JPH09125106A - Metal coated with granular material - Google Patents

Metal coated with granular material

Info

Publication number
JPH09125106A
JPH09125106A JP31355495A JP31355495A JPH09125106A JP H09125106 A JPH09125106 A JP H09125106A JP 31355495 A JP31355495 A JP 31355495A JP 31355495 A JP31355495 A JP 31355495A JP H09125106 A JPH09125106 A JP H09125106A
Authority
JP
Japan
Prior art keywords
coated
particles
coating layer
particulate matter
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31355495A
Other languages
Japanese (ja)
Inventor
Kazuo Osumi
和生 大角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP31355495A priority Critical patent/JPH09125106A/en
Priority to US08/742,925 priority patent/US5976708A/en
Priority to EP98201850A priority patent/EP0874062A3/en
Priority to DE69601612T priority patent/DE69601612T2/en
Priority to EP96307965A priority patent/EP0771882B1/en
Publication of JPH09125106A publication Critical patent/JPH09125106A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a metal coated with a granular material capable of being machined to a metallic parts such as thin plate, fine wire and small article and large in the combination strength of a coated layer with a base metal. SOLUTION: This metal A coated with the granular material is constituted so that the surface of a heat resistance steel containing chromium and at least one kind of nickel, aluminum and yttrium, for example, a stainless steel wire 2 is coated with the coating layer 10 consisting of nickel-based alloy particles containing aluminum or a chromium-based alloy particles 4 containing the aluminum coated with ceramic particles 6. The stainless steel wire 2 coated with the coating layer 10 is subjected to a heat treatment at 1100-1300 deg.C in vacuum to weld the alloy particles 4 to the wire 2 and to combine the alloy particles 4 of the coating layer 10 and the ceramic particles 6 with each other. The average grain size of the ceramic particles 6 of the coating layer 10 is <=1μm and the particles contain at least the one kind of aluminum, silicon, magnesium, zirconium, barium and titanium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電気発熱線などに好
適な粒子状物質被覆金属、特に基材である金属に対する
被覆層の結合力が大なる粒子状物質被覆金属に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particulate matter-coated metal suitable for electric heating wires and the like, and more particularly to a particulate matter-coated metal having a large binding force of a coating layer to a metal as a base material.

【0002】[0002]

【従来の技術】金属表面にセラミツク・金属複合被覆を
施す方法には、CVD法、PVD法、ゾルゲル法、溶射
などが知られている。
2. Description of the Related Art CVD, PVD, sol-gel, thermal spraying and the like are known as methods for applying a ceramic / metal composite coating on a metal surface.

【0003】しかし、CVD(chemical vapor depositi
on) 法は基材である金属と被覆物質の材質が限定され、
PVD(physical vapor deposition) 法は基材金属と被
覆物質との結合力ないし密着性が弱い。また、ゾルゲル
法も基材金属と被覆物質との結合力ないし密着性が弱
く、層厚が1μmを超えるような厚い被覆層を形成する
ことは難しい。特に、被覆物質を結合する前に、基材金
属の表面にシヨツトブラストなどにより微細な凸凹を形
成する必要があることから、薄板、細線、小物などの金
属部品への被覆層を形成することは非常に難しい。
However, CVD (chemical vapor depositi)
on) method, the materials of the base metal and the coating material are limited,
The PVD (physical vapor deposition) method has a weak bonding force or adhesion between the base metal and the coating material. Also in the sol-gel method, the bonding strength or adhesion between the base metal and the coating substance is weak, and it is difficult to form a thick coating layer having a layer thickness of more than 1 μm. In particular, since it is necessary to form fine irregularities on the surface of the base metal by means of shot blasting before binding the coating substance, it is necessary to form a coating layer on metal parts such as thin plates, fine wires and small items. Is very difficult.

