JPH09129792A - Radiation board and manufacture thereof - Google Patents

Radiation board and manufacture thereof

Info

Publication number
JPH09129792A
JPH09129792A JP28825795A JP28825795A JPH09129792A JP H09129792 A JPH09129792 A JP H09129792A JP 28825795 A JP28825795 A JP 28825795A JP 28825795 A JP28825795 A JP 28825795A JP H09129792 A JPH09129792 A JP H09129792A
Authority
JP
Japan
Prior art keywords
heat dissipation
substrate
plating
manufacturing
metal surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28825795A
Other languages
Japanese (ja)
Other versions
JP3404612B2 (en
Inventor
Akira Ichida
晃 市田
Akira Kobayashi
昭 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP28825795A priority Critical patent/JP3404612B2/en
Publication of JPH09129792A publication Critical patent/JPH09129792A/en
Application granted granted Critical
Publication of JP3404612B2 publication Critical patent/JP3404612B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To realize sufficient contact strength of a plating film by providing, on a metal surface layer, an underlying plating layer having specified or higher contact strength with respect to a carbon fiber composite material having a specified or higher thermal conductivity in one direction. SOLUTION: A board member 1 is made of a carbon fiber composite material, and a metal surface layer made of Ni, Cu or Au is formed on the surface of the board member 1. This metal surface layer is provided with an underlying plating layer 2 having contact strength not less than 2.0kgf/mm<2> with respect to a carbon fiber composite material having a thermal conductivity of at least 300W/m.K in one direction. Thus, in performing metal plating on the board member 1, the plating layer 2 has sufficient contact strength so that a desired coefficient of thermal expansion may be secured and a high heat transfer coefficient may be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,半導体素子を搭載
する半導体装置において,その表面に密着強度の強い金
属層を施した高熱伝導性炭素繊維複合材からなる放熱基
板とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a semiconductor element mounted thereon, and a heat dissipation substrate made of a carbon fiber composite material having high thermal conductivity, the surface of which is provided with a metal layer having high adhesion strength, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来,半導体素子を搭載する半導体装置
に用いられる放熱基板は,近年集積化が進む中で,より
高放熱性材料が求められている。
2. Description of the Related Art Conventionally, as a heat dissipation substrate used for a semiconductor device having a semiconductor element mounted thereon, a material having a higher heat dissipation property is required as the integration progresses in recent years.

【0003】しかし又,Si,GaAs等の半導体素子
は熱により性能が劣化したり,それを搭載している基板
との熱膨張係数の差が大きいとくり返し使用により剥離
を生じる事がある。
However, the performance of semiconductor elements such as Si and GaAs may deteriorate due to heat, and if the difference in the coefficient of thermal expansion from the substrate on which they are mounted is large, peeling may occur due to repeated use.

【0004】具体的な材料について述べてみる。銅は3
80W/m・Kと高熱伝導であるが,熱膨張係数が1
6.3×10-6/Kと大きく,素子あるいはセラミック
等の周辺部材との差が大きいため高精度な半導体装置に
は用いにくい。
A specific material will be described. Copper is 3
High thermal conductivity of 80 W / mK, but coefficient of thermal expansion of 1
It is as large as 6.3 × 10 -6 / K, and it is difficult to use it for a high-precision semiconductor device because of a large difference from peripheral elements such as elements or ceramics.

【0005】一方,素子や特に周辺部材との熱膨張係数
の差が程々な為,Cu−Wはよく利用されている。この
Cu−Wは,熱伝導率210/250W/m・K及び熱
膨張係数6.5〜8.5×10-6/Kを有しているの
で,上述の物性要求からすれば優れている。
On the other hand, Cu-W is often used because the difference in the coefficient of thermal expansion between the element and the peripheral members is moderate. This Cu-W has a thermal conductivity of 210/250 W / m · K and a thermal expansion coefficient of 6.5 to 8.5 × 10 −6 / K, and is therefore excellent from the above physical property requirements. .

【0006】[0006]

【発明が解決しようとする課題】しかし,集積化が進む
だけでなく,ハンディーパソコン等のハンディータイプ
の装置や宇宙にて作動する半導体装置では,軽量化が大
切な要素となる。
However, in addition to the progress of integration, weight saving is an important factor in handy type devices such as handy personal computers and semiconductor devices operating in space.

【0007】さらに,最近ではマルチチップモジュール
のごとき,半導体素子を複数搭載するデザインも実用化
が進んでいる。この場合には,従来以上に,熱による素
子間のノイズを回避したい為,高熱伝導性と共に,マル
チチップに相当するだけの重量増をさけるため軽量化が
必要となる。
Furthermore, recently, designs such as multichip modules in which a plurality of semiconductor elements are mounted have been put into practical use. In this case, in order to avoid noise between elements due to heat, it is necessary to reduce the weight as well as high thermal conductivity in order to avoid an increase in weight corresponding to a multi-chip, more than ever before.

【0008】軽量化の観点からすれば銅の密度は8.9
g/cm3 ,Cu−Wは15.5〜17g/cm3 と周
辺部材の例に示したAl2 3 3.6g/cm3 に比べ
れば重い。AlNは,密度4.5g/cm3 ,熱伝導率
170〜200W/m・K,及び熱膨張係数4.4×1
-6/Kを備え,軽さを特徴としている。また,AlS
i(例えば,住友電工製A40)は密度2.5g/cm
3 ,熱伝導率125W/m・K,熱膨張係数3.0×1
-6/Kであり,AlN及びAlSi共に熱伝導率が不
充分である。
From the viewpoint of weight reduction, the density of copper is 8.9.
g / cm 3, Cu-W is heavier compared to Al 2 O 3 3.6g / cm 3 as shown in the example of 15.5~17g / cm 3 and a peripheral member. AlN has a density of 4.5 g / cm 3 , a thermal conductivity of 170 to 200 W / m · K, and a thermal expansion coefficient of 4.4 × 1.
It features 0 -6 / K and is characterized by its lightness. Also, AlS
i (for example, Sumitomo Electric A40) has a density of 2.5 g / cm
3 , thermal conductivity 125W / mK, thermal expansion coefficient 3.0 × 1
It is 0 -6 / K, and the thermal conductivity of both AlN and AlSi is insufficient.

