JPH09122884A - Production of piston for internal combustion engine - Google Patents

Production of piston for internal combustion engine

Info

Publication number
JPH09122884A
JPH09122884A JP28960295A JP28960295A JPH09122884A JP H09122884 A JPH09122884 A JP H09122884A JP 28960295 A JP28960295 A JP 28960295A JP 28960295 A JP28960295 A JP 28960295A JP H09122884 A JPH09122884 A JP H09122884A
Authority
JP
Japan
Prior art keywords
piston
composite member
potassium titanate
carbon fibers
titanate whiskers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28960295A
Other languages
Japanese (ja)
Inventor
Masato Sasaki
正登 佐々木
Yutaka Tomono
裕 友野
Seiichi Kotake
誠一 小竹
Junichi Fujita
順一 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Hitachi Zosen Corp
Osaka Gas Co Ltd
Original Assignee
Hitachi Zosen Corp
Osaka Gas Co Ltd
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp, Osaka Gas Co Ltd, Unisia Jecs Corp filed Critical Hitachi Zosen Corp
Priority to JP28960295A priority Critical patent/JPH09122884A/en
Publication of JPH09122884A publication Critical patent/JPH09122884A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • F05C2203/0804Non-oxide ceramics
    • F05C2203/0808Carbon, e.g. graphite

Abstract

PROBLEM TO BE SOLVED: To improve strength and to prevent a failure, etc., by decreasing the volumetric rate of the carbon short fibers on a surface part while assuring the wear resistance and coagulation resistance of a composite member. SOLUTION: This process for producing a piston comprises forming the inner peripheral wall of the top ring groove of a piston body of the composite member 11 formed by combining the carbon short fibers 13 and potassium titanate whiskers 14 with an aluminum alloy material and mixing the carbon short fibers 13 at a ratio of 30 to 60% (vol.%) with the entire part of the composite member 11. A perform body 15 consisting of the carbon shot fibers 13 and the potassium titanate whiskers 14 is previously molded and the molding is heated at about 400 to 550 deg.C in the atm. to burn the carbon short fibers of the surface part Z.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば自動車等の
内燃機関用ピストン、とりわけピストンリング溝の内壁
を、アルミニウム合金材に炭素短繊維及びチタン酸カリ
ウムウィスカーを複合した複合部材で形成した内燃機関
用ピストンの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piston for an internal combustion engine of, for example, an automobile, particularly an internal combustion engine in which the inner wall of a piston ring groove is formed of a composite member made of aluminum alloy material and short carbon fibers and potassium titanate whiskers. The present invention relates to a method for manufacturing a piston.

【0002】[0002]

【従来の技術】この種の従来の内燃機関用ピストンとし
ては、本出願人が先に出願した特願平6−29880号
に記載されているものがある。
2. Description of the Related Art As a conventional piston for an internal combustion engine of this type, there is one described in Japanese Patent Application No. 6-29880 filed by the present applicant.

【0003】これは、ピストン本体が、アルミ合金材で
有蓋円筒状に形成され、燃焼室に臨む冠部と、該冠部の
下部に有するリングランド部の外周面に形成された3つ
のピストンリング溝とを備えている。
The piston body is formed of an aluminum alloy into a cylindrical shape with a lid, and three piston rings are formed on the crown portion facing the combustion chamber and the outer peripheral surface of the ring land portion below the crown portion. It has a groove.

【0004】そして、ピストンリング溝のトップリング
溝は、表面部が円環状の複合部材によって形成されてお
り、この複合部材30は、図8A,Bに示すように母地
材料としてのアルミニウムまたはアルミニウム合金材
(C8A,A390等)31に炭素短繊維32及びチタ
ン酸カリウムウィスカー(K2O・6TIO2)33を含
有した複合部材料で円環状に構成され、ピストン本体2
9内にトップリング溝の表面部を構成すべく鋳ぐるまれ
ている。
The top ring groove of the piston ring groove is formed by a composite member having an annular surface, and the composite member 30 is made of aluminum or aluminum as a base material as shown in FIGS. 8A and 8B. An alloy material (C8A, A390, etc.) 31 containing carbon short fibers 32 and potassium titanate whiskers (K 2 O · 6TIO 2 ) 33 is used as a composite part material and is formed into an annular shape.
It is surrounded by casting 9 to form the surface portion of the top ring groove.

【0005】即ち、複合部材30は、炭素短繊維32が
複合部材全体に対して30〜60体積%の割合で配合さ
れ、またチタン酸カリウムウィスカー33が炭素短繊維
32に対して20〜50体積%の割合で配合されてい
る。また、炭素短繊維32とチタン酸カリウムウィスカ
ー33との合計量は、複合部材30全体の60体積%以
下に設定されている。
That is, in the composite member 30, the short carbon fibers 32 are blended in a proportion of 30 to 60% by volume with respect to the whole composite member, and the potassium titanate whiskers 33 are contained in the short carbon fibers 32 in an amount of 20 to 50% by volume. It is blended in the ratio of%. The total amount of the short carbon fibers 32 and the potassium titanate whiskers 33 is set to 60% by volume or less of the entire composite member 30.