【0004】特開平5−287407号公報には、切削
工具などの基材金属の表面を被覆する冶金用セラミツク
系粉末として、相対的に粗い窒化ケイ素、アルミナなど
のセラミツク粉末の表面に、ニツケル合金、コバルト合
金などの合金粉末を強固に密着したものが開示されてい
るが、この冶金用セラミツク系粉末はセラミツク系粉末
と合金粉末との組織や基材金属への被覆方法が異なるだ
けでなく、機械的強度が十分なものとは言えず、用途が
限定される。
Japanese Unexamined Patent Publication (Kokai) No. 5-287407 discloses, as a ceramic-based powder for metallurgy for coating the surface of a base metal such as a cutting tool, a nickel alloy on the surface of a relatively coarse ceramic powder such as silicon nitride or alumina. , Those which firmly adhere alloy powder such as cobalt alloy are disclosed, but this ceramic-based powder for metallurgy is not only different in structure and base metal coating method between ceramic-based powder and alloy powder, The mechanical strength is not sufficient and its use is limited.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は上述の
問題に鑑み、薄板、細線、小物などの金属部品にも加工
が可能であり、基材金属に対する被覆層の結合力が大な
る、粒子状物質被覆金属を提供することにある。
In view of the above-mentioned problems, the object of the present invention is that it is possible to process metal parts such as thin plates, fine wires and small articles, and the binding force of the coating layer to the base metal is large. To provide a metal coated with a particulate matter.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明の構成は粒子状物質被覆金属として、クロム
(Cr)を含む耐熱鋼の表面を、セラミツク粒子により被覆
されたアルミニウム(Al)を含むニツケル(Ni)基合金粒子
またはアルミニウム(Al)を含むクロム(Cr)基合金粒子か
らなる被覆層で覆い、かつ耐熱鋼と合金粒子とを溶着さ
せるようにしたものである。
In order to solve the above-mentioned problems, the structure of the present invention uses chromium as a particulate matter coating metal.
The surface of the heat-resistant steel containing (Cr) is covered with a coating layer consisting of nickel (Ni) -based alloy particles containing aluminum (Al) or chromium (Cr) -based alloy particles containing aluminum (Al) coated with ceramic particles. In addition, the heat resistant steel and the alloy particles are welded together.

【0007】[0007]

【発明の実施の形態】本発明では粒度分布が均一であり
平均粒径が1μm以下のセラミツク粉末と合金粉末との
混合粉末を、基材金属の表面に有機溶剤により接着した
後、真空中で熱処理することにより、粒子状物質被覆金
属を得る。熱処理することにより、セラミツク粉末と合
金粉末が有機溶剤の炭素により還元され、かつ基材金属
に溶着する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a mixed powder of a ceramic powder and an alloy powder having a uniform particle size distribution and an average particle size of 1 μm or less is adhered to the surface of a base metal with an organic solvent, and then in a vacuum. By heat treatment, a particulate matter-coated metal is obtained. By the heat treatment, the ceramic powder and the alloy powder are reduced by the carbon of the organic solvent and welded to the base metal.

【0008】基材金属にはクロム(Cr)の他にニツケル(N
i),アルミニウム(Al),イツトリウム(Y) の内の少なく
とも1種を含む耐熱鋼、例えばステンレス鋼が選択され
る。セラミツク粉末にはアルミニウム(Al),ケイ素(S
i),マグネシウム(Mg),ジルコニウム(Zr),バリウム(B
a),チタン(Ti)の内の少なくとも1種が選択される。具
体的にはAl2O3,SiO2,MgO,ZrO2,BaTiO3,TiO2などの
酸化物である。合金粉末にはアルミニウム(Al)を含むニ
ツケル(Ni)基合金粉末、またはアルミニウム(Al)を含む
クロム(Cr)基合金粉末、好ましくはNi-Cr-Al合金粉末が
選択される。
In addition to chromium (Cr), nickel (N
A heat resistant steel containing at least one of i), aluminum (Al) and yttrium (Y), for example, stainless steel is selected. Aluminum (Al), silicon (S
i), magnesium (Mg), zirconium (Zr), barium (B
At least one of a) and titanium (Ti) is selected. Specifically, they are oxides such as Al 2 O 3 , SiO 2 , MgO, ZrO 2 , BaTiO 3 , and TiO 2 . As the alloy powder, nickel (Ni) -based alloy powder containing aluminum (Al) or chromium (Cr) -based alloy powder containing aluminum (Al), preferably Ni-Cr-Al alloy powder is selected.

