JPH02129085A - Surface-treating method of zirconium oxide-and/or titanium oxide-containing shaped material - Google Patents

Surface-treating method of zirconium oxide-and/or titanium oxide-containing shaped material

Info

Publication number
JPH02129085A
JPH02129085A JP27938688A JP27938688A JPH02129085A JP H02129085 A JPH02129085 A JP H02129085A JP 27938688 A JP27938688 A JP 27938688A JP 27938688 A JP27938688 A JP 27938688A JP H02129085 A JPH02129085 A JP H02129085A
Authority
JP
Japan
Prior art keywords
powder
surface layer
shaped material
zro2
tio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27938688A
Other languages
Japanese (ja)
Inventor
Takahisa Koshida
孝久 越田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP27938688A priority Critical patent/JPH02129085A/en
Publication of JPH02129085A publication Critical patent/JPH02129085A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To form surface layer having excellent electric conductivity, wear resistance and adhesion on the surface of shaped material by bringing specific powder into contact with the surface of ZrO2- and/or TiO2-containing shaped material and heating in non-oxidizing atmosphere. CONSTITUTION:Sintering auxiliary such as Al2O3 or Y2O3, etc., is added to ZrO2 and/or TiO2 and shaped, then sintered to obtain ZrO2 and/or TiO2- containing shaped material. Next, the surface of said shaped material is coated with slurry containing one or more powders selected from B4C powder, B powder, BN powder and C-containing powder and heated at 1500-1800 deg.C in non- oxidizing atmosphere.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、酸化ジルコニウムおよび/または酸化チタン
含有成型体の表面処理方法に関し、特に、固体電解質で
ある酸化ジルコニウム(Zr02)、酸化チタン(Ti
02)を含有する焼結体の表面に、電気伝導性を有し、
かつ、耐摩擦性の優れた、硼化ジルコニウム(ZrB2
1.窒化ジルコニウム(ZrN)、炭化ジルコニウム(
ZrC)、&m化チクン(TiB2)、窒化チタン(T
iN)、炭化チタン(TiC)の1種または2種以上よ
りなり、母材より剥離することがない表面層を形成する
方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for surface treatment of molded bodies containing zirconium oxide and/or titanium oxide, and in particular, the present invention relates to a method for surface treatment of molded bodies containing zirconium oxide and/or titanium oxide, and in particular, zirconium oxide (Zr02) and titanium oxide (Ti), which are solid electrolytes.
02) has electrical conductivity on the surface of the sintered body containing
In addition, zirconium boride (ZrB2) has excellent abrasion resistance.
1. Zirconium nitride (ZrN), zirconium carbide (
ZrC), titanium nitride (TiB2), titanium nitride (T
The present invention relates to a method for forming a surface layer made of one or more of titanium carbide (TiC) and titanium carbide (TiC), which does not peel off from the base material.

【従来の技術1 固体電解質の酸化ジルコニウム、酸化チタンの表面に、
電気伝導性を有し耐摩耗性の優れたZr112.ZrN
、ZrC,TiB2.TiN。
[Conventional technology 1] On the surface of solid electrolyte zirconium oxide and titanium oxide,
Zr112. has excellent electrical conductivity and wear resistance. ZrN
, ZrC, TiB2. TiN.

TiCの表面層を形成した材料は、酸素センサ等の電子
部品、耐摩耗性を利用した構造材料に有効である。
A material with a TiC surface layer formed thereon is effective for electronic components such as oxygen sensors and structural materials utilizing wear resistance.

従来、ZrB2.ZrN、ZrC,TiB2゜TiN、
TiCの表面層を形成する方法としては。
Conventionally, ZrB2. ZrN, ZrC, TiB2゜TiN,
As a method for forming a TiC surface layer.

【)(8射法 21CVD法 が実現されている方法である。[) (8-shot method 21CVD method This is how it is implemented.