【0009】4.2×10-6/KのSi,6.5×10
-6/KのGaAsのような半導体の熱膨張係数より大き
く,Cu−Wの熱膨張係数より小さい放熱基板が要求さ
れている。具体的には,8.5×10-6/K以下の範囲
の熱膨張係数を備えるとともに,しかも大切なのは熱伝
導率が200W/m・K以上とAlNより大きく,望ま
しくは300W/m・k以上とCu−W,及びAlより
大きく,その上密度が,銅より小さく,より望ましくは
AlNより小さい放熱基板に対する要望が高まってい
る。
4.2 × 10 −6 / K Si, 6.5 × 10
There is a demand for a heat dissipation substrate having a thermal expansion coefficient larger than that of a semiconductor such as -6 / K GaAs and smaller than that of Cu-W. Specifically, it has a thermal expansion coefficient in the range of 8.5 × 10 -6 / K or less, and more importantly, the thermal conductivity is 200 W / m · K or more, which is larger than AlN, and preferably 300 W / m · k. As described above, there is an increasing demand for a heat dissipation substrate that is larger than Cu-W and Al and that has a smaller density than copper and more desirably smaller than AlN.

【0010】近年,炭素繊維複合材には,繊維の在り方
からくる異方性はあるものの,秀でた熱伝導率を示すも
のが出ている。例えば,東洋炭素株式会社製のCX−2
002U,及び東燃株式会社製のFORCA UD C
/Cなどである。
In recent years, some carbon fiber composite materials have an excellent anisotropy, although they have anisotropy due to the way fibers are present. For example, CX-2 manufactured by Toyo Tanso Co., Ltd.
002U and FORCA UD C manufactured by Tonen Co., Ltd.
/ C etc.

【0011】但し,これらの材料は,実用上好ましい湿
式めっきには不向きと思える多孔質であり,しかも繊維
が一定方向にあるため,切断時に毛羽が残るという欠点
の他,刃物で精密切断する際切削抵抗が繊維方向又はそ
の直角方向では異なる為管理しにくい。さらに又これら
を克服して,半導体素子を搭載する半導体装置に用いる
放熱基板において必要な少なくとも1kgf/cm2
上で,好ましくは,リード線を組立てるケースを考えて
2kgf/cm2 以上という密着強度を有した金属表面
層を実用上成功した例はない。
However, these materials are porous, which is not suitable for practically preferable wet plating, and the fibers are in a certain direction, so that fluff remains at the time of cutting, and in the case of precision cutting with a blade. It is difficult to manage because the cutting resistance differs in the fiber direction or the direction perpendicular to it. Further still to overcome these, at least 1 kgf / cm 2 or more required in the heat dissipation substrate used for a semiconductor device mounting a semiconductor device, preferably, the adhesion strength of 2 kgf / cm 2 or more consider the case of assembling the lead wire There is no example in which the metal surface layer has been practically successful.

【0012】所謂,これら炭素繊維複合材に金属めっき
を施こし,上述した充分なる密着強度を有する放熱基板
を得る事ができれば,今後の軽量,高熱伝導基板とし
て,半導体装置に利用が大きく期待できる。
If so-called so-called carbon fiber composite materials can be metal-plated to obtain a heat dissipation board having sufficient adhesion strength as described above, it can be expected to be applied to a semiconductor device as a lightweight and high heat conduction board in the future. .

【0013】そこで,本発明の技術的課題は,炭素繊維
複合材に金属めっきを施した際に,このめっき膜が十分
なる密着強度を備えるとともに,所望する熱膨張係数を
備え,また,軽量化ができ,さらに,秀でた熱伝導率を
備えた放熱基板と,その製造方法とその放熱基板を用い
た半導体装置とを提供することにある。
Therefore, the technical problem of the present invention is that when the carbon fiber composite material is plated with metal, the plating film has sufficient adhesion strength, a desired coefficient of thermal expansion, and a reduction in weight. Further, it is to provide a heat dissipation board having excellent thermal conductivity, a manufacturing method thereof, and a semiconductor device using the heat dissipation board.

【0014】[0014]

【課題を解決するための手段】本発明者らは,炭素繊維
複合材の毛羽状の繊維を除去することによって,高い密
着強度を備えた下地めっき層を形成し,炭素繊維複合材
を基板部材としてこの基板部材表面に金属表面層を形成
することができ,本発明を為すに至ったものである。
Means for Solving the Problems The inventors of the present invention formed a base plating layer having high adhesion strength by removing fluffy fibers of a carbon fiber composite material, and formed the carbon fiber composite material on a substrate member. As a result, a metal surface layer can be formed on the surface of the substrate member, and the present invention has been accomplished.

【0015】本発明によれば,半導体素子を搭載する放
熱基板において,炭素繊維複合材によって形成される基
板部材と前記基板部材の表面に形成された金属表面層と
から実質的になり,前記炭素繊維複合材は,少なくとも
一方向の熱伝導率が300W/m・K以上であり,前記
金属表面層は,前記炭素繊維複合材に対して2.0kg
f/mm2 以上の密着強度を有する下地めっき層を含む
ことを特徴とする放熱基板が得られる。
According to the present invention, in the heat dissipation substrate on which the semiconductor element is mounted, the heat dissipation substrate is substantially composed of a substrate member formed of a carbon fiber composite material and a metal surface layer formed on the surface of the substrate member. The fiber composite material has a thermal conductivity of at least 300 W / mK in at least one direction, and the metal surface layer is 2.0 kg relative to the carbon fiber composite material.
A heat dissipation board is obtained which is characterized by including a base plating layer having an adhesion strength of f / mm 2 or more.

【0016】また,本発明によれば,半導体素子と,こ
れを搭載する放熱基板とを備えた半導体装置において,
放熱基板として前記放熱基板を用いたことを特徴とする
半導体装置が得られる。
Further, according to the present invention, in a semiconductor device including a semiconductor element and a heat dissipation board on which the semiconductor element is mounted,
A semiconductor device is obtained which uses the heat dissipation substrate as the heat dissipation substrate.

【0017】また,本発明によれば,半導体素子を搭載
する放熱基板の製造方法において,炭素繊維複合材を基
板部材として用意し,前記炭素繊維複合材の毛羽取りを
おこなった後,前記基板部材の表面に,金属表面層を形
成することを特徴とする放熱基板の製造方法が得られ
る。
Further, according to the present invention, in the method for manufacturing a heat dissipation substrate on which a semiconductor element is mounted, a carbon fiber composite material is prepared as a substrate member, and after the carbon fiber composite material is fluffed, the substrate member is A method for manufacturing a heat dissipation substrate is obtained, which is characterized in that a metal surface layer is formed on the surface of.