【0009】[0009]

【実施例】図1,2に示すように、基材金属としての線
径0.2mmのステンレス鋼線2の表面に、アクリルゴ
ム、有機溶剤、イソヘキサンガスなどからなる合成ゴム
系接着剤をスプレーにより塗布した。前記ステンレス鋼
線2の表面に塗布した接着剤の表面に、平均粒径が5〜
20μmのNi-Cr-Al合金粉末4と、平均粒径が0.3〜
1.0μmのAl2O3,SiO2,MgO,ZrO2,BaTiO3,TiO2
どのセラミツク粉末6との混合粉末を付着させた。次い
で、ステンレス鋼線2を温度1100〜1300℃の真
空中で約2時間加熱して粒子状物質被覆ステンレス鋼線
Aを得た。
EXAMPLES As shown in FIGS. 1 and 2, a synthetic rubber adhesive composed of acrylic rubber, an organic solvent, isohexane gas, etc., was applied to the surface of a stainless steel wire 2 having a wire diameter of 0.2 mm as a base metal. It was applied by spraying. The surface of the adhesive applied to the surface of the stainless steel wire 2 has an average particle size of 5 to 5.
20 μm Ni-Cr-Al alloy powder 4 and average particle size of 0.3-
A 1.0 μm mixed powder of Al 2 O 3 , SiO 2 , MgO, ZrO 2 , BaTiO 3 , TiO 2 and the like with the ceramic powder 6 was deposited. Next, the stainless steel wire 2 was heated in a vacuum at a temperature of 1100 to 1300 ° C. for about 2 hours to obtain a particulate matter-coated stainless steel wire A.

【0010】本発明により得られた粒子状物質被覆ステ
ンレス鋼線Aについて、その表面を観察した結果、ステ
ンレス鋼線2の表面を被覆するNi-Cr-Al合金粉末4とセ
ラミツク粉末6が、図1に示すように、被覆前の形状と
粒径を保つたままで付着していた。ステンレス鋼線2の
被覆層10の各被覆粒子4,6はあまり重なり合つた状
態にはなく、ほぼ1層に分散する均一な被覆層10を形
成しており、被覆粒子同士が凝集しまたは焼結している
様子は見られなかつた。
As a result of observing the surface of the particulate matter-coated stainless steel wire A obtained by the present invention, the Ni-Cr-Al alloy powder 4 and the ceramic powder 6 for coating the surface of the stainless steel wire 2 are shown in FIG. As shown in No. 1, the particles adhered while maintaining the shape and particle size before coating. The coating particles 4 and 6 of the coating layer 10 of the stainless steel wire 2 do not overlap each other so much and form a uniform coating layer 10 dispersed in almost one layer, and the coating particles aggregate or burn. I couldn't see it tied up.

【0011】図4に示すように、ステンレス鋼線2の表
面を被覆するセラミツク粒子は、粒径が小さく粒度が均
一なものほど、被覆層10も均一であつた。つまり、セ
ラミツク粒子6の粒径が1μmを超えると、ステンレス
鋼線2の表面に粒子状物質で被覆されない部分が生じ
る。比較試験の結果、ステンレス鋼線2の表面を被覆す
るセラミツク粒子6の粒径が1μmを超えると、セラミ
ツク粒子6がステンレス鋼線2に付着しにくくなること
が分かつた。また、ステンレス鋼線2の表面を被覆する
粒子状物質として、Ni-Cr-Al合金粒子のみを用いた場合
は、Ni-Cr-Al合金粒子同士の凝着が起こることが分か
る。
As shown in FIG. 4, the smaller the particle size of the ceramic particles coating the surface of the stainless steel wire 2 was, the more uniform the coating layer 10 was. That is, when the particle diameter of the ceramic particles 6 exceeds 1 μm, a portion of the surface of the stainless steel wire 2 which is not covered with the particulate matter occurs. As a result of the comparative test, it was found that when the particle diameter of the ceramic particles 6 covering the surface of the stainless steel wire 2 exceeds 1 μm, the ceramic particles 6 are less likely to adhere to the stainless steel wire 2. Further, it can be seen that when only Ni-Cr-Al alloy particles are used as the particulate matter for coating the surface of the stainless steel wire 2, the Ni-Cr-Al alloy particles are coagulated with each other.

