JPH0912644A - Clear heat-resistant resin - Google Patents

Clear heat-resistant resin

Info

Publication number
JPH0912644A
JPH0912644A JP18502195A JP18502195A JPH0912644A JP H0912644 A JPH0912644 A JP H0912644A JP 18502195 A JP18502195 A JP 18502195A JP 18502195 A JP18502195 A JP 18502195A JP H0912644 A JPH0912644 A JP H0912644A
Authority
JP
Japan
Prior art keywords
butyrolactone
methylene
parts
monomer
resistant resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18502195A
Other languages
Japanese (ja)
Inventor
Atsushi Okumura
淳 奥村
Kazumi Nakamura
一己 中村
Jun Kamo
純 加茂
Tetsuya Ikemoto
哲哉 池本
Keiichi Sakashita
啓一 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP18502195A priority Critical patent/JPH0912644A/en
Publication of JPH0912644A publication Critical patent/JPH0912644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE: To obtain a resin which has good mechanical characteristics, low moisture absorption properties, and excellent heat resistance and clarity by copolymerizing a specific α-methylene-γ-butyrolactone deriv. and other photopolymerizable monomers. CONSTITUTION: A clear heat-resistant resin having a wt. average mol.wt. (in terms of polystyrene) by GPC of 10,000-300,000 is obtd. by copolymerizing 20-90wt.% at least one α-methylene-γ-butyrolactone deriv. (e.g. a-methylene-4- methyl-γ-butyrolactone) and 80-10wt.% monomer component e.g. comprising an arom. vinyl compd. (e.g. styrene or α-methylstyrene) and a vinyl monomer [e.g. (meth)acrylic acid or methyl (meth)acrylate] in the presence of a polymn. initiator at 50-150 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透明耐熱性樹脂に関
し、より詳しくは、優れた透明性と高い耐熱性を有し、
機械的特性が良好で低吸湿性に優れた樹脂に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent heat-resistant resin, and more specifically, it has excellent transparency and high heat resistance.
The present invention relates to a resin having good mechanical properties and excellent low hygroscopicity.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】メタ
クリル酸メチルを主成分とするメタクリル系樹脂、スチ
レンを主成分とするスチレン系樹脂は、透明性で耐候性
に優れ、かつ機械的強度、熱的性質ならびに成形加工性
などにおいても比較的バランスのとれた性能を有してい
るために、看板、照明用カバー、銘板、自動車部品、装
飾用あるいは雑貨などの多くの用途に使用されている。
しかしながら、これらの樹脂のガラス転移温度(Tg)
は、メタクリル系樹脂で110℃前後、スチレン系樹脂
で90℃前後であることから、耐熱性が要求される分野
における使用は困難である。
2. Description of the Related Art Methacrylic resins containing methyl methacrylate as the main component and styrene resins containing styrene as the main component are transparent and have excellent weather resistance, mechanical strength and heat resistance. Since it has a relatively balanced performance in terms of physical properties and moldability, it is used in many applications such as signboards, lighting covers, nameplates, automobile parts, decorations and sundries.
However, the glass transition temperature (Tg) of these resins
Since methacrylic resin is around 110 ° C. and styrene resin is around 90 ° C., it is difficult to use in the field where heat resistance is required.

【0003】このため、近年メタクリル酸メチルまたは
スチレンに、マレイン酸、α−メチルスチレンあるいは
マレイミド等を共重合させた耐熱性樹脂が開発されてき
ている(特公昭49−10156号公報、特公昭43−
9753号公報、特公平2−46605号公報等)。し
かし、これらの耐熱性樹脂は、マレイン酸、α−メチル
スチレンあるいはマレイミドの共重合により樹脂の光学
的性質、機械的性質および耐候性等が低下し、しかも十
分な耐熱性を得るところまで至っていない。
Therefore, in recent years, a heat-resistant resin obtained by copolymerizing methyl methacrylate or styrene with maleic acid, α-methylstyrene, maleimide or the like has been developed (Japanese Patent Publication Nos. 49-10156 and 43). −
9753, Japanese Patent Publication No. 2-46605, etc.). However, these heat-resistant resins have deteriorated optical properties, mechanical properties, weather resistance, etc. of the resin due to the copolymerization of maleic acid, α-methylstyrene or maleimide, and have not yet reached the point where sufficient heat resistance is obtained. .

【0004】また、高い耐熱性と透明性を有する樹脂と
して、Macromolecules 第12巻546頁(1979
年)にα−メチレン−γ−ブチロラクトンの単独重合体
が、そしてPolymer 第20巻 1215頁(1979
年)にα−メチレン−γ−ブチロラクトンと、メタクリ
ル酸メチル、スチレン等との共重合体が記載されてい
る。しかし、これらの樹脂は、α−メチレン−γ−ブチ
ロラクトンのホモポリマーに起因する脆さのために、成
形品にした場合の機械的強度が低く、また吸水し易い欠
点を有している。
As a resin having high heat resistance and transparency, Macromolecules, Vol. 12, p. 546 (1979).
, A homopolymer of α-methylene-γ-butyrolactone, and Polymer, Vol. 20, p. 1215 (1979).
(Year) describes a copolymer of α-methylene-γ-butyrolactone with methyl methacrylate, styrene and the like. However, these resins have drawbacks that they are low in mechanical strength when formed into molded articles and easily absorb water due to brittleness caused by a homopolymer of α-methylene-γ-butyrolactone.