【0006】したがって、トップリング溝の内周面がピ
ストンリング(トップリング)との摺接に対する耐摩耗
性が向上すると共に、炭素短繊維32の自己潤滑作用に
よるピストンリングに対する耐凝着性が向上する。ま
た、チタン酸カリウムウィスカー33によってさらに耐
摩耗性が向上するといった種々の利点を有する。
Accordingly, the wear resistance of the inner peripheral surface of the top ring groove against sliding contact with the piston ring (top ring) is improved, and the adhesion resistance to the piston ring due to the self-lubricating action of the carbon short fibers 32 is improved. To do. Further, the potassium titanate whiskers 33 have various advantages such as further improved wear resistance.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記先
願に係る従来例にあっては、前述のように炭素短繊維3
2を複合部材30全体に対して30体積%を配合してあ
るため、複合部材30の耐摩耗性は向上するものの、該
体積率の大きな炭素短繊維32が複合部材30の内部に
均一に分散されているので十分な強度が得られず脆弱化
してしまうおそれがある。このため、複合部材30を切
削等の加工をした際に、破損したり剥離するおそれがあ
る。
However, in the conventional example according to the prior application, as described above, the short carbon fiber 3 is used.
Since 30% by volume of 2 is mixed in the entire composite member 30, the abrasion resistance of the composite member 30 is improved, but the carbon short fibers 32 having a large volume ratio are uniformly dispersed inside the composite member 30. As a result, sufficient strength may not be obtained and weakening may occur. Therefore, when the composite member 30 is processed by cutting or the like, it may be damaged or peeled off.

【0008】また、複合部材30をピストン本体29の
鋳造時に鋳ぐるんだ際に、図8Cに示すように該ピスト
ン本体29と複合部材30との界面34、特にトップリ
ング溝の端面に、ピストン実働時の高い熱負荷によって
割れが生じるおそれがある。
When the composite member 30 is cast during casting of the piston body 29, as shown in FIG. 8C, at the interface 34 between the piston body 29 and the composite member 30, particularly at the end face of the top ring groove, the piston is Cracks may occur due to high heat load during actual operation.

【0009】[0009]

【課題を解決するための手段】本発明は、前記従来の実
情に鑑みて案出されたもので、アルミニウム合金材から
なるピストン本体の外周に複数のピストンリング溝を形
成すると共に、該ピストンリング溝の少なくともトップ
リング溝の内周壁を、炭素短繊維及びチタン酸カリウム
ウィスカーを複合化した複合部材で形成し、前記炭素短
繊維を前記複合部材全体に対して30〜60%(体積
%)の割合で配合してなる内燃機関用ピストンの製造方
法において、前記複合部材は、炭素短繊維とチタン酸カ
リウムウィスカーとからなる円環状の成形体を予め成形
し、該成形体を酸化性雰囲気中で所定の加熱温度および
加熱時間の条件下で加熱し、その後、該成形体を、前記
ピストン本体の成形時に溶湯アルミニウム合金材に含浸
させて該ピストン本体と一体成形したことを特徴として
いる。
SUMMARY OF THE INVENTION The present invention has been devised in view of the above-mentioned conventional circumstances, and a plurality of piston ring grooves are formed on the outer circumference of a piston body made of an aluminum alloy material, and the piston ring is formed. At least the inner peripheral wall of the top ring groove of the groove is formed of a composite member in which short carbon fibers and potassium titanate whiskers are combined, and the short carbon fibers account for 30 to 60% (volume%) of the whole composite member. In the method for producing a piston for an internal combustion engine, which is compounded in a proportion, the composite member is preliminarily molded into an annular molded body composed of short carbon fibers and potassium titanate whiskers, and the molded body is placed in an oxidizing atmosphere. It is heated under a condition of a predetermined heating temperature and heating time, and then the molten aluminum alloy material is impregnated with the molded body at the time of molding the piston main body to form the piston body. When it is characterized in that integrally molded.

【0010】このように、ピストン本体と一体成形する
前に、複合部材の成形体を加熱することにより、該成形
体の表面部の炭素短繊維の一部を燃焼させて焼失し、表
面部の炭素短繊維の体積率を低下させることができる。
As described above, by heating the molded body of the composite member before integrally molding with the piston body, a part of the carbon short fibers on the surface of the molded body is burned and burned off, and The volume ratio of short carbon fibers can be reduced.