【0012】本発明による粒子状物質被覆ステンレス鋼
線Aの断面を観察・分析した結果、図2に示すように、
被覆粒子4,6とステンレス鋼線2との界面に、被覆粒
子4,6の構成元素とステンレス鋼線2の構成元素との
反応層3が認められた。これはNi-Cr-Al合金粒子4はも
ちろん微細なセラミツク粒子6も、真空中で有機溶剤に
含まれる炭素(C) により還元され、基材金属であるス
テンレス鋼線2と反応したものと考えられる。
As a result of observing and analyzing the cross section of the particulate matter-coated stainless steel wire A according to the present invention, as shown in FIG.
At the interface between the coated particles 4 and 6 and the stainless steel wire 2, the reaction layer 3 of the constituent elements of the coated particles 4 and 6 and the constituent element of the stainless steel wire 2 was observed. It is thought that this is because not only the Ni-Cr-Al alloy particles 4 but also the fine ceramic particles 6 were reduced in vacuum by carbon (C) contained in the organic solvent and reacted with the stainless steel wire 2 which is the base metal. To be

【0013】本発明による粒子状物質被覆ステンレス鋼
線Aの基材金属であるステンレス鋼線2と被覆層10な
いし被覆粒子4,6との密着性を評価するために、粒子
状物質被覆ステンレス鋼線Aを繰返し加熱したものと加
熱しなかつたものとについて自己巻付け試験を行つた。
試験の結果、本発明による粒子状物質被覆ステンレス鋼
線Aは巻付けた時および巻付けた後に真直ぐに伸ばした
時に、被覆粒子4,6の脱落は見られなかつた。被覆層
10の割れや被覆粒子4,6の脱落がないのは、被覆粒
子4,6とステンレス鋼線2が反応層3を介して互いに
結合し、セラミツク粒子6が互いに焼結せず独立してい
る結果、熱応力が緩和されることによるものと考えられ
る。
In order to evaluate the adhesion between the stainless steel wire 2 which is the base metal of the particulate matter-coated stainless steel wire A according to the present invention and the coating layer 10 or the coated particles 4 and 6, the particulate matter-coated stainless steel is used. A self-wrapping test was conducted on the wire A that was repeatedly heated and the wire that was not heated.
As a result of the test, when the particulate matter-coated stainless steel wire A according to the present invention was wound and when it was straightened after being wound, the coated particles 4 and 6 did not fall off. The coating layer 10 does not crack and the coating particles 4 and 6 do not fall off because the coating particles 4 and 6 and the stainless steel wire 2 are bonded to each other through the reaction layer 3 and the ceramic particles 6 do not sinter each other and are independent. As a result, it is considered that the thermal stress is relaxed.

