JPH09123502A - Thermal head - Google Patents

Thermal head

Info

Publication number
JPH09123502A
JPH09123502A JP28274695A JP28274695A JPH09123502A JP H09123502 A JPH09123502 A JP H09123502A JP 28274695 A JP28274695 A JP 28274695A JP 28274695 A JP28274695 A JP 28274695A JP H09123502 A JPH09123502 A JP H09123502A
Authority
JP
Japan
Prior art keywords
heat
substrate
heat storage
storage member
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28274695A
Other languages
Japanese (ja)
Inventor
Toshiaki Michihiro
利昭 道廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP28274695A priority Critical patent/JPH09123502A/en
Publication of JPH09123502A publication Critical patent/JPH09123502A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the density irregularity and tailing by mounting a thermal storage member made of thin plate glass covered with a thermal resistor on a board made of at least one type of aluminum, copper, iron and their alloys, thereby making is possible to preferably cool the member and board in a short time. SOLUTION: The board 1 of the thermal head is formed of at least one type of aluminum, copper, iron and their alloys, and a thermal storage member 2 made of thin plate glass having a heating resistor 3 is mounted thereon by solder. The board 1 is formed, for example, an Al-Mg-Si alloy in a thickness of 5mm. Since the board 1 has high heat radiation properties, even if a high speed printing is conducted by increasing the power applied to the heating resistor 4 to set the temperature of the resistor 4 to a specified temperature necessary for printing, it can be preferably cooled in a short time after the printing is finished. The thin plate glass is formed, for example, for borosilicate glass having a thermal conductivity of 0.9kW and a softening point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ワードプロセッサ
やファクシミリ等のプリンタ機構として組み込まれるサ
ーマルヘッドの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a thermal head incorporated as a printer mechanism such as a word processor and a facsimile.

【0002】[0002]

【従来技術及びその課題】従来、ワードプロセッサ等の
プリンタ機構として組み込まれるサーマルヘッドは、図
2に示す如く、基板11の上面にガラス等の低熱伝導性
材料から成る蓄熱層12を被着させるとともに、該蓄熱
層12上に発熱抵抗体13と一対の電極14とを順次、
被着させた構造を有しており、前記一対の電極14間に
外部からの印字信号に基づいて所定の電力を印加し、発
熱抵抗体13を選択的にジュール発熱させるとともに、
該発熱した熱を感熱記録媒体に伝導させ、感熱記録媒体
に所定の印字画像を形成することによってサーマルヘッ
ドとして機能する。
2. Description of the Related Art Conventionally, a thermal head incorporated as a printer mechanism such as a word processor has a heat storage layer 12 made of a low heat conductive material such as glass deposited on the upper surface of a substrate 11 as shown in FIG. A heating resistor 13 and a pair of electrodes 14 are sequentially formed on the heat storage layer 12,
It has a deposited structure, and applies a predetermined electric power between the pair of electrodes 14 based on a print signal from the outside to selectively heat the heating resistor 13 by Joule heat.
The generated heat is conducted to the thermosensitive recording medium to form a predetermined printed image on the thermosensitive recording medium, thereby functioning as a thermal head.

【0003】尚、前記基板11は、その上面で発熱抵抗
体13等が被着された蓄熱層12を支持するとともに、
蓄熱層12の熱の一部を吸収して蓄熱層12の温度状態
を良好に保つためのものであり、通常、アルミナセラミ
ックス等のセラミック材料により形成されている。
The substrate 11 supports the heat storage layer 12 on the upper surface of which the heating resistors 13 and the like are adhered, and
It is for absorbing a part of heat of the heat storage layer 12 to maintain the temperature state of the heat storage layer 12 in a good condition, and is usually formed of a ceramic material such as alumina ceramics.

【0004】また前記蓄熱層12は、発熱抵抗体13の
発する熱を蓄積して発熱抵抗体13の温度を短時間で印
字に必要な所定の温度となすためのものであり、耐熱性
に優れた低熱伝導性材料、例えば、軟化点が700 ℃以上
の高軟化点ガラスにより形成されている。
The heat storage layer 12 is for accumulating the heat generated by the heat generating resistor 13 to bring the temperature of the heat generating resistor 13 to a predetermined temperature required for printing in a short time, and is excellent in heat resistance. It is formed of a low thermal conductivity material such as glass having a high softening point of 700 ° C. or higher.