【0005】[0005]

【課題を解決するための手段】本発明者等は、機械的特
性が良好で低吸湿性と耐熱性に優れた透明性樹脂を得る
ことを目的として鋭意検討を進めた結果、特定量のα−
メチレン−γ−ブチロラクトン誘導体に特定量の他の共
重合可能な単量体を共重合させることにより得られる樹
脂が上記の目的を達成し得ることを見い出し、本発明を
完成した。
Means for Solving the Problems As a result of intensive investigations, the inventors of the present invention conducted a study to obtain a transparent resin having good mechanical properties, low hygroscopicity and excellent heat resistance. −
It was found that a resin obtained by copolymerizing a methylene-γ-butyrolactone derivative with a specific amount of another copolymerizable monomer can achieve the above object, and completed the present invention.

【0006】すなわち、本発明は、下記一般式(I)で
示される単量体(A)と、これと共重合しうる他の重合
性単量体(B)とを重合して得られる透明耐熱性樹脂に
ある。
That is, the present invention is a transparent resin obtained by polymerizing a monomer (A) represented by the following general formula (I) and another polymerizable monomer (B) copolymerizable therewith. It is in heat resistant resin.

【0007】[0007]

【化3】 Embedded image

【0008】本発明において用いられる単量体(A)
は、上記一般式(I)で示されるα−メチレン−γ−ブ
チロラクトンの誘導体である。上記一般式(I)の単量
体(A)において、R1 ,R2 の置換基の構造が嵩高く
なると重合性が低下し、得られる樹脂の耐熱性を低下さ
せるようになるため、R1 の水素原子以外のR1 ,R2
の置換基は、炭素数1〜12のアルキル基、炭素数1〜
12の含フッ素アルキル基、フェニル基またはシクロヘ
キシル基であることが好ましい。R1 ,R2 における炭
素数1〜12のアルキル基は、Cn 2n+1(nは1〜1
2の整数である)で表わされるものであり、その形状は
直鎖状であっても、分岐していてもよい。また炭素数1
〜12の含フッ素アルキル基は、Cn m 2n+1-m(n
は1〜12の整数、mは2n+1以下の整数である)で
表わされるものであり、その形状は直鎖状であっても、
分岐していてもよく、フッ素原子の数、結合位置につい
ても限定されない。また、フェニル基は、低級のアルキ
ル基で置換された低級アルキルフェニル基であってもよ
い。
Monomer (A) used in the present invention
Is a derivative of α-methylene-γ-butyrolactone represented by the general formula (I). In the monomer (A) of the general formula (I), when the structure of the substituents of R 1 and R 2 becomes bulky, the polymerizability decreases, and the heat resistance of the resulting resin lowers. R 1 other than one hydrogen atom, R 2
The substituent of is an alkyl group having 1 to 12 carbon atoms, or 1 to 12 carbon atoms.
12 is preferably a fluorine-containing alkyl group, a phenyl group or a cyclohexyl group. The alkyl group having 1 to 12 carbon atoms in R 1 and R 2 is C n H 2n + 1 (n is 1 to 1).
Is an integer of 2), and the shape thereof may be linear or branched. Also, carbon number 1
To 12 fluorine-containing alkyl groups are C n F m H 2n + 1-m (n
Is an integer of 1 to 12 and m is an integer of 2n + 1 or less), and even if the shape is linear,
It may be branched, and the number of fluorine atoms and the bonding position are not limited. Further, the phenyl group may be a lower alkylphenyl group substituted with a lower alkyl group.

【0009】上記一般式(I)で示される単量体(A)
の例としては、例えば、α−メチレン−4−メチル−γ
−ブチロラクトン、α−メチレン−4−エチル−γ−ブ
チロラクトン、α−メチレン−4−t−ブチル−γ−ブ
チロラクトン、α−メチレン−4−ウンデシル−γ−ブ
チロラクトン、α−メチレン−4,4−ジメチル−γ−
ブチロラクトン、α−メチレン−4−メチル−4−エチ
ル−γ−ブチロラクトン、α−メチレン−4,4−ジエ
チル−γ−ブチロラクトン、α−メチレン−4,4−ジ
イソプロピル−γ−ブチロラクトン、α−メチレン−4
−フェニル−γ−ブチロラクトン、α−メチレン−4−
フェニル−4−メチル−γ−ブチロラクトン、α−メチ
レン−4,4−ジフェニル−γ−ブチロラクトン、α−
メチレン−4−シクロヘキシル−γ−ブチロラクトン、
α−メチレン−4−トリフルオロメチル−γ−ブチロラ
クトン、α−メチレン−4−パーフルオロエチル−γ−
ブチロラクトン、α−メチレン−4,4−ジトリフルオ
ロメチル−γ−ブチロラクトン等が挙げられる。これら
は1種でまたは2種以上を併用して用いることができ
る。
Monomer (A) represented by the above general formula (I)
, For example, α-methylene-4-methyl-γ
-Butyrolactone, α-methylene-4-ethyl-γ-butyrolactone, α-methylene-4-t-butyl-γ-butyrolactone, α-methylene-4-undecyl-γ-butyrolactone, α-methylene-4,4-dimethyl −γ−
Butyrolactone, α-methylene-4-methyl-4-ethyl-γ-butyrolactone, α-methylene-4,4-diethyl-γ-butyrolactone, α-methylene-4,4-diisopropyl-γ-butyrolactone, α-methylene- Four
-Phenyl-γ-butyrolactone, α-methylene-4-
Phenyl-4-methyl-γ-butyrolactone, α-methylene-4,4-diphenyl-γ-butyrolactone, α-
Methylene-4-cyclohexyl-γ-butyrolactone,
α-methylene-4-trifluoromethyl-γ-butyrolactone, α-methylene-4-perfluoroethyl-γ-
Examples include butyrolactone and α-methylene-4,4-ditrifluoromethyl-γ-butyrolactone. These can be used alone or in combination of two or more.