【0014】次に、粒子状物質としてNi-Cr-Al合金粒子
とAl2O3,SiO2,MgO,ZrO2,BaTiO3,TiO2などのセラミ
ツク粒子を用いた、本発明による粒子状物質被覆ステン
レス鋼線A1,A5,A3,A4,A2と、比較例のステンレス鋼
線B1〜B3について、温度1100℃の大気に25時間暴
露した後の強度変化を見る耐熱強度試験を行つた。図5
に示すように、本発明による粒子状物質被覆ステンレス
鋼線A1〜A5の引張強度は300MPa以上であつた。こ
れに対し、被覆なしステンレス鋼線B1の引張強度は暴露
1時間で、ゾルゲル法によりAl2O3 を被覆したステンレ
ス鋼線B2の引張強度は暴露10時間で、Ni-Cr-Al合金の
みを被覆したステンレス鋼線B3の引張強度は暴露10時
間で、それぞれ測定不可能になつた。
Next, the particulate material according to the present invention using Ni-Cr-Al alloy particles and ceramic particles such as Al 2 O 3 , SiO 2 , MgO, ZrO 2 , BaTiO 3 and TiO 2 as the particulate material. With respect to the coated stainless steel wires A1, A5, A3, A4, A2 and the stainless steel wires B1 to B3 of the comparative example, a heat resistance strength test was performed to see the strength change after exposure to the atmosphere at a temperature of 1100 ° C. for 25 hours. FIG.
As shown in, the tensile strength of the particulate matter-coated stainless steel wires A1 to A5 according to the present invention was 300 MPa or more. On the other hand, the tensile strength of the uncoated stainless steel wire B1 is 1 hour of exposure, and the tensile strength of the stainless steel wire B2 coated with Al 2 O 3 by the sol-gel method is 10 hours of exposure, and only Ni-Cr-Al alloy is exposed. The tensile strength of the coated stainless steel wire B3 became unmeasurable after 10 hours of exposure.

【0015】また、粒子状物質にNi-Cr-Al合金粒子にAl
2O3 粒子を5wt%以上添加したものを用いた粒子状物質
被覆ステンレス鋼線Aについて、温度1100℃の大気
に25時間暴露する耐熱強度試験を行つた後に、ステン
レス鋼線2の表面の酸化層を分析したところ、クロム(C
r)とアルミニウム(Al)が検出された。一方、粒子状物質
としてNi-Cr-Al合金のみを用いたステンレス鋼線2の表
面の酸化層からは、鉄(Fe),クロム(Cr)が検出された。
Further, the particulate matter is Ni-Cr-Al alloy particles and Al is
Regarding the particulate-material-coated stainless steel wire A using 2 O 3 particles added in an amount of 5 wt% or more, the surface of the stainless steel wire 2 was oxidized after a heat resistance test in which it was exposed to the atmosphere at a temperature of 1100 ° C. for 25 hours. Analysis of the layers showed that chromium (C
r) and aluminum (Al) were detected. On the other hand, iron (Fe) and chromium (Cr) were detected in the oxide layer on the surface of the stainless steel wire 2 using only the Ni-Cr-Al alloy as the particulate matter.

【0016】上述の耐熱強度試験で、ステンレス鋼線2
の表面を被覆する粒子状物質として、Ni-Cr-Al合金粒子
にAl2O3 粒子を5wt%以上添加すると、図6,7に示す
ように酸化増量が減少し、耐熱強度試験後の引張強度も
向上することが分かつた。ここで、酸化増量PWとは耐熱
強度試験前後の質量をそれぞれW1,W0とすると、PW=100
(W1-W0)/W0で表される。上述の分析と耐熱強度試験か
ら、被覆層10の粒子状物質として、Ni-Cr-Al合金粒子
にAl2O3 粒子を添加すると耐熱強度が向上するのは、鉄
(Fe)の酸化が抑制されたためと考えられる。
According to the above heat resistance test, the stainless steel wire 2
As a particulate matter for coating the surface of Ni-Cr-Al alloy particles, if more than 5 wt% of Al 2 O 3 particles are added, the oxidation weight increase decreases as shown in Figs. It was found that the strength was also improved. Here, the oxidation weight increase PW is PW = 100, where W1 and W0 are the masses before and after the heat resistance test.
It is represented by (W1-W0) / W0. From the above-mentioned analysis and heat resistance strength test, when Al 2 O 3 particles are added to Ni—Cr—Al alloy particles as the particulate material of the coating layer 10, the heat resistance is improved by iron.
It is considered that the oxidation of (Fe) was suppressed.