【0011】[0011]

【発明の実施の形態】図1及び図2は本発明に供される
ピストンの断面図を示し、このピストンは、ピストン本
体1がアルミ合金材12で略円筒状に形成され、燃焼室
に臨む冠部2と、該冠部2の下部に有するリングランド
部3の外周面に形成された3つのピストンリング溝4,
5,6と、各リング溝4〜6下部のスカート部10とを
備え、該各トップ,セカンド,オイルリング溝4〜6に
ピストンリング7,8,9が嵌着されている。
1 and 2 are sectional views of a piston used in the present invention. In this piston, a piston body 1 is made of an aluminum alloy material 12 in a substantially cylindrical shape and faces a combustion chamber. Three piston ring grooves 4, which are formed on the outer peripheral surface of the crown portion 2 and the ring land portion 3 provided at the lower portion of the crown portion 2.
5, 6 and a skirt portion 10 below each of the ring grooves 4 to 6, and piston rings 7, 8 and 9 are fitted in the top, second and oil ring grooves 4 to 6, respectively.

【0012】前記トップリング溝4は、冠部2の頂面か
らスカート部10側へ9mm離れた位置を中心に、幅4m
m,深さ8mmに形成されていると共に、この表面部のみ
が後述の成形方法で成形された円環状の複合部材11に
よって形成されている。
The top ring groove 4 has a width of 4 m centering on a position 9 mm away from the top surface of the crown portion 2 toward the skirt portion 10 side.
In addition to being formed to have a depth of m and a depth of 8 mm, only this surface portion is formed by an annular composite member 11 formed by a forming method described later.

【0013】この複合部材11は、図5〜図7に示すよ
うに長さが0.1〜10mmの炭素短繊維13及びチタン
酸カリウムウィスカー(K2O・6T102)14を含有
した複合材料で構成され、前記ピストン本体1内にトッ
プリング溝4の表面部を構成すべく鋳ぐるまれている。
As shown in FIGS. 5 to 7, the composite member 11 is a composite material containing short carbon fibers 13 having a length of 0.1 to 10 mm and potassium titanate whiskers (K 2 O.6T10 2 ). And is cast in the piston body 1 so as to form the surface portion of the top ring groove 4.

【0014】具体的に説明すれば、この複合部材11
は、プレス成形によって成形され、強化繊維をプリフォ
ーム体15として成形されるようになっており、また、
炭素短繊維13の体積率Vfは、複合部材11全体に対
して55〜60体積%の割合とし、またチタン酸カリウ
ムウィスカー14を炭素短繊維に対して20〜50体積
%の割合で配合している。したがって、炭素短繊維13
とチタン酸カリウムウィスカー14の混合比が4:1に
設定されている。さらに、炭素短繊維13とチタン酸カ
リウムウィスカー14の強化繊維の複合部材11に占め
る程度は60体積%になっている。
More specifically, this composite member 11
Is formed by press forming, and the reinforcing fiber is formed as the preform body 15.
The volume ratio V f of the short carbon fibers 13 is 55 to 60% by volume with respect to the entire composite member 11, and the potassium titanate whiskers 14 are mixed at a ratio of 20 to 50% by volume with respect to the short carbon fibers. ing. Therefore, the short carbon fiber 13
The mixing ratio of the potassium titanate whiskers 14 is set to 4: 1. Further, the extent of the reinforcing fibers of the short carbon fibers 13 and the potassium titanate whiskers 14 in the composite member 11 is 60% by volume.

【0015】炭素短繊維13とチタン酸カリウムウィス
カー14の両繊維の複合化量は、プリフォーム体15の
強度,アルミニウム合金溶湯の浸透性(繊維密度に依
存),さらに複合部材11の性能を考慮して決定した。
まず、繊維密度すなわち複合部材11に対する強化繊維
の割合、つまり、体積率Vfが60%以上のプリフォー
ム体15は鋳造性が悪く、したがって上限は60%とし
た。逆に、プリフォーム体15としたものを加圧鋳造し
た際に、複合部材11中に繊維が絡み合って均一分散を
得るためには体積率が30%以上が望ましく、したがっ
て下限は30%とした。次に、炭素短繊維13に占める
チタン酸カリウムウィスカー14の量が20%(すなわ
ち、炭素短繊維:チタン酸カリウムウィスカー=4:
1)以下ではプリフォーム体の強度が不十分で成形でき
ない。逆に50体積%(炭素短繊維13:チタン酸カリ
ウムウィスカー=1:1)を越えるとチタン酸カリウム
ウィスカー14の集合部が生じやすく均一なアルミニウ
ム複合部材となりにくい。チタン酸カリウムウィスカー
14の炭素短繊維13に占める量は20〜50体積%が
良好である。
The amount of composite of both carbon short fiber 13 and potassium titanate whisker 14 is taken into consideration in the strength of the preform body 15, the permeability of the molten aluminum alloy (depending on the fiber density), and the performance of the composite member 11. And decided.
First, the castability of the preform body 15 having the fiber density, that is, the ratio of the reinforcing fiber to the composite member 11, that is, the volume ratio V f of 60% or more is poor, and therefore the upper limit was made 60%. On the other hand, when the preform body 15 is pressure-cast, the volume ratio is preferably 30% or more so that the fibers are entangled in the composite member 11 to obtain a uniform dispersion. Therefore, the lower limit is 30%. . Next, the amount of potassium titanate whiskers 14 in the short carbon fibers 13 is 20% (that is, short carbon fibers: potassium titanate whiskers = 4:
In the case of 1) or less, the strength of the preform is insufficient and molding cannot be performed. On the other hand, when it exceeds 50% by volume (short carbon fibers 13: potassium titanate whiskers = 1: 1), aggregates of potassium titanate whiskers 14 are likely to be formed, which makes it difficult to form a uniform aluminum composite member. The amount of the potassium titanate whiskers 14 in the short carbon fibers 13 is preferably 20 to 50% by volume.