【0005】しかしながら、この従来のサーマルヘッド
においては、基板11を形成するアルミナセラミックス
の熱伝導率が25.1W/m・kと比較的小さいことから、
発熱抵抗体13の温度を短時間で印字に必要な所定温度
となすために発熱抵抗体13への印加電力を大として高
速印字を行った場合、蓄熱層12の温度を速やかに冷却
することができず、次のラインの印字を行う際に印画濃
度が極めて高くなって濃度むらが形成されたり、或い
は、非印字時であっても不要な印字が形成される尾引き
現象が発生する欠点を有していた。
However, in this conventional thermal head, since the thermal conductivity of the alumina ceramics forming the substrate 11 is relatively small at 25.1 W / m · k,
When high-speed printing is performed by increasing the electric power applied to the heating resistor 13 in order to bring the temperature of the heating resistor 13 to the predetermined temperature required for printing in a short time, the temperature of the heat storage layer 12 can be quickly cooled. However, when printing the next line, the printing density becomes extremely high and uneven density is formed, or even when not printing, unnecessary printing is formed. Had.

【0006】そこで上記欠点を解消するために、基板を
アルミニウム等の良熱伝導性材料(アルミニウムの熱伝
導率:20〜24W/m・k)により形成して基板11の放
熱性を上げることが検討されている。
Therefore, in order to solve the above-mentioned drawbacks, it is possible to improve the heat dissipation of the substrate 11 by forming the substrate with a material having good thermal conductivity (aluminum thermal conductivity: 20 to 24 W / m · k) such as aluminum. Is being considered.

【0007】しかしながら、サーマルヘッドの基板11
をアルミニウムによって形成する場合、基板11を形成
するアルミニウムの融解温度が660 ℃と比較的低いこと
から、基板11上に蓄熱層12を従来周知の厚膜手法に
よって被着形成するにあたり高軟化点ガラスをアルミニ
ウム製の基板11に焼き付ける際、ガラスが溶解する前
に基板11が軟化し、変形してしまう。
However, the substrate 11 of the thermal head
In the case where the heat-generating layer 12 is formed of aluminum, the melting temperature of aluminum forming the substrate 11 is relatively low at 660 ° C. Therefore, when the heat storage layer 12 is formed on the substrate 11 by the well-known thick film method, the high softening point glass Is baked on the substrate 11 made of aluminum, the substrate 11 is softened and deformed before the glass is melted.

【0008】このため、サーマルヘッドの基板11がア
ルミニウム等から成っている場合は、蓄熱層12を低軟
化点ガラス(軟化温度:400 〜500 ℃)により形成する
必要があった。
For this reason, when the substrate 11 of the thermal head is made of aluminum or the like, it is necessary to form the heat storage layer 12 with low softening point glass (softening temperature: 400 to 500 ° C.).

【0009】しかしながら、蓄熱層12を低軟化点ガラ
スによって形成した場合、発熱抵抗体13の発熱温度
(250 〜300 ℃)が蓄熱層12の軟化温度に比較的近い
ことから、発熱抵抗体13を繰り返しジュール発熱させ
ると、蓄熱層12が発熱抵抗体13の熱によって少しず
つ変形してその上に被着される発熱抵抗体13にクラッ
クが入るという欠点を誘発していた。
However, when the heat storage layer 12 is formed of a glass having a low softening point, the heat generation temperature (250 to 300 ° C.) of the heat generation resistor 13 is relatively close to the softening temperature of the heat storage layer 12, and therefore the heat generation resistor 13 is formed. When the Joule heat is repeatedly generated, the heat storage layer 12 is gradually deformed by the heat of the heat generating resistor 13 and a crack is generated in the heat generating resistor 13 applied thereon.

