-type electrode 5 is provided on the p-type GaN layer 4A, and an n-type electrode 6 is provided on the n-type GaN layer. There is.

【0014】図3に示す発光素子は、p型GaN層4A
と、n型GaN層3の上にそれぞれp型電極5と、n型
電極6を設けている。電極5、6は下記のようにして形
成される。 p型GaN層4Aの上にフォトレジストで所定のパ
ターンを作成する。 p型GaN層4Aの一部をn型GaN層3が露出す
るまでエッチングする。 エッチング終了後レジストを剥離し、再度フォトレ
ジストで電極5、6のパターンを作成する。 n型GaN層3にはAlを蒸着し、p型GaN層4
AにはNiを蒸着して、それぞれn型電極6、p型電極
5とする。なおp型電極は幅30μmのストライプと
し、ストライプ間隔も10μmとして1チップに15本
設ける。両電極形成後、700℃でウエハーをアニーリ
ングする。 p型GaN層4Aに設けたストライプ状のp型電極
5を電気的に接続するために、図4に示すように、p型
電極5の上にAu、In等の導電性材料8を蒸着する。
The light emitting device shown in FIG. 3 has a p-type GaN layer 4A.
And a p-type electrode 5 and an n-type electrode 6 are provided on the n-type GaN layer 3, respectively. The electrodes 5 and 6 are formed as follows. A predetermined pattern is formed with a photoresist on the p-type GaN layer 4A. A part of the p-type GaN layer 4A is etched until the n-type GaN layer 3 is exposed. After the etching is completed, the resist is peeled off, and the pattern of the electrodes 5 and 6 is formed again with the photoresist. Al is deposited on the n-type GaN layer 3 and the p-type GaN layer 4
Ni is vapor-deposited on A to form an n-type electrode 6 and a p-type electrode 5, respectively. The p-type electrode is a stripe having a width of 30 μm, and the stripe interval is 10 μm, and 15 pieces are provided on one chip. After forming both electrodes, the wafer is annealed at 700 ° C. In order to electrically connect the stripe-shaped p-type electrode 5 provided on the p-type GaN layer 4A, a conductive material 8 such as Au or In is deposited on the p-type electrode 5 as shown in FIG. .

【0015】図3に示す発光素子は、p型電極5が形成
されたp型GaN層4Aと、形成されないp型GaN層
4Aとの電気抵抗をアニーリングにより変化させて調整
する。この結果、アニーリング処理において水素の除去
されにくい部分となるp型電極5を形成した下部のp型
GaN層4Aの電気抵抗を、水素の除去されやすい部分
であるp型電極の形成されないp型GaN層4Aに比較
して大きくしている。この構造の発光素子は、p型電極
5が形成された下部のp型GaN層は抵抗が大きいので
電流が流れにくく、p型電極5の周縁下部のp型GaN
層4Aの抵抗は小さいので、電流が流れやすい。したが
ってp型電極5の周縁部に集中して電流が流れ、この部
分の発光出力を大きくすることができる。
In the light emitting device shown in FIG. 3, the electrical resistances of the p-type GaN layer 4A on which the p-type electrode 5 is formed and the p-type GaN layer 4A not formed are changed by annealing to adjust the electric resistance. As a result, the electric resistance of the lower p-type GaN layer 4A in which the p-type electrode 5 is formed, which is a portion where hydrogen is difficult to be removed in the annealing process, is changed to the p-type GaN where the p-type electrode, which is a portion where hydrogen is easily removed, is not formed. It is made larger than the layer 4A. In the light emitting device having this structure, since the p-type GaN layer below the p-type electrode 5 has a large resistance, it is difficult for current to flow, and the p-type GaN layer below the peripheral edge of the p-type electrode 5 is difficult.
Since the resistance of the layer 4A is small, the current easily flows. Therefore, the electric current concentrates on the peripheral portion of the p-type electrode 5, and the light emission output of this portion can be increased.