【0018】[0018]

【発明の実施の形態】以下,本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0019】本発明の実施の一形態による放熱基板は,
半導体素子を搭載する半導体装置用放熱基板に用いられ
る。この放熱基板は,炭素繊維複合材からなる基板部材
と,この基板部材の表面に形成された金属表面層とから
構成されている。そして,この炭素繊維複合材は,少な
くともその基板の一方向の熱伝導率が300W/m・K
以上である。また,金属表面層は,前記炭素繊維複合材
に対して2kgf/mm2 以上の密着強度を有する少な
くとも下地めっき層を含んでいる。
The heat dissipation board according to the embodiment of the present invention is
It is used for a heat dissipation board for a semiconductor device on which a semiconductor element is mounted. This heat dissipation substrate is composed of a substrate member made of a carbon fiber composite material and a metal surface layer formed on the surface of the substrate member. This carbon fiber composite material has a thermal conductivity of at least one direction of the substrate of 300 W / m · K.
That is all. Further, the metal surface layer includes at least a base plating layer having an adhesion strength of 2 kgf / mm 2 or more with respect to the carbon fiber composite material.

【0020】また,本発明の実施の一形態による放熱基
板の製造方法によれば,炭素繊維複合材からなる基板部
材の表面に,上記した金属表面層を後述する工程により
形成し,この炭素繊維複合材に対して上記密着強度を得
ることができる。
Further, according to the method for manufacturing a heat dissipation substrate according to the embodiment of the present invention, the above-mentioned metal surface layer is formed on the surface of the substrate member made of the carbon fiber composite material by the steps described later. The above adhesion strength can be obtained for the composite material.

【0021】ここで,本発明の実施の一形態の基板部材
に用いられる炭素繊維複合材の成形法について説明す
る。炭素繊維複合材は,基本的に切断,切削,研磨によ
るが,切り込みが大きい場合や,寸法精度を厳しく求め
られる場合はアルコール,水媒体等による湿式による事
が好ましいのは,他の炭素質と変らない。
Here, a method of molding the carbon fiber composite material used for the substrate member according to the embodiment of the present invention will be described. Carbon fiber composite materials are basically cut, cut, and ground, but when the cut is large or when dimensional accuracy is strictly required, it is preferable to use wet method with alcohol, water medium, etc. It doesn't change.

【0022】本発明者等は,特に,炭化ケイ素砥粒を用
いたラッピング切断が,炭素繊維複合材の寸法精度と共
に切断面の面粗さを確保するのに適していることを見出
だした。
The present inventors have found out that lapping cutting using silicon carbide abrasive grains is particularly suitable for ensuring the dimensional accuracy of the carbon fiber composite material as well as the surface roughness of the cut surface.

【0023】また,本発明者等は,炭素繊維複合材を形
成後の金属表面層を形成する工程としてのめっき工程に
におけるめっき強度は,切断された繊維が表面に元々の
細い繊維の形で毛羽状に表層に出ているか否かによって
変化することが分かった。
Further, the inventors of the present invention have found that the plating strength in the plating step as the step of forming the metal surface layer after forming the carbon fiber composite material is such that the cut fibers are originally thin fibers on the surface. It was found that it changes depending on whether or not it is fluffy on the surface.

【0024】したがって,この毛羽状の繊維を除去する
ことによって,前述した密着強度の高い下地めっき層を
形成し,金属表面層を形成することができた。
Therefore, by removing the fluffy fibers, it was possible to form the above-mentioned base plating layer having high adhesion strength and the metal surface layer.

【0025】具体的に言えば,この細い繊維の形で毛羽
状の繊維は,セラミックボールと適宜被処理物(以下,
C/C基材と呼ぶ)を前述のアルコール又は水により湿
式バレル研磨する事で除去する事ができる。例えば,□
20×T1.0にめっき処理を望む場合の毛羽状の繊維
は,SiCのD1.0のボールを用いて行なう事で除去
できた。
Specifically, the fluffy fibers in the form of the thin fibers are ceramic balls and an object to be treated (hereinafter,
C / C substrate) can be removed by wet barrel polishing with the above alcohol or water. For example, □
The fluffy fibers when plating treatment to 20 × T1.0 was desired could be removed by using a D1.0 ball of SiC.

【0026】ここで,本発明の実施の一形態に用いられ
る炭素繊維複合材としては,その繊維方向の熱伝導率
(//)の優れているものとして,下記表1に示す2種の
市販材を用いることができる。
Here, as the carbon fiber composite material used in the embodiment of the present invention, two types of commercially available carbon fiber composite materials shown in Table 1 below are considered to have excellent thermal conductivity (//) in the fiber direction. Materials can be used.

【0027】[0027]

【表1】 [Table 1]

【0028】しかし,これらに表1に記載された材料に
限定されるものではない。いずれの炭素繊維複合材もお
よそ20vol%の空隙があり,一方密度としても1.
7g/cm3 と極めて軽量である。
However, the materials are not limited to those listed in Table 1. Each carbon fiber composite material has voids of about 20 vol%, and the density is 1.
Extremely lightweight with 7 g / cm 3 .

【0029】次に,本発明の実施の一形態による金属表
面層の形成方法について更に詳細に説明する。半導体素
子を搭載する半導体素子装置に用いられる放熱基板は,
その周辺部材とのろう付やはんだめっき処理をする事が
多く,最外の表層にNi,Cu,Au等の金属表面層の
形成が求められる事が多い。C/C基材と,この最外表
層の材質については,その密着強度を確保する為,著し
い熱伝導を損なう材料の組み合せを除外して,中間補助
層を用いるのが良い。
Next, the method for forming the metal surface layer according to the embodiment of the present invention will be described in more detail. The heat dissipation board used for the semiconductor element device mounting the semiconductor element is
In many cases, brazing with the peripheral members or solder plating is performed, and it is often required to form a metal surface layer of Ni, Cu, Au or the like on the outermost surface layer. Regarding the C / C base material and the material of the outermost surface layer, in order to secure the adhesion strength, it is preferable to exclude the combination of materials that significantly impair heat conduction and use the intermediate auxiliary layer.