溶射法により表面層を形成させる方法は、溶射材料を融
点以上に加熱して吹き付ける方法である。この方法の欠
点は溶射材が母材と熱膨張係数が醍なるので、高温から
急冷される過程で発生するクラックのため、母材と表面
層との境界面での付着強度が期待できず、そのため、表
面層が容易には材から剥離するため耐摩耗材等への利用
はできない。
The method of forming a surface layer by thermal spraying is a method in which a thermal spray material is heated above its melting point and then sprayed. The disadvantage of this method is that the sprayed material has a thermal expansion coefficient that is the same as that of the base material, so cracks occur during the process of rapid cooling from a high temperature, so adhesive strength cannot be expected at the interface between the base material and the surface layer. Therefore, the surface layer easily peels off from the material, so it cannot be used for wear-resistant materials, etc.

一方、CVD法による緻密な膜の形成方法も有効であり
、表面層とけ材との付着力も強い。しかし、この方法で
も溶射法と同様に異なった材料同志の結合であるため、
高温になると容易に境界で剥離を生ずる。さらに、気相
合成のため原料は高価であり、製造設備も徘ガス処理等
を必要とし通常の設備よりも複雑になるため高価になる
On the other hand, a method of forming a dense film using the CVD method is also effective, and the adhesion to the surface layer is strong. However, like the thermal spraying method, this method involves bonding different materials together;
At high temperatures, peeling easily occurs at the boundaries. Furthermore, the raw materials are expensive because of the gas phase synthesis, and the manufacturing equipment is more complicated than normal equipment as it requires treatment of wandering gas and the like, making it expensive.

また、金属を硼化させる材料としては、各種硼化剤(例
えば、特開昭48−40640.特公昭51−2498
4、特開昭61−60876)が開示されている。しか
し、この中にはセラミックを対象としたものは含まれて
おらず、処理条件も金属を対象としているため低温処理
になっている。
In addition, various boronizing agents (for example, JP-A No. 48-40640, JP-A No. 51-2498
4, Japanese Unexamined Patent Publication No. 61-60876). However, these do not include those that target ceramics, and the processing conditions are low-temperature processing because they target metals.

[発明が解決しようとする課題1 本発明は、従来技術の根本的な欠点である、111表面
層がは材との境界で剥離を生ずる。
[Problem to be Solved by the Invention 1] The present invention solves the problem that the 111 surface layer peels off at the boundary with the material, which is a fundamental drawback of the prior art.

(2)表面層形成費用が非常に高価である。(2) The surface layer formation cost is very high.

の2点を解決しようとするものである。This is an attempt to solve two points.

[課題を解決するための手段] 本発明は上記課題を解決するために、ZrO2および/
またはT i O2を含有する成型体を、その表面に炭
化硼素(84G)粉末、硼素(B)粉末、窒化硼素(B
N)粉末、炭素(C)含有物質粉末のうちの1種または
2層4以上を接触させた状態で、非酸化性雰囲気中で加
熱し、成型体の表面に、ZrB2.ZrN、ZrC,T
iB2 。
[Means for Solving the Problems] In order to solve the above problems, the present invention uses ZrO2 and/or
Alternatively, a molded body containing T i O2 is coated with boron carbide (84G) powder, boron (B) powder, boron nitride (B) on its surface.
ZrB2. ZrN, ZrC, T
iB2.

TiN、TiCのうちの1種または2種以上よりなり、
母材より剥離することのない表面層を形成する方法を提
供するものである。
Consisting of one or more of TiN and TiC,
The present invention provides a method for forming a surface layer that does not peel off from a base material.

[作用1 表面層の付着強度を増して、温度上昇による2層の熱膨
張係数の差による剥離を防止するには、2層が連続的な
組成で結合していることが望ましい。このため拡散によ
る分布を持った接合が理想的である。
[Operation 1] In order to increase the adhesion strength of the surface layer and prevent peeling due to the difference in thermal expansion coefficient between the two layers due to temperature rise, it is desirable that the two layers are bonded with a continuous composition. For this reason, bonding with distribution due to diffusion is ideal.

また、表面層形成費用については、成型体表面に原料粉
末を塗布などによって接触させることにより安価にでき
、また、原料も安価な材料を利用することで、費用の軽
減をはかることができる。
Furthermore, the cost of forming the surface layer can be reduced by bringing the raw material powder into contact with the surface of the molded body by coating or the like, and by using inexpensive raw materials.