【0010】また、本発明において用いられる上記一般
式(I)で示される単量体(A)と共重合しうる他の重
合性単量体(B)は、上記一般式(I)の単量体(A)
と共重合しうるものであれば特に限定されないが、スチ
レン、α−メチルスチレン、パラメチルスチレン、イソ
プロペニルスチレン、ビニルトルエン等の芳香族ビニル
化合物、および下記一般式(II)で示されるビニル系単
量体から選ばれるものが好ましい。
The other polymerizable monomer (B) copolymerizable with the monomer (A) represented by the general formula (I) used in the present invention is a monomer of the general formula (I). Quantity (A)
It is not particularly limited as long as it can be copolymerized with styrene, α-methylstyrene, paramethylstyrene, isopropenylstyrene, aromatic vinyl compounds such as vinyltoluene, and vinyl-based compounds represented by the following general formula (II) Those selected from monomers are preferred.

【0011】[0011]

【化4】 Embedded image

【0012】上記一般式(II)で示されるビニル系単量
体としては、例えば(メタ)アクリル酸、(メタ)アク
リル酸メチル、(メタ)アクリル酸エチル、(メタ)ア
クリル酸プロピル、(メタ)アクリル酸ブチル、(メ
タ)アクリル酸ラウリル、(メタ)アクリル酸シクロヘ
キシル、(メタ)アクリル酸ベンジル、(メタ)アクリ
ル酸トリフルオロメチル、(メタ)アクリル酸2,2,
2トリフルオロエチル、(メタ)アクリル酸2,2,
3,4,4,4ヘキサフルオロブチル、(メタ)アクリ
ル酸2,2,3,3,4,4,5,5オクタフルオロペ
ンチル、(メタ)アクリル酸2−(パーフルオロオクチ
ル)エチル、α−フルオロアクリル酸トリフルオロメチ
ル、α−フルオロアクリル酸2,2,2トリフルオロエ
チル、α−フルオロアクリル酸2,2,3,4,4,4
ヘキサフルオロブチル、α−フルオロアクリル酸2,
2,3,3,4,4,5,5オクタフルオロペンチル、
α−フルオロアクリル酸2−(パーフルオロオクチル)
エチル等が挙げられる。これらの単量体の中でも芳香族
ビニル化合物の使用が好ましい。また、これらの単量体
は1種でまたは2種以上を併用して用いることができ
る。
Examples of the vinyl-based monomer represented by the general formula (II) include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and (meth) acrylic acid. ) Butyl acrylate, lauryl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, trifluoromethyl (meth) acrylate, 2,2, (meth) acrylate
2 trifluoroethyl, 2,2 (meth) acrylic acid
3,4,4,4 hexafluorobutyl, 2,2,3,3,4,4,5,5 octafluoropentyl (meth) acrylate, 2- (perfluorooctyl) ethyl (meth) acrylate, α -Trifluoromethyl fluoroacrylate, α-fluoroacrylic acid 2,2,2 trifluoroethyl, α-fluoroacrylic acid 2,2,3,4,4,4
Hexafluorobutyl, α-fluoroacrylic acid 2,
2,3,3,4,4,5,5 octafluoropentyl,
α-fluoroacrylic acid 2- (perfluorooctyl)
Ethyl and the like. Among these monomers, it is preferable to use an aromatic vinyl compound. Further, these monomers can be used alone or in combination of two or more kinds.

【0013】なお、上記一般式(II)で示されるビニル
系単量体においては、R4 の置換基の構造が嵩高くなる
と得られる樹脂の耐熱性を低下させ、また重合性も阻害
するようになるため、R4 のアルキル基および含フッ素
アルキル基は、上記一般式(I)で示される単量体
(A)の置換基と同じ炭素数1〜12のアルキル基およ
び炭素数1〜12の含フッ素アルキル基であることが好
ましい。
In the vinyl type monomer represented by the general formula (II), if the structure of the substituent of R 4 becomes bulky, the heat resistance of the obtained resin is lowered and the polymerizability is also hindered. Therefore, the alkyl group and the fluorine-containing alkyl group of R 4 are the same as the alkyl group having 1 to 12 carbon atoms and the carbon number of 1 to 12 as the substituent of the monomer (A) represented by the general formula (I). Is preferably a fluorine-containing alkyl group.