【0030】次に,本発明の実施の一形態による金属表
面層の形成方法として,乾式めっきであるイオンプレー
ティングについて述べる。基本的に基板部材の物質であ
る炭素と,放熱基板のさまざまな熱履歴に耐えられる系
として,炭化物の標準生成自由エネルギーが安定で,特
に通常の熱履歴の範囲として200〜800℃で−2
0,000cal/mol℃以下の金属が好ましいと判
った。この炭化物の標準生成自由エネルギー温度図から
選べば,概ね金属表面層の下地めっき層を形成する金属
として,V,Ta,Ti,Zr,Nbが選択される。
Next, as a method of forming a metal surface layer according to an embodiment of the present invention, ion plating which is dry plating will be described. As a system that can withstand various heat histories of carbon, which is basically the material of the substrate member, and the heat dissipation substrate, the standard free energy of formation of carbides is stable, and in particular, the normal heat history range is -200 to 800 ° C.
It has been found that a metal of 10,000 cal / mol ° C or less is preferable. If selected from the standard free energy temperature diagram of this carbide, V, Ta, Ti, Zr, and Nb are selected as the metal forming the undercoating layer of the metal surface layer.

【0031】しかし,炭化物が生成した場合のその炭化
物の熱伝導率を合せ考えると,これらの内からTa,Z
rが除外される。結局V,Ti,NbがNi,Cu,A
u等の金属表面層の下地めっき層として施されることが
好ましい。また,基板部材のC/Cは,イオンプレーテ
ィングの際に,150℃以上に加熱されている事が望ま
しい。
However, considering the thermal conductivity of the carbide when it is formed, Ta and Z are selected from these.
r is excluded. After all, V, Ti, Nb are Ni, Cu, A
It is preferably applied as a base plating layer of a metal surface layer such as u. Further, the C / C of the substrate member is preferably heated to 150 ° C. or higher during ion plating.

【0032】尚,この下地めっき層は少なくとも0.2
μm以上ないと,基板部材の形状によりピンホールの不
安がある。又0.5μmを越えるとコストの上から不利
となるから,不必要に厚くする必要ない。
The base plating layer should be at least 0.2.
If it is not more than μm, there is a fear of pinholes due to the shape of the substrate member. Further, if it exceeds 0.5 μm, it is disadvantageous in terms of cost, and therefore it is not necessary to unnecessarily increase the thickness.

【0033】以上のイオンプレーティングにより成膜し
た下地めっき層,あるいはこの下地めっき層の上に,N
i,Cu,Au等の金属表面層を施す。この金属表面層
は,通常のめっきによる方法でもよい。この金属表面層
を施こしたものは,密着強度が,3kgf/mm2 以上
あり,半導体素子を搭載する半導体装置における放熱基
板として充分に使用が可能である。又,下地めっき層の
ままで放熱基板として用いてもよい。
A ground plating layer formed by the above ion plating, or N on the ground plating layer
A metal surface layer of i, Cu, Au or the like is applied. This metal surface layer may be formed by a usual plating method. The one to which this metal surface layer is applied has an adhesion strength of 3 kgf / mm 2 or more, and can be sufficiently used as a heat dissipation board in a semiconductor device mounting a semiconductor element. Alternatively, the base plating layer may be used as it is as a heat dissipation substrate.

【0034】次に,本発明の実施のもう一つの形態によ
る金属表面層の形成方法として,湿式めっき方法につい
て述べる。
Next, a wet plating method will be described as a method for forming a metal surface layer according to another embodiment of the present invention.

【0035】本発明の一実施の形態においては,基板部
材は炭素繊維複合材からなるので,金属体へめっきする
場合と異なり,良電体でない事,多孔質である事から,
いかにめっきの種つけを確実に行ない,下地めっきを,
薄くも均一に施こした後に,めっき層の厚みを増加させ
ると共に密着強度を強固にする事がポイントになる。
In one embodiment of the present invention, since the substrate member is made of carbon fiber composite material, unlike the case of plating on a metal body, it is not a good electric conductor and is porous.
How to make sure the seeding of plating,
The point is to increase the thickness of the plating layer and strengthen the adhesion strength after applying it thinly and evenly.

【0036】まず,最初の段階として安定・確実な地肌
作りとして,基板部材表面を塩化パラジウムと塩化第一
錫の共存下で30〜35℃の低温下で活性化し,次いで
室温にて塩酸で錫溶出後,酸化化学ニッケル1次めっき
を施する。
First, as a first step, in order to form a stable and reliable background, the surface of the substrate member is activated at a low temperature of 30 to 35 ° C. in the coexistence of palladium chloride and stannous chloride, and then tin is added with hydrochloric acid at room temperature. After elution, apply nickel oxide chemical nickel primary plating.

【0037】この時は,酸化化学ニッケル1次メッキ
は,次亜リン酸ナトリウム,クエン酸共存下で硫酸ニッ
ケル溶液中で30〜35℃,pH9〜10の微アルカリ
で行なう。この温度範囲を越えて温度を上げると微妙な
還元雰囲気あるいは酸化雰囲気をくずし易く,しかも1
次めっきとして厚膜の部分を生じさせると後の2次めっ
きの安定を欠くため不都合である。
At this time, the chemical nickel primary plating is carried out in the presence of sodium hypophosphite and citric acid in a nickel sulfate solution at 30 to 35 ° C. and a slight alkali of pH 9 to 10. If the temperature is raised beyond this temperature range, it is easy to destroy the delicate reducing atmosphere or oxidizing atmosphere.
If a thick film portion is formed as the secondary plating, it is inconvenient because the subsequent secondary plating lacks stability.

【0038】最後に,電解ニッケルめっきにより実質的
にめっき膜の所望厚みを確保すると共に,密着強度を上
げる。
Finally, electrolytic nickel plating substantially secures the desired thickness of the plated film and increases the adhesion strength.

【0039】ここで,本発明者らの実験によれば,被め
っき物(通称ワーク)に流れる電流密度を必要充分にま
でストレートに到達させると密着強度が得られないこと
が判明した。このことを考慮して,必要最大電流密度の
1/3以下でスタートし,2回以上の複数段階で,所定
の電流密度に到達させる事により強度を確実なものにし
得ることがわかった。
According to the experiments conducted by the present inventors, it has been found that the adhesion strength cannot be obtained when the current density flowing through the object to be plated (commonly known as the work) is made to reach the required straightness. In consideration of this, it was found that the strength can be ensured by starting at 1/3 or less of the required maximum current density and reaching a predetermined current density in two or more steps.