本発明におけるZrO2および/またはTiO2を含有
する成型体としては、ZrO2および/またはTiO2
よりなるもののほかに、例えばAl2203.Y2O3
,Cab、MgO等の焼結助剤を含有するものも使用さ
れ、ZrO2および/またはT i 02を含有する原
料をプレス成型、ラバープレス成型、スリップキャスト
成型したグリーン成型体、さらに、グリーン成型体を焼
成したもの、すなわち、仮焼体、完全に焼結を終了した
焼結体が用いられる。ZrO2についてはY2O3等に
よって強靭化されたものは材料として有望であり、/l
!203との複合材、あるいはBNとの複合材として利
用される場合があり、部分安定化ジルコニア、Zr02
i合材も、本発明の成型体に含まれる。
The molded body containing ZrO2 and/or TiO2 in the present invention includes ZrO2 and/or TiO2.
For example, in addition to those consisting of Al2203. Y2O3
, Cab, MgO, and other sintering aids are also used, and green molded bodies are produced by press molding, rubber press molding, and slip cast molding of raw materials containing ZrO2 and/or TiO2, and green molded bodies. In other words, a calcined body or a sintered body that has been completely sintered is used. Regarding ZrO2, those toughened by Y2O3 etc. are promising as materials, and /l
! Partially stabilized zirconia, Zr02, may be used as a composite material with 203 or BN.
The i-mixture material is also included in the molded product of the present invention.

前記成型体と、B4C,B、BNi5よびC含有物質の
粉末とを接触させる方法としては、単に粉末中に埋め込
む、粉末をスラリー状に調整し塗布剤として使用する等
、成型体と粉末とが接触できる方法であれば良く、特に
限定されない。
Methods for bringing the molded body into contact with the powder of the substance containing B4C, B, BNi5 and C include simply embedding it in the powder, preparing the powder into a slurry and using it as a coating agent, etc. Any method that allows contact may be used and is not particularly limited.

加熱は非酸化性雰囲気中で行なう。行し、酸化性雰囲気
中で行なうと、84C,B、BN、C含有物質は700
℃付近から酸化して本発明の目的が達成されない。
Heating is performed in a non-oxidizing atmosphere. When carried out in an oxidizing atmosphere, substances containing 84C, B, BN, and C become 700
The object of the present invention cannot be achieved due to oxidation from around .degree.

非酸化性雰囲気を生ずる気体としては、N2゜Ar、)
12.CO等が、単独で、あるいは混合して使用される
As a gas that creates a non-oxidizing atmosphere, N2゜Ar,)
12. CO and the like are used alone or in combination.

なお、雰囲気は減圧下の方が均一な膜が得られるので好
ましく、真空中でもよい。
Note that it is preferable to use a reduced pressure atmosphere because a uniform film can be obtained, and a vacuum may also be used.

ZrO2と、B4C,BまたはBNとを非酸化性雰囲気
中で加熱することにより、次式によりそれぞれZrB2
が生成する。
By heating ZrO2 and B4C, B or BN in a non-oxidizing atmosphere, each ZrB2
is generated.

ZrO2+B4C−*ZrB2+CO Z r O2+ B    −Z r B 2 + 8
203Zr02+BN   −ZrB2+B2O3+N
2ZrO2とCとを、N2を含まない非酸化性雰囲気に
て加熱すると、次式によりZrCを生成し、 ZrO2+C−ZrC+CO N2を含む非酸化性雰囲気中で加熱すると次式によりZ
rNを生成する。
ZrO2+B4C-*ZrB2+CO Z r O2+ B -Z r B 2 + 8
203Zr02+BN -ZrB2+B2O3+N
When 2ZrO2 and C are heated in a non-oxidizing atmosphere that does not contain N2, ZrC is produced by the following formula, and when heated in a non-oxidizing atmosphere containing N2, ZrC is produced by the following formula.
Generate rN.

ZrO2+C+N2→ZrN+C0 B4C,B、BI15よびCの2種類以上を混合して使
用すると、用いた粉末に対応した生成物を含有する表面
層が得られる。
ZrO2+C+N2→ZrN+C0 When two or more of B4C, B, BI15 and C are used as a mixture, a surface layer containing a product corresponding to the powder used is obtained.

C含有物質としてはカーボンブラック、タール、ピッチ
等が使用される。
Carbon black, tar, pitch, etc. are used as the C-containing substance.