【0014】本発明における上記一般式(I)で示され
る単量体(A)の使用量は、上記単量体(B)とからな
る単量体混合物100重量部中20〜90重量部程度が
好ましい。単量体(A)の使用量が少なすぎると十分な
耐熱性が得られず、また、多すぎると機械的特性が低下
し、吸水性が増加するようになる。好ましくは30〜7
0重量部である。
The amount of the monomer (A) represented by the general formula (I) in the present invention is about 20 to 90 parts by weight based on 100 parts by weight of the monomer mixture consisting of the monomer (B). Is preferred. If the amount of the monomer (A) used is too small, sufficient heat resistance cannot be obtained, and if it is too large, the mechanical properties decrease and the water absorption increases. Preferably 30 to 7
0 parts by weight.

【0015】本発明において用いられる重合方法として
は、特に限定されず、例えば塊状重合、溶液重合、懸濁
重合、乳化重合等を挙げることができる。
The polymerization method used in the present invention is not particularly limited, and examples thereof include bulk polymerization, solution polymerization, suspension polymerization and emulsion polymerization.

【0016】使用される重合開始剤は、重合時に副反応
や着色等の悪影響をおよぼさないものであれば、特に限
定されるものではなく、重合様式、重合温度、重合率、
重合時間に応じて任意に選択でき、1種でまたは2種以
上を併用して用いることができる。重合開始剤の例とし
ては、例えば2,2−アゾビスイソブチロニトリル、
2,2′−アゾビス−2,4−ジメチルバレロニトリル
等のアゾ系開始剤、ベンゾイルパーオキサイド、ジ−t
−ブチルパーオキサイド、ジクルミルパーオキサイド等
の有機過酸化物、ベンゾインメチルエーテル、ベンゾフ
ェノン等の光開始剤、過硫酸アンモニウム等の硫酸塩、
亜硫酸ソーダ、レドックス系開始剤などが挙げられる。
The polymerization initiator used is not particularly limited as long as it does not adversely affect side reactions or coloring during polymerization, and the polymerization mode, polymerization temperature, polymerization rate,
It can be arbitrarily selected depending on the polymerization time, and one kind can be used or two or more kinds can be used in combination. Examples of the polymerization initiator include, for example, 2,2-azobisisobutyronitrile,
Azo initiators such as 2,2′-azobis-2,4-dimethylvaleronitrile, benzoyl peroxide, di-t
-Butyl peroxide, organic peroxides such as dicumyl peroxide, photoinitiators such as benzoin methyl ether and benzophenone, sulfates such as ammonium persulfate,
Examples include sodium sulfite and redox initiators.

【0017】また、重合において分子量を調節するため
に必要に応じて用いられる連鎖移動剤としては、重合時
に副反応や着色等の悪影響をおよぼさないものであれ
ば、特に限定されず、目的とする分子量に対して任意に
選択でき、1種でまたは2種以上を組み合わせて用いる
ことができる。連鎖移動剤の例としては、例えばn−ブ
チルメルカプタン、イソブチルメルカプタン、t−ブチ
ルメルカプタン、オクチルメルカプタン等の第一級、第
二級、第三級メルカプタン、チオグリコール酸およびそ
のエステルなどが挙げられる。
The chain transfer agent optionally used for controlling the molecular weight in the polymerization is not particularly limited as long as it does not adversely affect side reactions or coloring during the polymerization. The molecular weight can be arbitrarily selected, and one kind or a combination of two or more kinds can be used. Examples of the chain transfer agent include primary, secondary and tertiary mercaptans such as n-butyl mercaptan, isobutyl mercaptan, t-butyl mercaptan and octyl mercaptan, thioglycolic acid and its ester.

【0018】重合温度は、使用する重合開始剤、および
重合形式により一概には決められないが、50〜150
℃の範囲て行うことが好ましい。
The polymerization temperature is not generally determined depending on the polymerization initiator used and the type of polymerization, but is 50 to 150.
It is preferably carried out in the range of ° C.

【0019】本発明の透明耐熱性樹脂は、上記の方法に
よって製造されるが品質および品質上の要求から、必要
に応じて可塑剤、架橋剤、熱安定剤、着色剤、紫外線吸
収剤、離型剤等を添加することもできる。
The transparent heat-resistant resin of the present invention is produced by the above-mentioned method. However, in view of quality and quality requirements, a plasticizer, a cross-linking agent, a heat stabilizer, a colorant, an ultraviolet absorber, a releasing agent may be added if necessary. A mold agent or the like can be added.

【0020】本発明の透明耐熱性樹脂の分子量は特に限
定されないが、高すぎる場合には成形加工性を低下させ
たり、また、低すぎる場合には十分な機械的性質が得ら
れなくなる等の欠点が生じるため、GPCのポリスチレ
ン換算により求めた分子量が重量平均分子量で10,0
00〜300,000の範囲のものが好適である。
The molecular weight of the transparent heat-resistant resin of the present invention is not particularly limited, but if it is too high, the molding processability is lowered, and if it is too low, sufficient mechanical properties cannot be obtained. Therefore, the molecular weight determined by GPC polystyrene conversion is 10,0 in terms of weight average molecular weight.
The range of 00 to 300,000 is preferable.