【0010】[0010]

【課題を解決するための手段】本発明は上記欠点に鑑み
案出されたもので、アルミニウム、銅、鉄、もしくはこ
れらの合金のうち少なくとも1種から成る基板上に、発
熱抵抗体を被着する薄板ガラス製の蓄熱部材を、直接、
半田を介して取着させたことを特徴とする。
The present invention has been devised in view of the above-mentioned drawbacks, and a heating resistor is deposited on a substrate made of at least one of aluminum, copper, iron and alloys thereof. Directly attach the thin glass heat storage member
It is characterized in that it is attached via solder.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態を添付図
面に基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0012】図1は本発明のサーマルヘッドの一実施形
態を示す断面図であり、1は基板、2は蓄熱部材、3は
半田、4は発熱抵抗体、5は一対の電極である。
FIG. 1 is a sectional view showing an embodiment of a thermal head of the present invention, in which 1 is a substrate, 2 is a heat storage member, 3 is solder, 4 is a heating resistor, and 5 is a pair of electrodes.

【0013】前記基板1はアルミニウム、銅、鉄、もし
くはこれらの合金のうち少なくとも1種から成ってお
り、その上に、発熱抵抗体3を有する薄板ガラス製の蓄
熱部材2を、直接、半田を介して取着させている。
The substrate 1 is made of at least one of aluminum, copper, iron and alloys thereof, and a heat accumulating member 2 made of thin glass having a heating resistor 3 is directly soldered on the substrate 1. It is attached through.

【0014】前記基板1は、その上面で蓄熱部材2を支
持するとともに、後述する蓄熱部材2中の熱の一部を吸
収して蓄熱部材2を短時間で冷却するためのものであ
り、例えば、Al−Mg−Si合金により5mmの厚み
をもって形成される。
The substrate 1 supports the heat storage member 2 on its upper surface and absorbs a part of heat in the heat storage member 2 described later to cool the heat storage member 2 in a short time. , Al-Mg-Si alloy with a thickness of 5 mm.

【0015】このAl−Mg−Si合金等から成る基板
1は、その熱伝導率が200 W/m・kと極めて大きく、
高い放熱性を有しているため、発熱抵抗体4の温度を短
時間で印字に必要な所定温度となすために発熱抵抗体4
への印加電力を大として高速印字を行う場合であって
も、印字が終わると、蓄熱部材2及び基板1を短時間で
良好に冷却することができ、濃度むらや尾引きの無い良
好な印字画像を形成することが可能となる。
The substrate 1 made of this Al--Mg--Si alloy or the like has an extremely large thermal conductivity of 200 W / m.k,
Since the heat generating resistor 4 has a high heat dissipation property, the temperature of the heat generating resistor 4 is set to a predetermined temperature required for printing in a short time, so
Even when high-speed printing is performed by applying a large amount of electric power to the heat storage member 2, after the printing is completed, the heat storage member 2 and the substrate 1 can be cooled well in a short time, and good printing without uneven density or tailing can be achieved. It becomes possible to form an image.

【0016】尚、前記基板1は、Al−Mg−Si合金
により形成されている場合、従来周知の金属加工法を採
用することによって製作される。
When the substrate 1 is made of an Al--Mg--Si alloy, it is manufactured by adopting a conventionally known metal working method.

【0017】また基板1の上面で支持されている蓄熱部
材2は、発熱抵抗体4の発する熱を蓄積して発熱抵抗体
4の温度を短時間で印字に必要な所定温度となすための
ものであり、このような蓄熱部材2としては、例えば厚
み30μm程度の薄板ガラスが用いられる。
Further, the heat storage member 2 supported on the upper surface of the substrate 1 is for accumulating heat generated by the heat generating resistor 4 and setting the temperature of the heat generating resistor 4 to a predetermined temperature necessary for printing in a short time. As such a heat storage member 2, for example, a thin glass plate having a thickness of about 30 μm is used.

【0018】この蓄熱部材2として用いられる薄板ガラ
スは、例えば、熱伝導率が0.9 W/m・kで軟化点が70
0 〜800 ℃の低アルカリガラス、より具体的にはホウケ
イ酸ガラスにより形成されており、ガラス材料を板状に
成形した後、表面を研摩加工することにより製作され
る。
The thin glass used as the heat storage member 2 has, for example, a thermal conductivity of 0.9 W / m · k and a softening point of 70.
It is formed of low-alkali glass at 0 to 800 ° C., more specifically, borosilicate glass, and is manufactured by forming a glass material into a plate shape and then polishing the surface.