加熱温度については1部分安定化Z「02を母材として
強靭性の特性を保持するには、1600℃以上の温度で
加熱すると結晶粒の成長を生じ強度が低下するため、高
温での加熱は不利である。
Regarding the heating temperature, in order to maintain the toughness properties of 1 Partial Stabilization Z'02 as a base material, heating at a temperature of 1,600°C or higher will cause crystal grain growth and reduce the strength, so heating at high temperatures is not recommended. It is disadvantageous.

しかし、Zr02−BNコンポジット系の様に、スポー
リング特性を要求される材料では加熱温度は1600℃
以上でもよい、この様に目的に応じて加熱温度を変化さ
せる必要があり、表面層成形速度と強度から、最適な温
度は1500℃〜1800℃の範囲である。
However, for materials that require spalling properties, such as Zr02-BN composite, the heating temperature is 1600℃.
As described above, it is necessary to change the heating temperature depending on the purpose, and the optimum temperature is in the range of 1500°C to 1800°C from the surface layer molding speed and strength.

このとき生成した表面層の厚さは数十um程度であり、
母材と強固に均一に結合しており、さらに境界面は、Z
rB2.ZrN、ZrCが母材と連続して拡散接合して
いるため、熱膨張係数等の連続性が保持され、境界で剥
離などの現象を生じない。
The thickness of the surface layer generated at this time is about several tens of um,
It is firmly and uniformly bonded to the base material, and the interface is Z
rB2. Since ZrN and ZrC are continuously diffusion bonded to the base material, continuity of thermal expansion coefficients, etc. is maintained, and phenomena such as peeling do not occur at boundaries.

TiO2とB4C,BまたはBNとを非酸化性雰囲気中
で加熱することにより、次式によりそれぞれT i B
 2が生成する。
By heating TiO2 and B4C, B or BN in a non-oxidizing atmosphere, T i B
2 is generated.

T i 02 + 84 C−4T i B 2 + 
C0Ti02+B−e   TiB2+B203Ti0
2+BN−+  TiB2+B2O3+N2T i 0
2とCとを、N2を含まない非酸化性雰囲気にて加熱す
ると、次式によりTiCを生成し。
T i 02 + 84 C-4T i B 2 +
C0Ti02+B-e TiB2+B203Ti0
2+BN-+ TiB2+B2O3+N2T i 0
When 2 and C are heated in a non-oxidizing atmosphere that does not contain N2, TiC is produced according to the following formula.

TiO2+C”    Tic+c。TiO2+C”    Tic+c.

N2を含む非酸化性雰囲気中で加熱すると次式によりT
iNを生成する。
When heated in a non-oxidizing atmosphere containing N2, T
Generate iN.

TiO2+C+N2→TiN+(:Q B4C,B、BNおよびCの2種以上を混合して使用す
ると、用いた粉末に対応した生成物を含有する表面層が
得られる。
TiO2+C+N2→TiN+(:Q When two or more of B4C, B, BN and C are used as a mixture, a surface layer containing a product corresponding to the powder used is obtained.

TiO2を使用して表面層形成の加熱温度を調べると1
500℃〜1800℃が最適であった。
When investigating the heating temperature for surface layer formation using TiO2, 1
The optimum temperature was 500°C to 1800°C.

このとき生成した表面層は母材に高温で付着させている
ため、強固な拡散層を形成しており安定している。
Since the surface layer generated at this time is attached to the base material at high temperature, it forms a strong diffusion layer and is stable.

【実施例] 実施例1 部分安定型z「02成型体(幅20mm、厚さ30mm
、長さ40mm)の、■グリーン成型体、■仮焼体、■
焼結体の3種の成型体の表面に、平均粒径2.5μmの
84Cをアクリル系バインダの1%水溶液に分散させて
100〜300μmの厚さで表面に塗布した。
[Example] Example 1 Partially stable type z "02 molded body (width 20 mm, thickness 30 mm
, length 40mm), ■ green molded body, ■ calcined body, ■
84C having an average particle size of 2.5 μm was dispersed in a 1% aqueous solution of an acrylic binder and applied to the surface of three types of sintered bodies to a thickness of 100 to 300 μm.