【0021】[0021]

【実施例】以下、実施例により本発明をさらに詳しく説
明する。実施例および比較例で用いた物性の評価は以下
に示す方法で行った。なお、例中の部は重量部を示す。
The present invention will be described in more detail with reference to the following examples. The evaluation of the physical properties used in Examples and Comparative Examples was performed by the methods described below. In addition, the part in an example shows a weight part.

【0022】(1)ガラス転移温度(℃) DSC(示差走査熱量計)にて測定した。(1) Glass transition temperature (° C.) Measured by DSC (differential scanning calorimeter).

【0023】(2)全光線透過率(%) ASTM D1003に準拠して測定した。(2) Total light transmittance (%) Measured in accordance with ASTM D1003.

【0024】(3)曇価(%) ASTM D1003に準拠して測定した。(3) Haze value (%) Measured in accordance with ASTM D1003.

【0025】(4)引張伸度(%) ASTM D638に準拠して測定した。(4) Tensile elongation (%) Measured in accordance with ASTM D638.

【0026】(5)吸水率(%) ASTM D570に準拠し、23℃で24時間水中に
浸漬して測定した。
(5) Water absorption rate (%) According to ASTM D570, it was measured by immersing in water at 23 ° C. for 24 hours.

【0027】〔実施例1〕37%ホルマリン水溶液50
部,アクリル酸メチル70部および1,4−ジアザビシ
クロ−〔2,2,2〕−オクタン30部を1,2−ジメ
トキシエタン200部に溶解させ室温で50時間攪拌し
た後、反応液から有機相を分離して、α−ヒドロキシメ
チルアクリル酸メチルを得た。
[Example 1] 50% 37% formalin aqueous solution
Parts, 70 parts of methyl acrylate and 30 parts of 1,4-diazabicyclo- [2,2,2] -octane were dissolved in 200 parts of 1,2-dimethoxyethane and stirred at room temperature for 50 hours, and then the organic phase was removed from the reaction solution. Was separated to obtain methyl α-hydroxymethyl acrylate.

【0028】次いで、このα−ヒドロキシメチルアクリ
ル酸メチルを6倍量の無水エーテルで希釈し、臭化リン
20部を氷浴下で滴下し、室温で3時間攪拌した。反応
終了後水を加え有機相を分離してα−ブロモメチルアク
リル酸メチルを得た。
Next, this methyl α-hydroxymethyl acrylate was diluted with 6 volumes of anhydrous ether, 20 parts of phosphorus bromide was added dropwise in an ice bath, and the mixture was stirred at room temperature for 3 hours. After completion of the reaction, water was added and the organic phase was separated to obtain methyl α-bromomethyl acrylate.

【0029】次いで、このα−ブロモメチルアクリル酸
メチルを3倍量の無水テトラヒドロフランで希釈した溶
液を亜鉛7部およびアセトン25部を添加してなる10
0部の無水テトラヒドロフラン溶液に滴下した。滴下終
了後、3時間攪拌して10%の塩酸水溶液中に注ぎ、有
機相をよく水洗した後硫酸ナトリウム上で脱水し、減圧
留去してα−メチレン−4,4−ジメチル−γ−ブチロ
ラクトンを得た(GLC純度99%以上)。
Then, a solution prepared by diluting this methyl α-bromomethylacrylate with 3 times the amount of anhydrous tetrahydrofuran was added with 7 parts of zinc and 25 parts of acetone.
0 part of anhydrous tetrahydrofuran solution was added dropwise. After completion of the dropping, the mixture was stirred for 3 hours, poured into a 10% aqueous hydrochloric acid solution, the organic phase was washed well with water, dehydrated over sodium sulfate, and distilled under reduced pressure to obtain α-methylene-4,4-dimethyl-γ-butyrolactone. Was obtained (GLC purity 99% or more).

【0030】このα−メチレン−4,4−ジメチル−γ
−ブチロラクトン16部を、メタクリル酸メチル24
部,ジ−t−ブチルパーオキサイド0.004部および
オクチルメルカプタン0.048部と混合し、この得ら
れた混合液をガラスアンプルに入れ真空下で封管して1
50℃のオイルバス中で24時間重合反応を行った。重
合後アンプルの内容物を400部のジメチルホルムアミ
ドに溶解し、メタノールに注いだ。次いで、その沈殿し
た重合体を分離して取り出し、100℃で48時間真空
乾燥してα−メチレン−4,4−ジメチル−γ−ブチロ
ラクトンとメタクリル酸メチルとからなる共重合体を得
た。次いで、その得られた共重合体のガラス転移温度、
全光線透過率、曇価、引張伸度、吸水率を測定した。な
お、全光線透過率,曇価,引張伸度,吸水率の測定は、
共重合体を245℃で熱プレスして得た厚さ2mmの板
状試験片を用いて行った。結果を表1に示す。図1に得
られた共重合体の赤外吸収スペクトルを示す。
This α-methylene-4,4-dimethyl-γ
16 parts of butyrolactone, 24 parts of methyl methacrylate
Parts, di-t-butyl peroxide 0.004 parts and octyl mercaptan 0.048 parts, and the resulting mixture was placed in a glass ampoule and sealed under vacuum to give 1
The polymerization reaction was carried out for 24 hours in an oil bath at 50 ° C. After the polymerization, the content of the ampoule was dissolved in 400 parts of dimethylformamide and poured into methanol. Next, the precipitated polymer was separated and taken out, and vacuum dried at 100 ° C. for 48 hours to obtain a copolymer composed of α-methylene-4,4-dimethyl-γ-butyrolactone and methyl methacrylate. Then, the glass transition temperature of the obtained copolymer,
The total light transmittance, haze value, tensile elongation and water absorption were measured. In addition, the measurement of total light transmittance, haze value, tensile elongation, water absorption is
The test was performed using a plate-shaped test piece having a thickness of 2 mm obtained by hot pressing the copolymer at 245 ° C. Table 1 shows the results. The infrared absorption spectrum of the obtained copolymer is shown in FIG.