【0016】本発明の発光素子は、アニーリング処理し
てp型電極5を形成した下部のp型GaN層4Aの抵抗
を大きくし、形成しないp型GaN層4Aの抵抗を小さ
くする。p型GaN層4Aにp型電極5を形成した後、
p型電極5が形成されないp型GaN層中に含まれる水
素を除去することでこの状態を実現できる。p型GaN
層4Aの電気抵抗は、p型GaN層4A中に含まれる水
素によって高くなっている。GaN層を成長させる時
に、GaN層に水素が含まれる。GaN層を成長させる
時に水素を完全に除くことは極めて難しい。それはGa
N層成長時に窒素源としてアンモニア等の水素と窒素を
含む化合物ガスを使用し、このアンモニアが成長時に分
解して、原子状水素ができ、この水素原子がどうしても
アクセプターとしてドープされているp型ドーパント
(例えば、Mg、Zn)と結合して、p型ドーパントを
不活性化してしまうためである。したがって原子状水素
がp型GaN層中に入ると、水素はアクセプタードーパ
ントを不活性化して、p型GaNを高抵抗化してしま
う。
In the light emitting device of the present invention, the resistance of the lower p-type GaN layer 4A having the p-type electrode 5 formed by annealing is increased, and the resistance of the p-type GaN layer 4A not formed is decreased. After forming the p-type electrode 5 on the p-type GaN layer 4A,
This state can be realized by removing hydrogen contained in the p-type GaN layer in which the p-type electrode 5 is not formed. p-type GaN
The electric resistance of the layer 4A is increased by the hydrogen contained in the p-type GaN layer 4A. Hydrogen is included in the GaN layer when the GaN layer is grown. It is extremely difficult to completely remove hydrogen when growing a GaN layer. That is Ga
A p-type dopant in which a compound gas containing hydrogen and nitrogen such as ammonia is used as a nitrogen source during the growth of the N layer, the ammonia is decomposed during the growth to form atomic hydrogen, and this hydrogen atom is inevitably doped as an acceptor. This is because the p-type dopant is inactivated by combining with (for example, Mg, Zn). Therefore, when atomic hydrogen enters the p-type GaN layer, the hydrogen inactivates the acceptor dopant and increases the resistance of the p-type GaN.

【0017】p型GaN層4A中の水素は、例えば40
0℃以上でアニーリングすることにより除去できる。つ
まり、GaN層中で、M−Hの状態で結合しているp型
ドーパント(M)と水素(H)から、水素のみが出てい
くことによりアクセプタードーパントが活性化し正孔が
できる。正孔の発生はp型GaN層4Aの抵抗をさらに
低下させる。p型GaN層4Aにp型電極5を形成した
状態で、例えば、700℃でアニーリングを行うと、p
型電極5の真下は、水素の除去されにくい部分となっ
て、この部分からは水素が結晶中から出ることができ
ず、p型電極5の下に残ったままとなる。したがって、
p型電極5を形成してアニーリングすることによって、
p型電極5が形成されたp型GaN層4Aの抵抗を大き
く、形成されない部分の抵抗を小さくできる。つまり、
p型GaN層4Aの電気抵抗の分布を調整することがで
きる。以上のように、p型電極5は、p型GaN層4A
から水素が除去されるのを抑制する。p型GaN層4A
は、p型電極のない部分では速やかに水素が除去される
が、p型電極4Aで覆われる部分は、p型電極4Aによ
って水素の除去が阻害される。したがって、p型GaN
層にp型電極を積層する窒化ガリウム系化合物半導体発
光素子は、p型電極をアニーリング処理して電気接続す
るときに、p型電極によって、p型GaN層を、水素の
除去されやすい部分と水素の除去されにくい部分とす
る。アニーリングを行う場合、水素を含まない雰囲気中
で行うことが望ましく、アンモニア、ヒドラジン等の水
素を含む雰囲気中で行うと、p型GaN層に再吸蔵され
る恐れがある。
The hydrogen in the p-type GaN layer 4A is, for example, 40
It can be removed by annealing at 0 ° C or higher. That is, in the GaN layer, only hydrogen is released from the p-type dopant (M) and hydrogen (H) that are bonded in the MH state, so that the acceptor dopant is activated and holes are formed. The generation of holes further reduces the resistance of the p-type GaN layer 4A. When p-type electrode 5 is formed on p-type GaN layer 4A and annealed at 700 ° C., for example, p
Directly below the die electrode 5 is a portion where hydrogen is difficult to be removed, and hydrogen cannot escape from the crystal from this portion, and remains under the p-type electrode 5. Therefore,
By forming the p-type electrode 5 and annealing,
The resistance of the p-type GaN layer 4A on which the p-type electrode 5 is formed can be increased, and the resistance of a portion where it is not formed can be decreased. That is,
The distribution of the electric resistance of the p-type GaN layer 4A can be adjusted. As described above, the p-type electrode 5 is the p-type GaN layer 4A.
Suppress the removal of hydrogen from the. p-type GaN layer 4A
The hydrogen is rapidly removed in the portion without the p-type electrode, but the removal of hydrogen is hindered by the p-type electrode 4A in the portion covered with the p-type electrode 4A. Therefore, p-type GaN
In a gallium nitride-based compound semiconductor light-emitting device in which a p-type electrode is laminated on a layer, when the p-type electrode is annealed to make an electrical connection, the p-type electrode causes the p-type GaN layer to be separated from hydrogen and a portion where hydrogen is easily removed. The part that is difficult to remove. When annealing is performed, it is desirable to perform it in an atmosphere containing no hydrogen, and if it is performed in an atmosphere containing hydrogen such as ammonia and hydrazine, there is a possibility that the p-type GaN layer will occlude it again.