【0017】さらに、本発明により得られた粒子状物質
被覆ステンレス鋼線Aの表面の常温での比抵抗は約20
MΩ・cmであり、特に粒子状物質としてMgO を用いた
粒子状物質被覆ステンレス鋼線Aの表面の比抵抗は、温
度1000℃でも約10MΩ・cmであることが分かつ
た。
Further, the specific resistance of the surface of the particulate matter-coated stainless steel wire A obtained by the present invention at room temperature is about 20.
It was found that the resistivity of the surface of the particulate matter-coated stainless steel wire A using MgO as the particulate matter was about 10 MΩ · cm even at a temperature of 1000 ° C.

【0018】次に、図3に示すように、粒子状物質とし
てNi-Cr-Al合金粒子4と、Al2O3,SiO2,MgO,ZrO2,Ba
TiO3,TiO2の各セラミツク粉末6とを用いた粒子状物質
被覆ステンレス鋼線Aについて、被覆層10の表面に市
販の金属アルコキシドから調整したコーテイング溶液を
用いてゾルゲルコーテイングを行つた。ゾルゲルコーテ
イングの条件は、コーテイング溶液に粒子状物質被覆ス
テンレス鋼線Aを浸漬し、粒子状物質被覆ステンレス鋼
線Aを引き上げた後に加水分解させ、温度600℃の大
気中で熱処理するものである。比較例としての粒子状物
質を被覆してないステンレス鋼線ではコーテイング被膜
が簡単に剥離したのに対し、本発明による粒子状物質被
覆ステンレス鋼線Aでは、膜厚が1〜2μmのものまで
はコーテイング被膜12が剥離しなかつた。これは、表
面に付着したセラミツク粒子6のアンカー効果によりコ
ーテイング被膜12の密着強度が高められたものと考え
られる。
Next, as shown in FIG. 3, Ni-Cr-Al alloy particles 4 as the particulate matter, Al 2 O 3 , SiO 2 , MgO, ZrO 2 and Ba.
The sol-gel coating was performed on the particulate material-coated stainless steel wire A using each of the TiO 3 and TiO 2 ceramic powder 6 by using a coating solution prepared from a commercially available metal alkoxide on the surface of the coating layer 10. The conditions of the sol-gel coating are such that the particulate matter-coated stainless steel wire A is immersed in the coating solution, the particulate matter-coated stainless steel wire A is pulled up, hydrolyzed, and heat-treated in the atmosphere at a temperature of 600 ° C. The coating film was easily peeled off on the stainless steel wire not coated with the particulate matter as a comparative example, whereas the particulate matter-coated stainless steel wire A according to the present invention has a thickness of 1 to 2 μm. The coating film 12 did not peel off. It is considered that this is because the adhesion strength of the coating film 12 is increased by the anchor effect of the ceramic particles 6 attached to the surface.

【0019】[0019]

【発明の効果】本発明は上述のように、基材金属の表面
に合成ゴム系などの接着剤を用いて、セラミツク粉末と
合金粉末との混合粉末を付着した後に、真空中で熱処理
することにより、薄板、細線、小物などの基材金属部品
にも加工が可能であり、基材金属に対する被覆層の結合
力が大きな粒子状物質被覆金属が得られる。
As described above, according to the present invention, after the mixed powder of the ceramic powder and the alloy powder is adhered to the surface of the base metal using the adhesive such as the synthetic rubber, the heat treatment is performed in vacuum. With this, it is possible to process base metal parts such as thin plates, thin wires, and small articles, and a particulate matter-coated metal having a large binding force of the coating layer to the base metal can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る粒子状物質被覆金属を模式的に示
す断面図である。
FIG. 1 is a cross-sectional view schematically showing a particulate matter-coated metal according to the present invention.

【図2】同粒子状物質被覆金属の要部を拡大して示す断
面図である。
FIG. 2 is a cross-sectional view showing an enlarged main part of the particulate matter-coated metal.

【図3】図1に示す粒子状物質被覆金属の表面にコーテ
イング被膜を施したものを模式的に示す断面図である。
FIG. 3 is a cross-sectional view schematically showing the particulate matter-coated metal shown in FIG. 1 having a surface coated with a coating film.