【0031】〔実施例2〕実施例1と同様にしてα−メ
チレン−4,4−ジメチル−γ−ブチロラクトンを合成
し、実施例1におけるメタクリル酸メチルをスチレンに
代える以外は、実施例1と同様にしてα−メチレン−
4,4−ジメチル−γ−ブチロラクトンとスチレンとか
らなる共重合体を得た。次いで、その得られた共重合体
のガラス転移温度、全光線透過率、曇価、引張伸度、吸
水率を実施例1と同様にして測定した。結果を表1に示
す。
Example 2 As Example 1, except that α-methylene-4,4-dimethyl-γ-butyrolactone was synthesized and styrene was used instead of methyl methacrylate in Example 1. Similarly, α-methylene-
A copolymer of 4,4-dimethyl-γ-butyrolactone and styrene was obtained. Then, the glass transition temperature, total light transmittance, haze value, tensile elongation and water absorption of the obtained copolymer were measured in the same manner as in Example 1. Table 1 shows the results.

【0032】〔比較例1〕10部のナトリウムエトキシ
ドを分散させた100部の無水テトラヒドロラン中に、
シュウ酸ジエチル25部を加えた後、15℃以下でγ−
ブチロラクトン15部を滴下し、終夜放置した。この反
応液中にホルムアルデヒドを吹込み、溶媒を留去した後
エーテル抽出を行った。このエーテル相を飽和炭酸ナト
リウム水溶液と混合し、1時間攪拌した。その後溶媒を
留去した後、残渣をビグリュウー管をつけて減圧蒸留
し、α−メチレン−γ−ブチロラクトンを得た(GLC
純度99%以上)。次いで、このα−メチレン−γ−ブ
チロラクトンを実施例1と同様にしてメタクリル酸メチ
ルと共重合し、α−メチレン−γ−ブチロラクトンとメ
タクリル酸メチルとからなる共重合体を得た。次いで、
その得られた共重合体のガラス転移温度、全光線透過
率、曇価、引張伸度、吸水率を実施例1と同様にして測
定した。結果を表1に示す。
Comparative Example 1 In 100 parts of anhydrous tetrahydrolane in which 10 parts of sodium ethoxide was dispersed,
After adding 25 parts of diethyl oxalate, γ-
15 parts of butyrolactone was added dropwise and left overnight. Formaldehyde was blown into the reaction solution, and the solvent was distilled off, followed by extraction with ether. This ether phase was mixed with saturated aqueous sodium carbonate solution and stirred for 1 hour. Then, the solvent was distilled off, and the residue was distilled under reduced pressure with a Vigreux tube attached to obtain α-methylene-γ-butyrolactone (GLC).
Purity 99% or more). Then, this α-methylene-γ-butyrolactone was copolymerized with methyl methacrylate in the same manner as in Example 1 to obtain a copolymer of α-methylene-γ-butyrolactone and methyl methacrylate. Then
The glass transition temperature, total light transmittance, haze value, tensile elongation, and water absorption of the obtained copolymer were measured in the same manner as in Example 1. Table 1 shows the results.

【0033】〔比較例2〕比較例1と同様にして合成し
たα−メチレン−γ−ブチロラクトンを用いて、実施例
2と同様にしてスチレンと共重合し、α−メチレン−γ
−ブチロラクトンとスチレンとからなる共重合体を得
た。次いで、その得られた共重合体のガラス転移温度、
全光線透過率、曇価、引張伸度、吸水率を実施例1と同
様にして測定した。結果を表1に示す。
Comparative Example 2 α-methylene-γ-butyrolactone synthesized in the same manner as in Comparative Example 1 was used and copolymerized with styrene in the same manner as in Example 2 to obtain α-methylene-γ.
A copolymer of butyrolactone and styrene was obtained. Then, the glass transition temperature of the obtained copolymer,
The total light transmittance, haze value, tensile elongation and water absorption were measured in the same manner as in Example 1. Table 1 shows the results.