【0040】このように,塩化パラジウム,塩化第一錫
共存下での低温活性化処理,酸化化学1次めっきを行
い,さらに,2回以上の複数段階で段階的に電流密度を
上げる電気2次めっきを行なう。この事によって,均一
安定な,密着強度の優れた金属表面層を生成し得る。
As described above, low-temperature activation treatment in the presence of palladium chloride and stannous chloride, primary oxidation chemical plating are performed, and further, an electric secondary that increases the current density stepwise in two or more steps. Perform plating. As a result, a metal surface layer that is uniform and stable and has excellent adhesion strength can be produced.

【0041】尚,ここでいう密着強度とは,金属表面層
をその成膜方向に引張る事で,炭素繊維複合材からなる
基板部材と金属表面層との剥離に対する密着の程度を示
す。
The term "adhesion strength" as used herein refers to the degree of adhesion between a substrate member made of a carbon fiber composite material and a metal surface layer when the metal surface layer is pulled in the film forming direction.

【0042】一方,密着強度については,その必要性に
ついては先に述べたが強さの程度について述べる。
On the other hand, regarding the adhesion strength, the necessity thereof has been described above, but the degree of the strength will be described.

【0043】本発明の実施の形態に係る放熱基板は,周
辺部材とのろう付等の事情から,強固についている事が
望まれる。例えば,苛酷なケースとしてリード線のろう
付時の密着で言えば,直径0.8mmのピンがろう付け
後引張りで3kgf以上耐えられねばならない。この値
は,単位面積当りで換算すると約0.1kgf/mm2
となり,充分な安全をとれば,1kgf/mm2 以上の
強度が必要である。又,金属材料基材の場合は,はんだ
やろう材自体に優先して金属表面層の剥離が起こっては
不都合であり,目安としては1〜2kgf/mm2 以上
あれば充分と言われているが,理論的背景はなく,実際
にもこの程度でも事故は確認されていない。
It is desired that the heat dissipation board according to the embodiment of the present invention is firm in view of brazing with peripheral members and the like. For example, as a harsh case, in terms of tight contact when brazing a lead wire, a pin having a diameter of 0.8 mm must be able to withstand 3 kgf or more by pulling after brazing. This value is approximately 0.1 kgf / mm 2 when converted per unit area.
Therefore, for sufficient safety, a strength of 1 kgf / mm 2 or more is required. Further, in the case of a metal material base material, it is inconvenient that the metal surface layer peels off prior to the solder or brazing material itself, and it is said that 1-2 kgf / mm 2 or more is sufficient as a standard. However, there is no theoretical background, and no accident has been confirmed even at this level.

【0044】以上述べたように,本発明の実施の形態に
おいては,基板部材をなす炭素繊維複合材が,多孔質で
ある事及び非良電体である事から,金属基板部材へのめ
っき同じ条件では信頼性のある膜は得られず,基板部材
に合せた下地めっきの開発が必要である。下地めっきと
しては,所謂電気めっきとイオンプレーティングについ
て諸々検討し,成し得た実用的に実施可能な,金属表面
層の組成の組み合せを以下に示す。
As described above, in the embodiment of the present invention, since the carbon fiber composite material forming the substrate member is porous and is a non-electrical material, the same plating on the metal substrate member is performed. A reliable film cannot be obtained under the conditions, and it is necessary to develop an undercoat that matches the substrate material. As for the undercoating, so-called electroplating and ion plating were variously studied, and the combinations of the compositions of the metal surface layer that were practically practicable and were achieved are shown below.

【0045】下層から順に,電気めっき下地;Ni,C
u/表面層;Ni,Cu,Ag,Auの組み合わせ,又
は,下層から順に,イオンプレーティング下地;Ti,
V,Nb/表面層;Ni,Cu,Ag,Auの組み合わ
せにより,信頼性のある下地めっきを行うことができ
た。
From the bottom layer, electroplating bases; Ni, C
u / surface layer; combination of Ni, Cu, Ag, Au, or, in order from the bottom layer, ion plating base; Ti,
The combination of V, Nb / surface layer; Ni, Cu, Ag, Au enabled reliable undercoating.

【0046】[0046]

【実施例】以下,本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0047】(実施例1)上記表1の基材FORCA
UD C/Cを,アルコール湿式のバンドリー切断機に
よりT0.5×10×10にラッピング切断し,洗浄
後,直径1.0mmのSiCボールを水媒体中で約10
分ミリング行なって毛羽取りを行なった。水洗後,塩化
パラジウム・塩化第一錫共存下で30〜35℃下で活性
化処理をし,次いでHClでアクセリング後(Sn溶
出)酸化化学下地めっきを始める。
Example 1 Base material FORCA shown in Table 1 above
UD C / C was lapped and cut to T0.5 × 10 × 10 by an alcohol wet bandry cutting machine, and after washing, SiC balls with a diameter of 1.0 mm were about 10 in an aqueous medium.
Minute milling was performed to remove fluff. After washing with water, activation treatment is performed at 30 to 35 ° C. in the coexistence of palladium chloride and stannous chloride, and then after acceleration with HCl (Sn elution), oxidation chemical undercoating is started.

【0048】次に,電気化学1次めっきとして,塩酸ニ
ッケルを,次亜リン酸ソーダ,クエン酸共存下で,アン
モニア水によりpH9.0〜9.5(33〜36℃)と
し,Ni1次めっきを,20〜30A/dm2 で0.2
μm成膜した。
Next, as electrochemical primary plating, nickel hydrochloric acid was adjusted to pH 9.0 to 9.5 (33 to 36 ° C.) with ammonia water in the presence of sodium hypophosphite and citric acid, and Ni primary plating was performed. At 20 to 30 A / dm 2
A μm film was formed.