【図4】本発明に係る粒子状物質被覆金属における、粒
子状物質の粒径と被覆層の関係を表す線図である。
FIG. 4 is a diagram showing the relationship between the particle size of the particulate matter and the coating layer in the particulate matter-coated metal according to the present invention.

【図5】本発明に係る粒子状物質被覆金属と比較例の耐
熱強度試験の結果を表す線図である。
FIG. 5 is a diagram showing the results of a heat resistance test of a particulate matter-coated metal according to the present invention and a comparative example.

【図6】本発明に係る粒子状物質被覆金属における、粒
子状物質に対するAl2O3 添加量と引張強度との関係を表
す線図である。
FIG. 6 is a graph showing the relationship between the amount of Al 2 O 3 added to the particulate matter and the tensile strength in the particulate matter-coated metal according to the present invention.

【図7】本発明に係る粒子状物質被覆金属における、粒
子状物質に対するAl2O3 添加量と酸化増量との関係を表
す線図である。
FIG. 7 is a diagram showing the relationship between the amount of Al 2 O 3 added and the amount of increased oxidation with respect to the particulate matter in the particulate matter-coated metal according to the present invention.

【符号の説明】[Explanation of symbols]

A:粒子状物質被覆金属 2:耐熱鋼(ステンレス鋼
線) 3:反応層 4:合金粒子 6:セラミツク粒子
10:被覆層 12:コーテイング被膜
A: Metal coated with particulate matter 2: Heat-resistant steel (stainless steel wire) 3: Reaction layer 4: Alloy particles 6: Ceramic particles 10: Coating layer 12: Coating film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】クロム(Cr)を含む耐熱鋼の表面が、セラミ
ツク粒子により被覆されたアルミニウム(Al)を含むニツ
ケル(Ni)基合金粒子またはアルミニウム(Al)を含むクロ
ム(Cr)基合金粒子からなる被覆層で覆われ、前記合金粒
子が前記耐熱鋼に溶着していることを特徴とする粒子状
物質被覆金属。
1. A nickel (Ni) -based alloy particle containing aluminum (Al) or a chromium (Cr) -based alloy particle containing aluminum (Al), wherein the surface of a heat-resistant steel containing chromium (Cr) is coated with ceramic particles. A particulate matter-coated metal, which is covered with a coating layer made of, and the alloy particles are welded to the heat-resistant steel.
【請求項2】前記耐熱鋼はクロム(Cr)の他にニツケル(N
i),アルミニウム(Al),イツトリウム(Y) の内の少なく
とも1種を含む、請求項1に記載の粒子状物質被覆金
属。
2. The heat resistant steel is nickel (N) in addition to chromium (Cr).
The particulate matter-coated metal according to claim 1, comprising at least one of i), aluminum (Al), and yttrium (Y).
【請求項3】前記被覆層の合金粒子は互いに結合し、前
記被覆層のセラミツク粒子は焼結せずに独立し、かつ前
記合金粒子および前記耐熱鋼の表面に付着している、請
求項1,2のいずれかに記載の粒子状物質被覆金属。
3. The alloy particles of the coating layer are bonded to each other, the ceramic particles of the coating layer are independent without sintering, and adhere to the surface of the alloy particles and the heat-resistant steel. 2. The particulate matter-coated metal according to any one of 1 and 2.
【請求項4】前記被覆層のセラミツク粒子は平均粒径が
1μm以下である、請求項1,2のいずれかに記載の粒
子状物質被覆金属。
4. The particulate matter-coated metal according to claim 1, wherein the ceramic particles in the coating layer have an average particle size of 1 μm or less.
【請求項5】前記被覆層のセラミツク粒子は、アルミニ
ウム(Al),ケイ素(Si),マグネシウム(Mg),ジルコニウ
ム(Zr),バリウム(Ba),チタン(Ti)の内の少なくとも1
種を含み、かつ被覆層に5wt%以上含まれている、請求
項1,2のいずれかに記載の粒子状物質被覆金属。
5. The ceramic particles of the coating layer are at least one of aluminum (Al), silicon (Si), magnesium (Mg), zirconium (Zr), barium (Ba), and titanium (Ti).
The particulate matter-coated metal according to any one of claims 1 and 2, which contains seeds and is contained in the coating layer in an amount of 5 wt% or more.
【請求項6】クロム(Cr)を含む耐熱鋼の表面が、セラミ
ツク粒子により被覆されたアルミニウム(Al)を含むニツ
ケル(Ni)基合金粒子またはアルミニウム(Al)を含むクロ
ム(Cr)基合金粒子からなる被覆層で覆われ、前記耐熱鋼
と前記合金粒子が溶着しており、前記被覆層の表面が緻
密質のセラミツク被膜で覆われていることを特徴とする
粒子状物質被覆金属。
6. A nickel (Ni) -based alloy particle containing aluminum (Al) or a chromium (Cr) -based alloy particle containing aluminum (Al), wherein the surface of a heat-resistant steel containing chromium (Cr) is coated with ceramic particles. A particulate material-coated metal characterized in that the heat-resistant steel and the alloy particles are welded together, and the surface of the coating layer is covered with a dense ceramic coating.
JP31355495A 1995-11-06 1995-11-06 Metal coated with granular material Pending JPH09125106A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP31355495A JPH09125106A (en) 1995-11-06 1995-11-06 Metal coated with granular material
US08/742,925 US5976708A (en) 1995-11-06 1996-11-01 Heat resistant stainless steel wire
EP98201850A EP0874062A3 (en) 1995-11-06 1996-11-04 Heat resistant stainless steel wire or strip
DE69601612T DE69601612T2 (en) 1995-11-06 1996-11-04 Heat-resistant wire or sheet made of stainless steel
EP96307965A EP0771882B1 (en) 1995-11-06 1996-11-04 Heat resistance stainless steel wire or strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31355495A JPH09125106A (en) 1995-11-06 1995-11-06 Metal coated with granular material