【0034】〔実施例3〕室温にてマロン酸ジメチル3
5部を12.5%ナトリウムメチラートのメタノール溶
液中に滴下した。次いで、50℃にてブチレンオキシド
16部を滴下した後、70℃に昇温し3時間攪拌した。
攪拌後50℃まで冷却し、20%水酸化ナトリウム水溶
液50部を加え、以後室温まで攪拌しながら放冷した。
この溶液からメタノールを減圧留去した後、30%硫酸
を加えpH2にした後、酢酸エチルで3度抽出を行っ
た。その後酢酸エチルを減圧留去した残渣にジエチルア
ミン18部を35℃で加え、さらに37%ホルマリン水
溶液43部を室温で滴下し、終夜攪拌した。反応液をさ
らに70℃で1時間攪拌後、酢酸エチルで抽出した。こ
の有機相を10%硫酸および水でよく洗浄した後、減圧
留去して得られた残渣にヒドロキノンモノメチルエーテ
ルを0.02部加えた後に減圧蒸留を行いα−メチレン
−4−エチル−γ−ブチロラクトンを合成した。
Example 3 Dimethyl malonate 3 at room temperature
Five parts were added dropwise to a methanol solution of 12.5% sodium methylate. Then, 16 parts of butylene oxide was added dropwise at 50 ° C., then the temperature was raised to 70 ° C. and the mixture was stirred for 3 hours.
After stirring, the mixture was cooled to 50 ° C., 50 parts of a 20% aqueous sodium hydroxide solution was added, and the mixture was allowed to cool to room temperature with stirring.
Methanol was distilled off from this solution under reduced pressure, 30% sulfuric acid was added to adjust the pH to 2, and the mixture was extracted 3 times with ethyl acetate. Then, 18 parts of diethylamine was added to the residue obtained by distilling off ethyl acetate under reduced pressure at 35 ° C., and 43 parts of 37% aqueous formalin solution was added dropwise at room temperature, followed by stirring overnight. The reaction solution was further stirred at 70 ° C. for 1 hour and then extracted with ethyl acetate. This organic phase was thoroughly washed with 10% sulfuric acid and water, and then distilled under reduced pressure. 0.02 parts of hydroquinone monomethyl ether was added to the resulting residue, which was then distilled under reduced pressure to obtain α-methylene-4-ethyl-γ-. Butyrolactone was synthesized.

【0035】次いで、このα−メチレン−4−エチル−
γ−ブチロラクトンを実施例1と同様にしてメタクリル
酸メチルと共重合し、α−メチレン−4−エチル−γ−
ブチロラクトンとメタクリル酸メチルとからなる共重合
体を得た。次いで、その得られた共重合体のガラス転移
温度、全光線透過率、曇価、引張伸度、吸水率を実施例
1と同様にして測定した。結果を表1に示す。
Then, this α-methylene-4-ethyl-
γ-Butyrolactone was copolymerized with methyl methacrylate in the same manner as in Example 1 to obtain α-methylene-4-ethyl-γ-
A copolymer of butyrolactone and methyl methacrylate was obtained. Then, the glass transition temperature, total light transmittance, haze value, tensile elongation and water absorption of the obtained copolymer were measured in the same manner as in Example 1. Table 1 shows the results.

【0036】〔実施例4〕実施例3と同様にして合成し
たα−メチレン−4−エチル−γ−ブチロラクトンを用
いて、実施例2と同様にしてスチレンと共重合し、α−
メチレン−4−エチル−γ−ブチロラクトンとスチレン
とからなる共重合体を得た。次いで、その得られた共重
合体のガラス転移温度、全光線透過率、曇価、引張伸
度、吸水率を実施例1と同様にして測定した。ただし、
全光線透過率、曇価、引張伸度、吸水率の測定は共重合
体を240℃で熱プレスして得た厚さ2mmの板状試験
片を用いて行った。結果を表1に示す。
Example 4 Using α-methylene-4-ethyl-γ-butyrolactone synthesized in the same manner as in Example 3, it was copolymerized with styrene in the same manner as in Example 2 to obtain α-
A copolymer of methylene-4-ethyl-γ-butyrolactone and styrene was obtained. Then, the glass transition temperature, total light transmittance, haze value, tensile elongation and water absorption of the obtained copolymer were measured in the same manner as in Example 1. However,
The total light transmittance, haze value, tensile elongation, and water absorption were measured using a plate-shaped test piece having a thickness of 2 mm obtained by hot pressing the copolymer at 240 ° C. Table 1 shows the results.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【発明の効果】本発明の透明耐熱性樹脂は、優れた透明
性と高い耐熱性を有し、機械的特性および低吸湿性に優
れているために、従来、メタクリル系樹脂およびスチレ
ン系樹脂等を用いることの出来なかった、特に高い耐熱
性を必要とする用途、例えば自動車部品,光学機器部
品,工業用部品,家庭用部品などの用途に好適に使用す
ることができる。
EFFECT OF THE INVENTION The transparent heat-resistant resin of the present invention has excellent transparency and high heat resistance, and has excellent mechanical properties and low hygroscopicity. Can be suitably used for applications requiring high heat resistance, such as automobile parts, optical device parts, industrial parts, household parts, etc.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られた共重合体の赤外吸収スペク
トルの分析図である。
FIG. 1 is an analysis diagram of an infrared absorption spectrum of the copolymer obtained in Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池本 哲哉 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央研究所内 (72)発明者 坂下 啓一 東京都中央区京橋二丁目3番19号 三菱レ イヨン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuya Ikemoto 20-1 Miyuki-cho, Otake-shi, Hiroshima Mitsubishi Rayon Co., Ltd. Central Research Laboratory (72) Inventor Keiichi Sakashita 2-3-19 Kyobashi, Chuo-ku, Tokyo Within Mitsubishi Rayon Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(I)で示される単量体
(A)と、これと共重合しうる他の重合性単量体(B)
とを重合して得られる透明耐熱性樹脂。 【化1】
1. A monomer (A) represented by the following general formula (I) and another polymerizable monomer (B) copolymerizable therewith:
A transparent heat-resistant resin obtained by polymerizing and. Embedded image
【請求項2】 共重合しうる他の重合性単量体(B)が
芳香族ビニル化合物であることを特徴とする請求項1記
載の透明耐熱性樹脂。
2. The transparent heat-resistant resin according to claim 1, wherein the other copolymerizable polymerizable monomer (B) is an aromatic vinyl compound.
【請求項3】 共重合しうる他の重合性単量体(B)が
下記一般式(II)で表わされるビニル系単量体であるこ
とを特徴とする請求項1記載の透明耐熱性樹脂。 【化2】
3. The transparent heat resistant resin according to claim 1, wherein the other copolymerizable polymerizable monomer (B) is a vinyl monomer represented by the following general formula (II). . Embedded image
JP18502195A 1995-06-29 1995-06-29 Clear heat-resistant resin Pending JPH0912644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18502195A JPH0912644A (en) 1995-06-29 1995-06-29 Clear heat-resistant resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18502195A JPH0912644A (en) 1995-06-29 1995-06-29 Clear heat-resistant resin