【0049】最後に,電気化学2次めっきとして,硫酸
ニッケル,塩化ニッケル,硼酸等を含む溶液に先の基材
を入れ通電し,めっきを行なった。電流密度を徐々に上
昇させるのが主眼であるが,管理上電圧値によりみる。
1.2V−2分,2.5V−1分,3.5V−1分,
4.2V−2分,4.5V−10分,電流密度1.5A
/dm2 )で合計16分の処理をした。
Finally, as the electrochemical secondary plating, plating was performed by putting the above base material in a solution containing nickel sulfate, nickel chloride, boric acid, etc. and energizing. The main purpose is to gradually increase the current density, but the voltage value is used for control purposes.
1.2V-2 minutes, 2.5V-1 minutes, 3.5V-1 minutes,
4.2V-2 minutes, 4.5V-10 minutes, current density 1.5A
/ Dm 2 ) for a total of 16 minutes.

【0050】この結果,下地めっき層のNiは1.0μ
mとなり,表面は平滑であった。この後に,通常のAu
めっきを2〜3μm行ない,図1に示す方法による引張
り試験により,試料4個を並べて,めっき層の剥離によ
る密着強度を測定した所,2.3kgf/mm2 であっ
た。また,得られた試料の基材の繊維方向の熱伝導率は
458W/m・K(RT〜600℃)だった。
As a result, Ni of the base plating layer was 1.0 μm.
m, and the surface was smooth. After this, normal Au
Plating was performed for 2 to 3 μm, and four samples were arranged by a tensile test by the method shown in FIG. 1 and the adhesion strength due to peeling of the plating layer was measured and found to be 2.3 kgf / mm 2 . The thermal conductivity in the fiber direction of the base material of the obtained sample was 458 W / m · K (RT to 600 ° C).

【0051】(実施例2)上記表1の基材FORCA
UD C/Cを湿式のインナーカッターで切断しT1.
0×20×20(繊維方向T1.0厚み方向)に切断
し,前例と同様に直径1.0mmのSiCボールを水媒
体で約10分ミリングを行ない毛羽取りを行なった。こ
の試料を水洗後,1,000℃×10-6Torr,3H
r乾燥した。次に,高周波励起方式イオンプレーティン
グによりTiを成膜した。基材は170℃に加熱し20
分間で0.2μm成膜した。得られた試料は,表面平滑
で緻密な膜であった。
Example 2 Base material FORCA in Table 1 above
UD C / C is cut with a wet inner cutter to remove T1.
The pieces were cut into 0 × 20 × 20 (fiber direction T1.0 thickness direction), and SiC balls having a diameter of 1.0 mm were milled in an aqueous medium for about 10 minutes in the same manner as in the previous example, and fluffing was performed. After washing this sample with water, 1,000 ℃ × 10 -6 Torr, 3H
r dried. Next, Ti was formed into a film by high frequency excitation type ion plating. Substrate is heated to 170 ° C for 20
A film having a thickness of 0.2 μm was formed in a minute. The obtained sample had a smooth surface and a dense film.

【0052】さらにここに,通常のNiめっきを2〜3
μm行ない前記実施例1と同様の方法により密着強度を
測定した所,5.1kgf/mm2 であった。また,得
られた試料の基材の繊維方向の熱伝導率は472W/m
・K(RT〜600℃)であった。尚,下地イオンプレ
ーティングについては,V,Nbでもほぼ同程度の(3
〜6kgf/mm2 )密着強度の膜を得た。さらに,加
えて成膜の厚さは,イオンプレーティングの通例に則り
1μm以上は不経済であり,薄い程良い。
Further, ordinary Ni plating is added here by a few times.
When the adhesion strength was measured by the same method as in Example 1 after carrying out μm, it was 5.1 kgf / mm 2 . The thermal conductivity in the fiber direction of the base material of the obtained sample is 472 W / m.
-It was K (RT-600 degreeC). As for the ground ion plating, V and Nb are almost the same (3
A film having an adhesion strength of ˜6 kgf / mm 2 ) was obtained. In addition, the film thickness is uneconomical if it is 1 μm or more in accordance with the usual ion plating, and the thinner the better.

【0053】比較例として,上記した試料と同じ条件
で,成膜材料をNiに変えた場合,密着強度は0.7k
gf/mm2 しか得られなかった。しかも,表面にヘア
クラックが散見された。又,成膜材料をTaに変えた場
合,密着強度は得られたものの熱伝導率が280W/m
・Kしか得られない部分が発生する等,炭素繊維複合材
の特性が生かされぬばかりか,Cu−Wのそれと近似す
る結果となった。
As a comparative example, when the film forming material was changed to Ni under the same conditions as the above-mentioned sample, the adhesion strength was 0.7 k.
Only gf / mm 2 was obtained. Moreover, hair cracks were scattered on the surface. Also, when the film forming material was changed to Ta, the adhesion strength was obtained but the thermal conductivity was 280 W / m.
-Not only the characteristics of the carbon fiber composite material were not utilized, such as the occurrence of a portion where only K was obtained, but the result was similar to that of Cu-W.

【0054】(実施例3)上記表1の基材CX−200
2Uを,アルコール湿式のバンドリー切断機によりT
1.0×20×20にラッピング切断し,洗浄後,直径
1.0mmのSiCボールを水媒体中で約10分ミリン
グ行ない毛羽取りを行なった。前記実施例1とほぼ同様
の工程で,1次Niめっきを0.2μm成膜し,次の電
気めっきを,電流密度最終で3.2A/dm2 で電解電
圧及びめっき時間を,夫々1.2V−2分,2V−2
分,3V−1分,3.3V−10分の合計15分の処理
をし,0.3μm成膜加えた結果,下地めっき層の厚み
は0.5μmとなった。この後,通常の電気めっきで,
Niを1μm行ない,実施例1と同様の方法で密着強度
を測定した所,2.8kgf/mm2 が得られ,繊維方
向の熱伝導率は460W/m・K(RT〜600℃)で
あった。
Example 3 Base material CX-200 shown in Table 1 above.
2U of T is cut by an alcohol wet bandy cutting machine.
After lapping into 1.0 × 20 × 20 and washing, SiC balls with a diameter of 1.0 mm were milled in an aqueous medium for about 10 minutes to remove fluff. In the same steps as in Example 1, a primary Ni plating of 0.2 μm was formed, and the next electroplating was performed at an electrolysis voltage and plating time of 3.2 A / dm 2 at the final current density, respectively. 2V-2 minutes, 2V-2
Min, 3V-1 min, 3.3V-10 min, a total of 15 minutes, and a 0.3 μm film was added. As a result, the thickness of the underlying plating layer was 0.5 μm. After this, with normal electroplating,
When Ni was applied at 1 μm and the adhesion strength was measured by the same method as in Example 1, 2.8 kgf / mm 2 was obtained, and the thermal conductivity in the fiber direction was 460 W / m · K (RT to 600 ° C.). It was