【0019】このように、軟化点が700 〜800 ℃の高軟
化点ガラスから成る薄板ガラスを用いて蓄熱部材2を形
成することにより、発熱抵抗体4を250 〜300 ℃の温度
で繰り返しジュール発熱させても、蓄熱部材2が変形し
て発熱抵抗体4にクラックが入ることは一切なく、発熱
抵抗体4の寿命を長くしてサーマルヘッド長期にわたり
良好に機能させることができる。
As described above, by forming the heat storage member 2 by using the thin plate glass made of the high softening point glass having the softening point of 700 to 800 ° C., the heating resistor 4 is repeatedly heated at a temperature of 250 to 300 ° C. by Joule heat generation. Even if it is done, the heat storage member 2 is not deformed and cracks are not formed in the heat generating resistor 4, and the life of the heat generating resistor 4 is lengthened to allow the thermal head to function well for a long period of time.

【0020】また前記蓄熱部材2の上面には、複数個の
発熱抵抗体4と、一対の電極5とが順次被着されてい
る。
A plurality of heat generating resistors 4 and a pair of electrodes 5 are sequentially deposited on the upper surface of the heat storage member 2.

【0021】前記発熱抵抗体4は例えば窒化タンタル等
から成っており、それ自体が所定の電気抵抗率を有して
いるため、一対の電極5を介して外部電源からの電力が
印加されるとジュール発熱を起こし、感熱記録媒体に印
字画像を形成するのに必要な所定温度、例えば200 ℃〜
350 ℃の温度に発熱する。
The heating resistor 4 is made of, for example, tantalum nitride or the like, and has a predetermined electric resistivity, so that when an electric power is applied from an external power source through the pair of electrodes 5. Joule heat is generated, and the temperature required to form a printed image on a thermosensitive recording medium is, for example, 200 ° C
It exotherms to a temperature of 350 ° C.

【0022】また前記発熱抵抗体4上に被着される一対
の電極5はアルミニウム等の金属材料から成っており、
該一対の電極5は発熱抵抗体4にジュール発熱を起こさ
せるために必要な所定の電力を印加する作用を為す。
The pair of electrodes 5 deposited on the heating resistor 4 is made of a metal material such as aluminum.
The pair of electrodes 5 have a function of applying a predetermined electric power required for causing Joule heat generation to the heating resistor 4.

【0023】尚、前記複数個の発熱抵抗体4及び一対の
電極5は、従来周知のスパッタリング法及びフォトリソ
グラフィー技術を採用することによって基板1上に取着
された蓄熱部材2の上面に所定パターン、所定厚み(発
熱抵抗体4は0.01〜0.5 μmの厚み、一対の電極5は0.
5 〜2.0 μmの厚み)をもって被着形成される。
The plurality of heat generating resistors 4 and the pair of electrodes 5 have a predetermined pattern on the upper surface of the heat storage member 2 attached on the substrate 1 by adopting the conventionally known sputtering method and photolithography technique. , A predetermined thickness (the heating resistor 4 has a thickness of 0.01 to 0.5 μm, the pair of electrodes 5 has a thickness of 0.
It is formed with a thickness of 5 to 2.0 μm.

【0024】また前記基板1と蓄熱部材2との間には、
この両者を接着するための半田3が介在されている。
Between the substrate 1 and the heat storage member 2,
A solder 3 for bonding the both is interposed.

【0025】前記半田3は、Pb−Sn系のものが用い
られ、より具体的には、旭硝子株式会社製のセラソルザ
♯297(商品名)が好適に用いられる。
As the solder 3, a Pb-Sn type solder is used, and more specifically, Cerasolzer # 297 (trade name) manufactured by Asahi Glass Co., Ltd. is preferably used.

【0026】このセラソルザ♯297 は、蓄熱部材2を形
成するガラスと基板1を形成するアルミニウム、銅、
鉄、もしくはこれらの合金とを化学結合によって強固に
接合することができるもので、その溶融温度は297 ℃に
設定されている。
This Cerasolzer # 297 comprises glass forming the heat storage member 2 and aluminum, copper forming the substrate 1.
It can firmly bond iron or these alloys by chemical bonding, and its melting temperature is set to 297 ° C.