Publications (1)

Publication Number Publication Date
JPH0912644A true JPH0912644A (en) 1997-01-14

Family

ID=16163396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18502195A Pending JPH0912644A (en) 1995-06-29 1995-06-29 Clear heat-resistant resin

Country Status (1)

Country Link
JP (1) JPH0912644A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025360A1 (en) * 2004-08-30 2006-03-09 Mitsubishi Rayon Co., Ltd. Optical copolymer and molded product comprising the same
WO2012065120A2 (en) * 2010-11-11 2012-05-18 Segetis, Inc. Ionic polymers, method of manufacture, and uses thereof
WO2013071256A1 (en) * 2011-11-11 2013-05-16 Segetis, Inc. Poly(lactone)s, method of manufacture, and uses thereof
EP3022488B1 (en) * 2013-07-17 2018-10-17 Edwards Limited Head assembly for a radiant burner
CN114341210A (en) * 2019-08-22 2022-04-12 株式会社日本触媒 Copolymer and method for producing same, copolymer mixture, doped resin composition, and resin molded article and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025360A1 (en) * 2004-08-30 2006-03-09 Mitsubishi Rayon Co., Ltd. Optical copolymer and molded product comprising the same
WO2012065120A2 (en) * 2010-11-11 2012-05-18 Segetis, Inc. Ionic polymers, method of manufacture, and uses thereof
WO2012065120A3 (en) * 2010-11-11 2012-07-12 Segetis, Inc. Ionic polymers, method of manufacture, and uses thereof
US8846817B2 (en) 2010-11-11 2014-09-30 Segetis, Inc. Ionic polymers, method of manufacture, and uses thereof
WO2013071256A1 (en) * 2011-11-11 2013-05-16 Segetis, Inc. Poly(lactone)s, method of manufacture, and uses thereof
EP3022488B1 (en) * 2013-07-17 2018-10-17 Edwards Limited Head assembly for a radiant burner
US11162676B2 (en) 2013-07-17 2021-11-02 Edwards Limited Head assembly for a radiant burner
CN114341210A (en) * 2019-08-22 2022-04-12 株式会社日本触媒 Copolymer and method for producing same, copolymer mixture, doped resin composition, and resin molded article and method for producing same

Similar Documents

Publication Publication Date Title
JP4822751B2 (en) Copolymer and process for producing the same
JP4326283B2 (en) Novel polymerizable acrylate compound containing hexafluorocarbinol group and polymer compound using the same
JPH0912644A (en) Clear heat-resistant resin
JPH0547544B2 (en)
JP3542201B2 (en) Fluoropolymer
JPS62109811A (en) Production of highly heat-resistant methyl methacrylate resin
JP3580908B2 (en) Transparent heat-resistant resin
JP3580909B2 (en) Heat resistant resin
JPH0912632A (en) Transparent heat-resistant resin
JP2856794B2 (en) Methacrylic resin for optical
JPH03153715A (en) Optical methacrylic resin
KR100647156B1 (en) Fluorine-Containing Optical Material and Fluorine-Containing Copolymer
JPS6234046B2 (en)
JPH0524926B2 (en)
JP2005281363A (en) Methacrylic resin composition and transparent member
JP2505574B2 (en) Norbornane compound and method for producing the same
JP3916425B2 (en) Fluorine-containing acrylate derivative, process for producing the same, and polymer compound using the same
JPH02268170A (en) Triazine compound and production thereof
JPH0768311B2 (en) Methacrylic resin for optical elements
JP2007023233A (en) Graft polymer containing sulfur atom at side chain and method for producing the same
JP2002161112A (en) (metha)acrylate type resin of high thermal resistance and low moisture absorption
JPH0684333B2 (en) Biphenyl compound and method for producing the same
JP2001151823A (en) Copolymer and its production
JP2000256480A (en) Heat-resistant acrylic resin film
JPH05310853A (en) Production of heat-resistant acrylic resin

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040430

A131 Notification of reasons for refusal

Effective date: 20040706

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20041207

Free format text: JAPANESE INTERMEDIATE CODE: A02