【0018】以上のようにして得られた発光素子は、通
電すると、図3の矢印Aで示すp型電極5の周縁部分で
電流が多く流れる。それは、p型電極5を形成した下部
のp型GaN層4Aの抵抗が大きく、形成されない部分
の抵抗が小さいからである。従って、矢印Aで示すp型
電極5の周縁部に集中して電流が流れ、この部分が高い
発光出力で発光する。
When the light emitting device obtained as described above is energized, a large amount of current flows in the peripheral portion of the p-type electrode 5 shown by the arrow A in FIG. This is because the lower p-type GaN layer 4A on which the p-type electrode 5 is formed has a large resistance, and the portion not formed has a small resistance. Therefore, a current flows concentratedly on the peripheral portion of the p-type electrode 5 indicated by the arrow A, and this portion emits light with a high light emission output.

【0019】最後にウエハーを1×0.8mm角のチッ
プ状にカットして発光ダイオードに組み込んで発光させ
ると順方向電流20mAにおいて、順方向電圧5Vで4
30nmの発光を示し、発光出力は10μWであった。
Finally, when the wafer was cut into 1 × 0.8 mm square chips and incorporated in a light emitting diode to emit light, a forward current of 20 mA was applied, and a forward voltage of 5 V was applied.
It emitted light of 30 nm and had a light emission output of 10 μW.

【0020】図5は異なる構造のp型窒化ガリウム系化
合物半導体の発光素子を示している。この発光素子も、
MOCVD装置を用いて、サファイア基板1のC面にG
aNバッファ層を200オングストロームの膜厚で成長
させている。GaNバッファ層2の上に、Siをドープ
したn型GaN層3を4μmの膜厚で成長させ、さらに
n型GaN層3の上に、p型またはn型のInGaN層
9を100オングストロームの膜厚で成長させ、このI
nGaN層9の上にMgをドープしたp型GaN層4A
を設け、n型GaN層3とp型GaN層4Aの上にn型
電極6とp型電極5とを形成している。
FIG. 5 shows a p-type gallium nitride-based compound semiconductor light emitting device having a different structure. This light emitting element also
Using a MOCVD device, G
The aN buffer layer is grown to a film thickness of 200 Å. A Si-doped n-type GaN layer 3 having a thickness of 4 μm is grown on the GaN buffer layer 2, and a p-type or n-type InGaN layer 9 having a thickness of 100 Å is further formed on the n-type GaN layer 3. This thick I
Mg-doped p-type GaN layer 4A on the nGaN layer 9
And the n-type electrode 6 and the p-type electrode 5 are formed on the n-type GaN layer 3 and the p-type GaN layer 4A.

【0021】この構造の発光素子においても、p型電極
5が形成された部分のp型GaN層4Aの抵抗を、形成
されない部分よりも大きくしている。この構造の発光素
子はp型電極5とn型電極6とに通電すると、InGa
N層9が発光し、p型電極周縁近傍のInGaN層9の
強い発光をサファイア基板側から観測できる。同じくこ
の発光素子を発光ダイオードとしたところ、順方向電圧
20mAにおいて、順方向電圧5Vで420nmの発光
を示し、発光出力は300μWであった。
Also in the light emitting device having this structure, the resistance of the p-type GaN layer 4A in the portion where the p-type electrode 5 is formed is made higher than that in the portion where it is not formed. In the light emitting device having this structure, when the p-type electrode 5 and the n-type electrode 6 are energized, InGa
The N layer 9 emits light, and strong emission of the InGaN layer 9 near the periphery of the p-type electrode can be observed from the sapphire substrate side. Similarly, when this light emitting element was used as a light emitting diode, it emitted light of 420 nm at a forward voltage of 5 V at a forward voltage of 20 mA and an emission output of 300 μW.