Publications (1)

Publication Number Publication Date
JPH09125106A true JPH09125106A (en) 1997-05-13

Family

ID=18042723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31355495A Pending JPH09125106A (en) 1995-11-06 1995-11-06 Metal coated with granular material

Country Status (1)

Country Link
JP (1) JPH09125106A (en)

Similar Documents

Publication Publication Date Title
US4594106A (en) Spraying materials containing ceramic needle fiber and composite materials spray-coated with such spraying materials
US3261673A (en) Oxide coated articles with metal undercoat
JP2004532930A5 (en)
TW552251B (en) Process for producing a coating on a refractory structural member
US5976708A (en) Heat resistant stainless steel wire
JP2000034581A (en) Production of metal member excellent in oxidation resistance
JPH09125106A (en) Metal coated with granular material
JPH0645863B2 (en) Thermal spray material excellent in high temperature wear resistance and build-up resistance and its coated article
JPS59126772A (en) Melt spraying material having build-up resistance
JP3129383B2 (en) Oxide-coated silicon carbide material and its manufacturing method
JP3081764B2 (en) Carbon member having composite coating and method of manufacturing the same
JP2006009115A (en) Surface treated titanium material having excellent oxidation resistance, its production method and engine exhaust pipe
JP4771513B2 (en) Heat-resistant covering material
JP4189676B2 (en) Heat-resistant covering material
JP4081574B2 (en) Method for manufacturing heat-resistant coated member
JP3394844B2 (en) Heat resistant material
JPH01152233A (en) Method for using and producing nickel-containing alloy
JP3962354B2 (en) Coated graphite tray
JP3520998B2 (en) Heat-resistant silicon nitride sintered body and method for producing the same
JPH05445B2 (en)
JPH08337487A (en) Formation of ceramic coating film and ceramic member produced using same
JPH035387A (en) Method for coating ceramic body with metallic layer
JPS60159160A (en) Thermally spraying material
JP2988156B2 (en) Method of forming ceramic coating on iron-based members
JPH02129085A (en) Surface-treating method of zirconium oxide-and/or titanium oxide-containing shaped material