この試料を5×lO″″’T o r rのN2雰囲気
中で1600℃まで昇温速度2.5℃/lll1nで加
熱し、2h保持してで表面層を生成させた。
This sample was heated to 1600° C. at a heating rate of 2.5° C./ll1n in a N2 atmosphere of 5×10″″T o r r and held for 2 hours to form a surface layer.

冷却後、焼結体を切断して表面層の厚さと構成成分の同
定を行なったところ、いずれの成型体においても20μ
mの膜厚でZrB2が同定された。
After cooling, the sintered bodies were cut to identify the thickness and constituent components of the surface layer.
ZrB2 was identified at a film thickness of m.

また、上記切断面を顕微鏡で11!察したところ。Also, the above cut surface was examined under a microscope. As I guessed.

いずれの成型体においても、母材のZrO2と表面層の
ZrB2との境界に拡散層が認められた。
In all molded bodies, a diffusion layer was observed at the boundary between ZrO2 of the base material and ZrB2 of the surface layer.

第1図はグリーン成型体を用いた場合の上記切断面の顕
微鏡写真で、仮焼体または焼結体を用いた場合もほぼ同
様であった。
FIG. 1 is a micrograph of the above-mentioned cut surface when a green molded body was used, and the results were almost the same when a calcined body or a sintered body was used.

実施例2 実施例1と同一の3種の成型体の表面にカーボンブラッ
クをスラリー状にして塗布し、その後、実施例1と同一
の方法で加熱した。
Example 2 Carbon black was applied in the form of a slurry onto the surfaces of the same three types of molded bodies as in Example 1, and then heated in the same manner as in Example 1.

焼結体の表面を観察すると、何れも均一な表面層が生成
しており、X線回折法で同定するとZrNの単一相の表
面層が生成していた。
When the surfaces of the sintered bodies were observed, uniform surface layers were formed on all of them, and identification by X-ray diffraction revealed that a single phase ZrN surface layer was formed.

母材と表面層との境界を1M徹鏡で観察したところ、何
れも拡散層が認められた。
When the boundary between the base material and the surface layer was observed using a 1M translucent mirror, a diffusion layer was observed in both cases.

実施例3 実施例1と同一の3!4の成型体の表面にカーボンブラ
ックをスラリー状にして塗布し、その後、N2の圧力を
10Toorとし1800℃まで2.5℃/minで稈
温し2h保持したところ、何れの成型体においても金色
の均一な表面層をF&形していた。この表面層をX線回
折で同定したところZrNの単一相を生成していた。
Example 3 Carbon black was applied in slurry form to the surface of the same 3!4 molded body as in Example 1, and then the culm was heated at 2.5°C/min to 1800°C with a N2 pressure of 10Toor for 2 hours. When held, all of the molded products had a gold-colored uniform surface layer in an F& shape. When this surface layer was identified by X-ray diffraction, it was found that a single phase of ZrN was produced.

母材と表面層の境界を顕微鏡で観察したところ、何れも
拡散層が認められた。
When the boundary between the base material and the surface layer was observed under a microscope, a diffusion layer was observed in both cases.

実施例4〜7 成型体として実施例1と同様な焼結体を用い、塗ff1
lllとして 実施例4:平均粒径5μmのB粉末 実施例5:平均粒径5μmのBN扮宋 実施例6:上記B粉末50重吸%と実施例2に用いたカ
ーボンブラック50重 徹%の混合物 実施例7:上記BN粉末50重量%と上記カーボンブラ
・ツク50重量%の712合物 を用い、他は実施例1と同様に処理した。
Examples 4 to 7 Using the same sintered body as in Example 1 as the molded body, coating ff1
Example 4: B powder with an average particle size of 5 μm Example 5: BN with an average particle size of 5 μm Example 6: 50% by weight of the above B powder and 50% by weight of the carbon black used in Example 2 Mixture Example 7: A 712 compound of 50% by weight of the above BN powder and 50% by weight of the above carbon black was used, and the other conditions were the same as in Example 1.