【0027】従って、半田3を溶融させるのに必要な温
度は300 ℃程度で、アルミニウム合金の融解温度(融解
温度:660 ℃)に比し十分に低いため、蓄熱部材2を基
板1の上面に被着させる際、基板1が熱によって融解し
てしまうことはない。
Therefore, the temperature required for melting the solder 3 is about 300 ° C., which is sufficiently lower than the melting temperature of the aluminum alloy (melting temperature: 660 ° C.), so that the heat storage member 2 is placed on the upper surface of the substrate 1. The substrate 1 is not melted by heat when applied.

【0028】またこの半田3の熱伝導率は約35W/m・
kと蓄熱部材2を形成する高軟化点ガラスに比し高いも
のであるため、蓄熱部材2から基板1への熱伝導が半田
3によって阻害されることはなく、良好な高速印字に供
することができる。
The thermal conductivity of this solder 3 is about 35 W / m.
k and the high softening point glass that forms the heat storage member 2, the heat conduction from the heat storage member 2 to the substrate 1 is not hindered by the solder 3, and good high-speed printing is possible. it can.

【0029】また更に前記半田3の溶融温度は297 ℃で
あり、サーマルヘッドを駆動させる際に蓄熱部材2と基
板1との界面近傍に印加される熱(約40℃)に比し高く
設定されているため、発熱抵抗体4を繰り返し発熱させ
るような場合であっても、半田3が加熱溶融する恐れは
なく、蓄熱部材2を基板1の上面に常に強固に取着させ
ておくことができる。
Further, the melting temperature of the solder 3 is 297 ° C., which is set higher than the heat (about 40 ° C.) applied near the interface between the heat storage member 2 and the substrate 1 when driving the thermal head. Therefore, even when the heating resistor 4 is repeatedly heated, there is no fear that the solder 3 is heated and melted, and the heat storage member 2 can always be firmly attached to the upper surface of the substrate 1. .

【0030】尚、前記蓄熱部材2の基板1上への接着
は、まず基板1の上面に所定の半田ペーストを10〜50μ
mの厚みに印刷塗布し、しかる後、その上に蓄熱部材2
を載置させるとともに、300 ℃の温度で5分間リフロー
することによって行う。
In order to bond the heat storage member 2 onto the substrate 1, first, a predetermined solder paste is applied on the upper surface of the substrate 1 in an amount of 10 to 50 μm.
Print coating to a thickness of m, and then heat storage member 2 on top of it.
And then reflow at a temperature of 300 ° C for 5 minutes.

【0031】このとき、蓄熱部材2が半田接合される基
板1の表面をアルマイト処理等によって酸化しておけ
ば、半田3が基板表面の酸素に対して良好に化学結合す
るため、基板1と蓄熱部材2とをより強固に接合させる
ことができる。したがって蓄熱部材2が半田接合される
基板1の表面を酸化しておくことが好ましい。
At this time, if the surface of the substrate 1 to which the heat storage member 2 is solder-bonded is oxidized by alumite treatment or the like, the solder 3 is well chemically bonded to oxygen on the substrate surface, and the substrate 1 and the heat storage are The member 2 can be joined more firmly. Therefore, it is preferable to oxidize the surface of the substrate 1 to which the heat storage member 2 is soldered.

【0032】かくして上述したサーマルヘッドは、前記
一対の電極5間に外部からの印字信号に基づいて所定の
電力を印加し、発熱抵抗体4を選択的にジュール発熱さ
せるとともに、該発熱した熱を感熱記録媒体に伝導さ
せ、感熱記録媒体に所定の印字画像を形成することによ
ってサーマルヘッドとして機能する。
Thus, the thermal head described above applies a predetermined electric power between the pair of electrodes 5 based on a print signal from the outside to selectively cause the heating resistor 4 to generate Joule heat and to generate the generated heat. It conducts to the thermal recording medium, and functions as a thermal head by forming a predetermined print image on the thermal recording medium.