【0022】図3と図5に示す発光素子は、p型GaN
層4Aの上に、図6に示すようにストライプ状のp型電
極5を設けている。この図に示すp型電極はp型窒化ガ
リウム系化合物半導体のほぼ全面に設けられている。p
型電極5は図7ないし図9に示すように形成することも
できる。図7に示すp型電極5は碁盤格子状に、図8に
示すp型電極5は点状に、図9に示すp型電極5は同心
円の線状に形成されている。つまり、p型電極5の形状
は特に問うものではない。
The light emitting device shown in FIGS. 3 and 5 is a p-type GaN.
Striped p-type electrodes 5 are provided on the layer 4A as shown in FIG. The p-type electrode shown in this figure is provided on almost the entire surface of the p-type gallium nitride compound semiconductor. p
The mold electrode 5 can also be formed as shown in FIGS. The p-type electrode 5 shown in FIG. 7 is formed in a grid pattern, the p-type electrode 5 shown in FIG. 8 is formed in a dot shape, and the p-type electrode 5 shown in FIG. 9 is formed in a concentric linear shape. That is, the shape of the p-type electrode 5 does not matter.

【0023】[0023]

【発明の効果】本発明の窒化ガリウム系化合物半導体発
光素子は、p型電極を電気接続するアニーリング処理
で、p型窒化ガリウム系化合物半導体層を、水素の除去
されにくい部分の発光を弱くして、水素の除去されやす
い部分の発光を強くしている。アニーリング処理で、p
型窒化ガリウム系化合物半導体層の一部を、水素の除去
されにくい部分とするp型電極は、光も透過させ難くす
る。いいかえると、p型窒化ガリウム系化合物半導体層
を被覆して、光を透過させ難いp型電極は、アニーリン
グ処理のときには水素も透過させ難くする。それは、光
も透過させない状態で、p型窒化ガリウム系化合物半導
体層を被覆するp型電極は、アニーリング処理において
も、p型窒化ガリウム系化合物半導体層から除去される
水素も透過させ難いからである。本発明の窒化ガリウム
系化合物半導体発光素子は、水素の除去されにくい部分
の発光、すなわち、光を透過させて難い部分の発光を弱
くして、水素の除去されやすい部分、すなわち、光を透
過させやすい部分の発光を強くする。このため、発光を
有効に出力として取り出しできる部分を強く発光させ
て、全体としての発光出力を大きくできる。
In the gallium nitride compound semiconductor light emitting device of the present invention, the p-type gallium nitride compound semiconductor layer is subjected to an annealing treatment for electrically connecting the p-type electrode to weaken the light emission in the portion where hydrogen is difficult to be removed. , The light emission of the part where hydrogen is easily removed is increased. P by annealing process
The p-type electrode in which a part of the type gallium nitride-based compound semiconductor layer is a part from which hydrogen is difficult to be removed makes it difficult to transmit light. In other words, the p-type electrode that covers the p-type gallium nitride-based compound semiconductor layer and does not allow light to easily pass through makes it difficult for hydrogen to pass through during the annealing process. This is because it is difficult for the p-type electrode covering the p-type gallium nitride based compound semiconductor layer to pass hydrogen that is removed from the p-type gallium nitride based compound semiconductor layer even in the annealing treatment, in a state where light is not transmitted through. . The gallium nitride-based compound semiconductor light-emitting device of the present invention weakens the light emission of a portion where hydrogen is difficult to be removed, that is, reduces the light emission of a portion where light is difficult to pass, and allows the portion where hydrogen is easily removed, that is, light is transmitted. Increase the light emission in the easy areas. For this reason, it is possible to increase the overall light emission output by strongly emitting the portion where the light emission can be effectively taken out as an output.