生成した表面層をX線回折で同定したところ、実施例4
 : ZrB2 実施例5 : ZrB2 実施例6:ZrB2.ZrN 実施例7:ZrB2.ZrN となっており、切断面を顕微鏡で観察したところ、いず
れの成型体においても母材と表面層の境界に拡散層が認
められた。
When the generated surface layer was identified by X-ray diffraction, it was found that Example 4
: ZrB2 Example 5 : ZrB2 Example 6 : ZrB2. ZrN Example 7: ZrB2. When the cut surfaces were observed under a microscope, a diffusion layer was observed at the boundary between the base material and the surface layer in all molded bodies.

実施例8〜13 成型体としてT i 02の焼結体(幅20mm、厚さ
30mm、長さ40mm)を用い、塗布剤として 実施例8:平均粒径lOμmのB4G粉未実施例9:平
均粒径lOμmのB粉末 実施例1O:平均粒径10umのBN扮未実施例11:
実施例2に用いたカーボンブラック 実施例12:上記B粉末50重量%と上記カーボンブラ
ック50重量%と の混合物 実施例13:上記BN粉末50重量%と上記カーボンブ
ラック50重量%と の混合物 を用い、他は実施例1と同様に処理した。
Examples 8 to 13 A sintered body of T i 02 (width 20 mm, thickness 30 mm, length 40 mm) was used as a molded body, and as a coating agent Example 8: B4G powder with an average particle size of 10 μm.Example 9: Average B powder Example 1O with a particle size of 10 μm: BN-undressed Example 11 with an average particle size of 10 μm:
Carbon black used in Example 2 Example 12: Mixture of 50% by weight of the above B powder and 50% by weight of the above carbon black Example 13: Using a mixture of 50% by weight of the above BN powder and 50% by weight of the above carbon black , and other conditions were treated in the same manner as in Example 1.

生成した表面層をX線回折で同定したところ、実施例8
・TiB2 実施例9:TiB2 実施例10 : ’「i B 2 実施例11 :TiN 実施例12:TiB2.TiN 実施例13:TiB2.TiN となっており、切断面を顕微鏡で観察したところ、いず
れの成型体においても母材と表面層の境界に拡散層が認
められ1表面層は母材に強固に付着している。
When the generated surface layer was identified by X-ray diffraction, it was found that Example 8
・TiB2 Example 9: TiB2 Example 10: 'i B 2 Example 11: TiN Example 12: TiB2.TiN Example 13: TiB2.TiN When the cut surface was observed with a microscope, it was found that Also in the molded product, a diffusion layer was observed at the boundary between the base material and the surface layer, and the first surface layer was firmly attached to the base material.

〔発明の効果] 本発明により、酸化ジルコニウムおよび/または酸化チ
タンを含有する成型体の表面に、電気伝導性を有し、か
つ、耐摩擦性に優れ、しかも、母材と剥離することがな
い、硼化ジルコニウム、窒化ジルコニウム、炭化ジルコ
ニウムの単一相または混合相、あるいは硼化チタン、窒
化チタン、炭化チタンの単一相または混合相の表面層を
形成することができ、これにより、電極とのメタライズ
が容易にでき、また、酸素センサなどの寿命を延長でき
るなどの効果を得ることができる。
[Effects of the Invention] According to the present invention, the surface of a molded product containing zirconium oxide and/or titanium oxide has electrical conductivity, excellent friction resistance, and does not peel off from the base material. , a single phase or a mixed phase of zirconium boride, zirconium nitride, or zirconium carbide, or a single phase or a mixed phase of titanium boride, titanium nitride, or titanium carbide, thereby forming an electrode and can be easily metalized, and it is also possible to obtain effects such as extending the life of oxygen sensors and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1における母材(Zr02)と
表面層(ZrB2)との結合状態を示す顕微鏡写真であ
る。
FIG. 1 is a micrograph showing the bonding state between the base material (Zr02) and the surface layer (ZrB2) in Example 1 of the present invention.