【0055】基板が金属の場合,ニッケルは一般におよ
そ3〜5A/dm2 でめっきされるが,炭素繊維複合材
は,低電流密度が好ましい結果であった。但し,あまり
に低くては,装置の安定等からも実用的でなく1.0A
/dm2 以上と言える。例えば,2×3×5mmという
様な小物については,1.0〜1.5A/dm2 で実施
した。尚,下地電気めっきについてはCuもほぼ同様の
条件で成膜できた。
Where the substrate is a metal, nickel is generally plated at about 3-5 A / dm 2 , while carbon fiber composites have favored low current densities. However, if it is too low, it is not practical because of the stability of the device, etc.
/ Dm 2 or more. For example, for a small item of 2 × 3 × 5 mm, the test was performed at 1.0 to 1.5 A / dm 2 . Regarding the underlying electroplating, Cu could be formed under almost the same conditions.

【0056】一方,塩化パラジウム・塩化第1錫の共存
下での活性化処理を省いた場合や,電流密度を3.0A
/dm2 でいっきに施す方法で,いずれも表面に色むら
発生と密着強度が0.4kgf/mm2 ,0.9kgf
/mm2 と1kgf/mm2にも満たず,使用に耐える
信頼性の高い放熱基板は得られなかった。
On the other hand, when the activation treatment in the coexistence of palladium chloride and stannous chloride was omitted, or when the current density was 3.0 A
/ Dm 2 is applied all at once, and in both cases, color unevenness on the surface and adhesion strength are 0.4 kgf / mm 2 and 0.9 kgf.
/ Mm 2 and less than 1 kgf / mm 2 , a reliable heat dissipation board that can withstand use was not obtained.

【0057】[0057]

【発明の効果】以上,説明したように,本発明によれ
ば,炭素繊維複合材からなる基板部材と,この基板部材
の表面に形成された金属表面層とからなり,この金属表
面層は,この炭素繊維複合材に対して,2kgf/mm
2 以上の密着強度を有する下地めっき層を含むことによ
って,所望する熱膨張係数を備え,また,軽量化がで
き,さらに,秀でた熱伝導率を備えた半導体装置用の放
熱基板とその製造方法とを提供することができる。
As described above, according to the present invention, a substrate member made of a carbon fiber composite material and a metal surface layer formed on the surface of the substrate member are provided. 2kgf / mm for this carbon fiber composite
By including a base plating layer having an adhesion strength of 2 or more, a heat dissipation substrate for a semiconductor device having a desired coefficient of thermal expansion, weight reduction, and excellent thermal conductivity, and its manufacture A method can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る放熱基板試料のめっき層
の剥離による密着強度の測定方法を示す図である。
FIG. 1 is a diagram showing a method of measuring adhesion strength by peeling a plating layer of a heat dissipation substrate sample according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1 基材 2 めっき層 3 ろう材 4 引っ張り治具 5 加えられた力の方向を示す矢印 1 base material 2 plating layer 3 brazing material 4 pulling jig 5 arrow indicating the direction of applied force