【0024】本発明の窒化ガリウム系化合物半導体発光
素子は、アニーリングにより、p型GaN層から水素が
追い出されて低抵抗化される。低抵抗化される部分は、
p型GaN層表面に形成されているp型電極による。p
型電極が形成されていない部分のp型GaN層は水素が
抜けやすく、p型電極が形成された部分のp型GaN層
からは水素が抜けにくい。従って、例えば電極周縁部に
電流が流れやすくなって、その周縁部が電極の中心部よ
りも強く発光するようになる。このため、細い線状のp
型電極を長く設けることにより、あるいは点状のp型電
極を多く設けることによって、p型層の低抵抗部分を多
くして発光出力を増大させることができる。
In the gallium nitride-based compound semiconductor light-emitting device of the present invention, hydrogen is expelled from the p-type GaN layer by annealing and the resistance is reduced. The part whose resistance is lowered is
It depends on the p-type electrode formed on the surface of the p-type GaN layer. p
Hydrogen easily escapes from the p-type GaN layer in the portion where the p-type electrode is not formed, and hydrogen does not easily escape from the p-type GaN layer in the portion where the p-type electrode is formed. Therefore, for example, a current easily flows in the peripheral portion of the electrode, and the peripheral portion emits light stronger than the central portion of the electrode. Therefore, a thin linear p
By providing a long mold electrode or providing a large number of dot-shaped p-type electrodes, it is possible to increase the low-resistance portion of the p-type layer and increase the light emission output.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の発光素子の一例を示す断面図。FIG. 1 is a cross-sectional view showing an example of a conventional light emitting element.

【図2】 図1に示す発光素子の平面図。FIG. 2 is a plan view of the light emitting device shown in FIG.

【図3】 本発明の一実施例を示す発光素子の断面図。FIG. 3 is a sectional view of a light emitting device showing an embodiment of the present invention.

【図4】 図3に示すp型電極の上に導電性材料をオー
バーコートした状態を示す断面図。
4 is a cross-sectional view showing a state in which a conductive material is overcoated on the p-type electrode shown in FIG.

【図5】 本発明の他の実施例に係る発光素子の断面
図。
FIG. 5 is a cross-sectional view of a light emitting device according to another embodiment of the present invention.

【図6】 p型電極の形状の他の具体例を示す平面図。FIG. 6 is a plan view showing another specific example of the shape of the p-type electrode.

【図7】 p型電極の形状の他の具体例を示す平面図。FIG. 7 is a plan view showing another specific example of the shape of the p-type electrode.

【図8】 p型電極の形状の他の具体例を示す平面図。FIG. 8 is a plan view showing another specific example of the shape of the p-type electrode.

【図9】 p型電極の形状の他の具体例を示す平面図。FIG. 9 is a plan view showing another specific example of the shape of the p-type electrode.

【符号の説明】[Explanation of symbols]

1・・サファイア基板 2・・バッファ層 3・・n型GaN層 4・・i型GaN層 4A・p型GaN層 5・・p型電極 6・・n型電極 8・・導電性材料 9・・InGaN層 1. Sapphire substrate 2. Buffer layer 3 n-type GaN layer 4 i-type GaN layer 4A p-type GaN layer 5 p-type electrode 6 n-type electrode 8 Conductive material 9 -InGaN layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板の上に、少なくともn型窒化ガリウ
ム系化合物半導体層と、p型ドーパントをドープして水
素を含むp型窒化ガリウム系化合物半導体層とが成長さ
れており、 前記p型窒化ガリウム系化合物半導体層に、アニーリン
グ処理してp型電極を電気的に接続しており、 さらに、p型電極を電気接続するアニーリング処理で、
p型窒化ガリウム系化合物半導体層の表面に電気接続さ
れるp型電極によって、p型窒化ガリウム系化合物半導
体層から水素の除去されにくい部分にあるp型電極の位
置に対応する発光部の発光を弱くして、水素の除去され
やすい部分にあるp型電極の位置に対応する発光部の発
光を強くしてなることを特徴とする窒化ガリウム系化合
物半導体発光素子。
1. A n-type gallium nitride compound semiconductor layer and at least a p-type gallium nitride compound semiconductor layer containing hydrogen doped with a p-type dopant are grown on a substrate. The p-type electrode is electrically connected to the gallium-based compound semiconductor layer by an annealing process, and further, the p-type electrode is electrically connected by an annealing process.
By the p-type electrode electrically connected to the surface of the p-type gallium nitride compound semiconductor layer, the light emission of the light emitting portion corresponding to the position of the p-type electrode in the portion where hydrogen is hardly removed from the p-type gallium nitride compound semiconductor layer is generated. A gallium nitride-based compound semiconductor light-emitting device characterized by weakening and strengthening the light emission of the light emitting portion corresponding to the position of the p-type electrode in the portion where hydrogen is easily removed.
JP26785696A 1996-09-17 1996-09-17 Gallium nitride based compound semiconductor light emitting device Expired - Lifetime JP3223810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26785696A JP3223810B2 (en) 1996-09-17 1996-09-17 Gallium nitride based compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26785696A JP3223810B2 (en) 1996-09-17 1996-09-17 Gallium nitride based compound semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4598393A Division JPH0783136B2 (en) 1993-02-10 1993-02-10 Gallium nitride compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH09129931A true JPH09129931A (en) 1997-05-16
JP3223810B2 JP3223810B2 (en) 2001-10-29