Claims (1)

【特許請求の範囲】 1 酸化ジルコニウムおよび/または酸化チタンを含有
する成型体の表面に、炭化硼素粉 末、硼素粉末、窒化硼素粉末および炭素含有物質粉末よ
りなる群より選ばれた1種または2種以上を接触させ、 その状態で前記成型体を非酸化性雰囲気中 で加熱することを特徴とする酸化ジルコニウムおよび/
または酸化チタン含有成型体の表面処理方法。
[Scope of Claims] 1. One or two types selected from the group consisting of boron carbide powder, boron powder, boron nitride powder, and carbon-containing substance powder on the surface of a molded body containing zirconium oxide and/or titanium oxide. zirconium oxide and/or zirconium oxide and/or
Or a method for surface treatment of a titanium oxide-containing molded product.
JP27938688A 1988-11-07 1988-11-07 Surface-treating method of zirconium oxide-and/or titanium oxide-containing shaped material Pending JPH02129085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27938688A JPH02129085A (en) 1988-11-07 1988-11-07 Surface-treating method of zirconium oxide-and/or titanium oxide-containing shaped material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27938688A JPH02129085A (en) 1988-11-07 1988-11-07 Surface-treating method of zirconium oxide-and/or titanium oxide-containing shaped material

Publications (1)

Publication Number Publication Date
JPH02129085A true JPH02129085A (en) 1990-05-17

Family

ID=17610417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27938688A Pending JPH02129085A (en) 1988-11-07 1988-11-07 Surface-treating method of zirconium oxide-and/or titanium oxide-containing shaped material

Country Status (1)

Country Link
JP (1) JPH02129085A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0849242A1 (en) * 1996-12-20 1998-06-24 Eastman Kodak Company A process of forming a ceramic article containing a core comprising zirconia and a shell comprising zirconium boride
EP0849241A1 (en) * 1996-12-20 1998-06-24 Eastman Kodak Company A ceramic article containing a core comprising zirconia a shell comprising zirconium boride
JP2005219985A (en) * 2004-02-09 2005-08-18 Towa Corp Electrically conducting porous material, resin molding tool therewith, and manufacturing method of the material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0849242A1 (en) * 1996-12-20 1998-06-24 Eastman Kodak Company A process of forming a ceramic article containing a core comprising zirconia and a shell comprising zirconium boride
EP0849241A1 (en) * 1996-12-20 1998-06-24 Eastman Kodak Company A ceramic article containing a core comprising zirconia a shell comprising zirconium boride
JP2005219985A (en) * 2004-02-09 2005-08-18 Towa Corp Electrically conducting porous material, resin molding tool therewith, and manufacturing method of the material
JP4518808B2 (en) * 2004-02-09 2010-08-04 Towa株式会社 Conductive porous material, resin molding die made of the material, and method for producing the material

Similar Documents

Publication Publication Date Title
TWI481581B (en) Ceramic carbon composite and method for producing the same, and ceramic -coated ceramic carbon composite and method for producing the same
JPH02129085A (en) Surface-treating method of zirconium oxide-and/or titanium oxide-containing shaped material
JP6110852B2 (en) Carbon material with thermal spray coating
Miyamoto et al. Fabrication of new cemented carbide containing diamond coated with nanometer‐sized SiC particles
Koh et al. Improvement in oxidation resistance of carbon by formation of a protective SiO2 layer on the surface
JPH07232978A (en) Diamond-like carbon film-coated material and its formation
JP2660346B2 (en) Ceramic composite materials
WO2020184192A1 (en) Method for forming nitride coating
JPH01104879A (en) Composite carbon fiber and its production
RU2704337C1 (en) Method of forming zirconium-containing oxide coating on titanium alloys
JPH07144982A (en) Production of carbon-ceramic combined body
JP3054143B2 (en) Method for surface modification of zirconia sintered body
JPH03170148A (en) Dental orthodontic bracket
JPH02270508A (en) Black lead mold for molding plastic
JPH0632655A (en) Diamond sintered compact and its production
JP3966911B2 (en) In-furnace members and jigs
JPH06219841A (en) High pressure type boron nitride sintered compact and its production
JP2000063187A (en) Graphite product using silicon carbide-carbon composite material coated with boron nitride
Podchernyaeva et al. Abrasive wear of ZrB 2-containing spark-deposited and combined coatings on titanium alloy. I. microstructure and composition of ZrB 2-containing coatings
JP2686795B2 (en) Titanium carbide-based composite sintered body
JPH05445B2 (en)
JPH03265582A (en) Production of oxidation resistant carbon material
JPH05105556A (en) Surface-coated ceramic product and its production
CN108179004A (en) A kind of PcBN composite and its preparation and application
JPS63201075A (en) Surface strengthened ceramic parts and manufacture