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 半導体素子を搭載する放熱基板におい
て,炭素繊維複合材によって形成される基板部材と前記
基板部材の表面に形成された金属表面層とから実質的に
なり,前記炭素繊維複合材は,少なくとも一方向の熱伝
導率が300W/m・K以上であり,前記金属表面層
は,前記炭素繊維複合材に対して2.0kgf/mm2
以上の密着強度を有する下地めっき層を含むことを特徴
とする放熱基板。
1. A heat dissipation board on which a semiconductor element is mounted, which substantially consists of a substrate member formed of a carbon fiber composite material and a metal surface layer formed on the surface of the substrate member. , The thermal conductivity in at least one direction is 300 W / m · K or more, and the metal surface layer is 2.0 kgf / mm 2 with respect to the carbon fiber composite material.
A heat dissipation substrate comprising a base plating layer having the above adhesion strength.
【請求項2】 請求項1記載の放熱基板において,前記
金属表面層を構成する金属が,Ti,V,Ni,Nb,
Ag,Cu,Auの内の少なくとも1種からなることを
特徴とする放熱基板。
2. The heat dissipation board according to claim 1, wherein the metal constituting the metal surface layer is Ti, V, Ni, Nb,
A heat dissipation board comprising at least one of Ag, Cu and Au.
【請求項3】 請求項2記載の放熱基板において,前記
金属表面層は,前記下地めっき層を備え,前記下地めっ
き層は,膜厚が0.5〜3μmのNi及びCuの内の少
なくとも一種のめっき膜で形成されていることを特徴と
する放熱基板。
3. The heat dissipation board according to claim 2, wherein the metal surface layer includes the undercoat plating layer, and the undercoat plating layer is at least one of Ni and Cu having a film thickness of 0.5 to 3 μm. A heat dissipation substrate, which is formed of the plating film of.
【請求項4】 請求項2記載の放熱基板において,前記
金属表面層は,前記下地めっき層を備え,前記下地めっ
き層は,膜厚が0.2〜0.5μmのTi,V,及びN
bの内の少なくとも一種のめっき膜によって形成されて
いることを特徴とする放熱基板。
4. The heat dissipation substrate according to claim 2, wherein the metal surface layer includes the undercoat plating layer, and the undercoat plating layer has a thickness of 0.2 to 0.5 μm such as Ti, V, and N.
A heat dissipation substrate formed of at least one plating film of b.
【請求項5】 半導体素子と,これを搭載する放熱基板
とを備えた半導体装置において,前記放熱基板として請
求項1乃至4の内のいずれかに記載された放熱基板を用
いたことを特徴とする半導体装置。
5. A semiconductor device comprising a semiconductor element and a heat dissipation board on which the semiconductor element is mounted, wherein the heat dissipation board according to any one of claims 1 to 4 is used as the heat dissipation board. Semiconductor device.
【請求項6】 半導体素子を搭載する放熱基板の製造方
法において,炭素繊維複合材を基板部材として用意し,
前記炭素繊維複合材の毛羽取りを行った後,金属表面層
を形成することを特徴とする放熱基板の製造方法。
6. A method of manufacturing a heat dissipation board on which a semiconductor element is mounted, wherein a carbon fiber composite material is prepared as a board member,
A method for manufacturing a heat dissipation substrate, comprising forming a metal surface layer after performing fluffing of the carbon fiber composite material.
【請求項7】 請求項6記載の放熱基板の製造方法にお
いて,前記金属表面層を構成する金属が,Ti,V,N
i,Nb,Ag,Cu,Auの1種以上からなる事を特
徴とする放熱基板の製造方法。
7. The method for manufacturing a heat dissipation board according to claim 6, wherein the metal constituting the metal surface layer is Ti, V, N.
A method of manufacturing a heat dissipation substrate, which is characterized by comprising at least one of i, Nb, Ag, Cu, and Au.
【請求項8】 請求項7記載の放熱基板の製造方法にお
いて,前記金属表面層を形成するに際して,前記基板部
材に下地めっき層を形成することを特徴とする放熱基板
の製造方法。
8. The method of manufacturing a heat dissipation board according to claim 7, wherein a base plating layer is formed on the board member when the metal surface layer is formed.
【請求項9】 請求項8記載の放熱基板の製造方法にお
いて,前記下地めっき層を塩化パラジウム・塩化第一錫
の共存下での活性化処理,酸化化学めっき後二次めっき
で塩化ニッケルあるいは塩化銅の溶液中で,基板への電
流密度を徐々に上昇させる事でしかも到達が1.0〜
4.0A/dm2 内に制御される内でNi及びCuの内
の少なくとも一種から形成することを特徴とする放熱基
板の製造方法。
9. The method for manufacturing a heat dissipation board according to claim 8, wherein the underlying plating layer is subjected to activation treatment in the coexistence of palladium chloride / stannous chloride, nickel chloride or chloride by secondary plating after oxidation chemical plating. By gradually increasing the current density to the substrate in the copper solution,
A method for manufacturing a heat dissipation substrate, which is formed from at least one of Ni and Cu while being controlled to 4.0 A / dm 2 .
【請求項10】 請求項9記載の放熱基板の製造方法に
おいて,前記下地めっき層の膜厚が0.5〜3μmであ
ることを特徴とする放熱基板の製造方法。
10. The method of manufacturing a heat dissipation board according to claim 9, wherein the thickness of the base plating layer is 0.5 to 3 μm.
【請求項11】 請求項8記載の放熱基板の製造方法に
おいて,前記下地めっき層を,前記基板部材を加熱しな
がらイオンプレーティングによって,Ti,V及びNb
の内の少なくとも一種から形成することを特徴とする放
熱基板の製造方法。
11. The method for manufacturing a heat dissipation substrate according to claim 8, wherein the base plating layer is subjected to ion plating while heating the substrate member to form Ti, V and Nb.
A method for manufacturing a heat dissipation board, comprising forming at least one of the following.
【請求項12】 請求項11記載の放熱基板の製造方法
において,前記下地めっき層の膜厚は,0.2〜0.5
μmであることを特徴とする放熱基板の製造方法。
12. The method for manufacturing a heat dissipation board according to claim 11, wherein the thickness of the undercoat plating layer is 0.2 to 0.5.
A method for manufacturing a heat dissipation substrate, wherein the heat dissipation substrate is μm.
JP28825795A 1995-11-07 1995-11-07 Heat dissipating board and manufacturing method thereof Expired - Fee Related JP3404612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28825795A JP3404612B2 (en) 1995-11-07 1995-11-07 Heat dissipating board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28825795A JP3404612B2 (en) 1995-11-07 1995-11-07 Heat dissipating board and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002334068A Division JP2003152150A (en) 2002-11-18 2002-11-18 Heat dissipating substrate and semiconductor device employing the same

Publications (2)

Publication Number Publication Date
JPH09129792A true JPH09129792A (en) 1997-05-16
JP3404612B2 JP3404612B2 (en) 2003-05-12

Family

ID=17727861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28825795A Expired - Fee Related JP3404612B2 (en) 1995-11-07 1995-11-07 Heat dissipating board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3404612B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236010A (en) * 2012-05-10 2013-11-21 Mitsubishi Electric Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236010A (en) * 2012-05-10 2013-11-21 Mitsubishi Electric Corp Semiconductor device

Also Published As

Publication number Publication date
JP3404612B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
JP4796354B2 (en) Electrostatic chuck and method for producing yttria sintered body
JP4648030B2 (en) Yttria sintered body, ceramic member, and method for producing yttria sintered body
JP5713684B2 (en) Composite material substrate for LED light emitting device, method for producing the same, and LED light emitting device
US20060063024A1 (en) Metallized substrate
WO2001066488A1 (en) Ceramic substrate for manufacture/inspection of semiconductor
JP2006196864A (en) Alumina member and its manufacturing method
US6475924B2 (en) Substrate and process for producing the same
JPH11312729A (en) Electrostatic chuck
JP3949270B2 (en) Manufacturing method of ceramic circuit board
JP2002015977A (en) Wafer holder
WO2001067817A1 (en) Ceramic substrate
JP3404612B2 (en) Heat dissipating board and manufacturing method thereof
US20060102373A1 (en) Member for semiconductor device
JP3966201B2 (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same
JP2003152150A (en) Heat dissipating substrate and semiconductor device employing the same
JP2001237303A (en) Vacuum chuck for wafer and its manufacturing method
JPS59232692A (en) Brazing filler metal for joining ceramics and metal or the like and composite body composed of ceramics and metal or the like using said brazing filler metal
EP0581438A2 (en) Etching a diamond body with a molten or partially molten metal
JP3827113B2 (en) Method for producing composite member comprising ceramic-metal layer
US5786097A (en) Assembly substrate and method of making
JP2001127388A (en) Silicon nitride circuit board and its manufacturing method
JP4490723B2 (en) Metal-coated carbon material for heat-dissipating substrate of electronic device parts, and heat-dissipating substrate using the metal-coated carbon material
JP2020517115A (en) Equipment for heat conduction and electrical insulation
KR101313024B1 (en) Wire cutting tool using carbon fiber and method of fabricating the same
JPH05148067A (en) Ceramic substrate and its production

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030129

LAPS Cancellation because of no payment of annual fees