【0033】尚、本発明は上記実施例に限定されるもの
ではなく、本発明の要旨を逸脱しない範囲において種々
の変更、改良等が可能であり、例えば、図1のサーマル
ヘッドにおいてサーマルヘッドの耐摩耗性、耐腐食性を
向上させるために発熱抵抗体4等を窒化珪素等から成る
保護膜によって被覆しても構わない。
The present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the scope of the present invention. For example, in the thermal head of FIG. In order to improve wear resistance and corrosion resistance, the heating resistor 4 and the like may be covered with a protective film made of silicon nitride or the like.

【0034】[0034]

【発明の効果】本発明のサーマルヘッドによれば、高速
印字を行う場合であっても、蓄熱部材及び基板を短時間
で良好に冷却して濃度むらや尾引きの無い良好な印字画
像を形成することができるようになるとともに、発熱抵
抗体の寿命を長くしてサーマルヘッドを長期にわたり良
好に機能させることが可能となる。
According to the thermal head of the present invention, even when high-speed printing is performed, the heat storage member and the substrate are satisfactorily cooled in a short time to form a good printed image without density unevenness or tailing. In addition, the life of the heating resistor can be extended and the thermal head can function well for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のサーマルヘッドを示す断面図である。FIG. 1 is a sectional view showing a thermal head of the present invention.

【図2】従来のサーマルヘッドの断面図である。FIG. 2 is a sectional view of a conventional thermal head.

【符号の説明】[Explanation of symbols]

1・・・基板 2・・・蓄熱部材 3・・・半田 4・・・発熱抵抗体 1 ... Substrate 2 ... Heat storage member 3 ... Solder 4 ... Heating resistor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アルミニウム、銅、鉄、もしくはこれらの
合金のうち少なくとも1種から成る基板上に、発熱抵抗
体を被着する薄板ガラス製の蓄熱部材を、直接、半田を
介して取着させたことを特徴とするサーマルヘッド。
1. A thin glass heat storage member for attaching a heating resistor is directly attached to a substrate made of at least one of aluminum, copper, iron, and alloys thereof by soldering. A thermal head that is characterized by
JP28274695A 1995-10-31 1995-10-31 Thermal head Pending JPH09123502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28274695A JPH09123502A (en) 1995-10-31 1995-10-31 Thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28274695A JPH09123502A (en) 1995-10-31 1995-10-31 Thermal head

Publications (1)

Publication Number Publication Date
JPH09123502A true JPH09123502A (en) 1997-05-13

Family

ID=17656522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28274695A Pending JPH09123502A (en) 1995-10-31 1995-10-31 Thermal head

Country Status (1)

Country Link
JP (1) JPH09123502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018176549A (en) * 2017-04-13 2018-11-15 ローム株式会社 Thermal print head, manufacturing method of thermal print head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018176549A (en) * 2017-04-13 2018-11-15 ローム株式会社 Thermal print head, manufacturing method of thermal print head

Similar Documents

Publication Publication Date Title
JPH09123502A (en) Thermal head
JPH09123501A (en) Thermal head
JP3477011B2 (en) Thermal head
JPH09234896A (en) Thermal head
JP7454696B2 (en) Thermal head and thermal printer
JP3401144B2 (en) Thermal head
JPH09207364A (en) Thermal head
JP3476938B2 (en) Thermal head
JPH09150536A (en) Thermal head
JP3824246B2 (en) Manufacturing method of thermal head
JP2547861B2 (en) Method of manufacturing thermal head
JPH0796620A (en) Thermal head
JP3606688B2 (en) Thermal head and manufacturing method thereof
JP2948972B2 (en) Thermal head
JPH022024A (en) Thermal head
JP3476921B2 (en) Thermal head
JPH06984A (en) Thermal head
JP4195648B2 (en) Printing mask, printing method, and flip-chip IC manufacturing method
JP2606646Y2 (en) Thermal head
JP3004095B2 (en) Manufacturing method of thermal head
JP2971265B2 (en) Thermal head
JP2003103817A (en) Thermal head
JP4557394B2 (en) Thermal head
JPH06293148A (en) Thermal head
JPH09290527A (en) Thermal head