Family

ID=17450591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26785696A Expired - Lifetime JP3223810B2 (en) 1996-09-17 1996-09-17 Gallium nitride based compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3223810B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275935A (en) * 1997-03-28 1998-10-13 Rohm Co Ltd Semiconductor light-emitting element
US6281524B1 (en) 1997-02-21 2001-08-28 Kabushiki Kaisha Toshiba Semiconductor light-emitting device
JP2005129907A (en) * 2003-10-27 2005-05-19 Samsung Electro Mech Co Ltd Electrode structure and semiconductor light emitting element having it
JP2007288192A (en) * 2006-04-14 2007-11-01 High Power Optoelectronics Inc Semiconductor light-emitting device and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04209577A (en) * 1990-12-07 1992-07-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting element and manufacture thereof
JPH04321280A (en) * 1991-04-19 1992-11-11 Nichia Chem Ind Ltd Blue color light-emitting diode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04209577A (en) * 1990-12-07 1992-07-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting element and manufacture thereof
JPH04321280A (en) * 1991-04-19 1992-11-11 Nichia Chem Ind Ltd Blue color light-emitting diode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281524B1 (en) 1997-02-21 2001-08-28 Kabushiki Kaisha Toshiba Semiconductor light-emitting device
US6404792B2 (en) 1997-02-21 2002-06-11 Kabushiki Kaisha Toshiba Semiconductor light-emitting device
JPH10275935A (en) * 1997-03-28 1998-10-13 Rohm Co Ltd Semiconductor light-emitting element
JP2005129907A (en) * 2003-10-27 2005-05-19 Samsung Electro Mech Co Ltd Electrode structure and semiconductor light emitting element having it
JP2007288192A (en) * 2006-04-14 2007-11-01 High Power Optoelectronics Inc Semiconductor light-emitting device and its manufacturing method

Also Published As

Publication number Publication date
JP3223810B2 (en) 2001-10-29

Similar Documents

Publication Publication Date Title
EP1941555B1 (en) SEMICONDUCTOR LIGHT-EMITTING DEVICE WITH ELECTRODE FOR N-POLAR InGaAlN SURFACE
JP2828187B2 (en) Gallium nitride based compound semiconductor light emitting device
US20040077135A1 (en) Light-emitting diode device geometry
JPH06237012A (en) Semiconductor light emitting element of gallium nitride compound
WO2007036164A1 (en) Semiconductor light-emitting device and method for making same
US20060261358A1 (en) Flip chip light emitting diode and method of manufacturing the same
KR101565122B1 (en) Single Chip Type Semiconductor Light Emitting Device with Thermoconductive Substrate
JPH0832112A (en) Group iii nitride semiconductor light emitting element
JP5608589B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP2000077713A (en) Semiconductor light-emitting element
JP3767863B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2836685B2 (en) Method for manufacturing p-type gallium nitride-based compound semiconductor
JP2800666B2 (en) Gallium nitride based compound semiconductor laser device
JP2868081B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2002016286A (en) Semiconductor light-emitting element
US11784210B2 (en) Light-emitting device and manufacturing method thereof
JP2004319672A (en) Light emitting diode
JP3934730B2 (en) Semiconductor light emitting device
JPH09129931A (en) Gan compd. semiconductor light emitting element
KR100576847B1 (en) Gallium nitride based semiconductor light emitting diode and method of producing the same
JP5098482B2 (en) LIGHT EMITTING DEVICE MANUFACTURING METHOD AND LIGHT EMITTING DEVICE
JPH09129933A (en) Light emitting element
JP2004319671A (en) Light emitting diode
JPH10242518A (en) Semiconductor light emitting device
KR100661715B1 (en) light emitting diode having island-type interlayer and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070824

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090824

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090824

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090824

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 12