【0016】なお、前記ピストン本体1のアルミニウム
合金材12母地は、複合部材11の基礎強度を与えるも
のであり、AC8Aや6061などは時効硬化性の強い
アルミニウム合金材であり、かつチタン酸カリウムウィ
スカー14や炭素短繊維13との濡れ性が良好であるた
め、母地合金として望ましい。
The base material of the aluminum alloy material 12 of the piston body 1 provides the basic strength of the composite member 11, and AC8A, 6061 and the like are aluminum alloy materials having a strong age hardening property and potassium titanate. Since it has good wettability with the whiskers 14 and the short carbon fibers 13, it is desirable as a base alloy.

【0017】以下、前記複合部材11の具体的な製造方
法について説明する。
Hereinafter, a specific method of manufacturing the composite member 11 will be described.

【0018】即ち、まず、単繊維が直径5〜15μm長
さ0.1〜10mmの炭素短繊維13(比重1.77g/cm
3)と、単繊維が直径0.4〜1.5μm,長さ10〜10
0μmのチタン酸カリウムウィスカー14(比重3.3g
/cm3)とを所定の重量比で混合して水中に入れ、十分
撹拌した後、金型を用いたプレス成形(圧力20kg・f
/cm2)により円筒状に成形し、乾燥させてプリフォー
ム体15を成形した。このプリフォーム体15は、外径
φ86mm、内径φ72mm、厚さ約11mmのリング状に形
成した(図3A参照)。
That is, first, a single fiber is a carbon short fiber 13 having a diameter of 5 to 15 μm and a length of 0.1 to 10 mm (specific gravity 1.77 g / cm 2).
3 ) and the monofilament has a diameter of 0.4 to 1.5 μm and a length of 10 to 10
0 μm potassium titanate whiskers 14 (specific gravity 3.3 g
/ Cm 3 ) in a predetermined weight ratio and put in water, and after sufficiently stirring, press molding using a die (pressure 20 kgf
/ Cm 2 ) to form a cylindrical shape and dried to form a preform body 15. The preform body 15 was formed in a ring shape having an outer diameter of 86 mm, an inner diameter of 72 mm and a thickness of about 11 mm (see FIG. 3A).

【0019】続いて、このプリフォーム体15を、酸化
性雰囲気中つまり大気中で約550℃で約20分間加熱
し、該プリフォーム体15の表面部Zの炭素短繊維13
を燃焼させた(図3B参照)。これによって、プリフォ
ーム体15は、図3B及び図5に示すように内部Yが炭
素短繊維13の体積率Vfが高いが、表面部Zは炭素短
繊維13が燃焼して体積率Vfが減少している。
Subsequently, the preform body 15 is heated in an oxidizing atmosphere, that is, in the air at about 550 ° C. for about 20 minutes, and the carbon short fibers 13 on the surface portion Z of the preform body 15 are heated.
Was burned (see FIG. 3B). As a result, in the preform body 15, as shown in FIGS. 3B and 5, the interior Y has a high volume ratio V f of the carbon short fibers 13, but the surface portion Z is burned by the carbon short fibers 13 and has a volume ratio V f. Is decreasing.

【0020】そして、このようにして成形したプリフォ
ーム体15をピストン本体1に鋳ぐるみ固定する(図3
C参照)。この鋳ぐるみ条件の一例を示せば、プリフォ
ーム体15の予熱温度は673K,ピストン本体1の注
湯温度は993K,鋳型温度は473K,プリフォーム
体15の表面はアルカリ溶液や有機溶剤等で洗浄,脱脂
する。
The preform body 15 thus molded is fixed to the piston body 1 by casting.
C). As an example of the conditions of the cast-molding, the preheating temperature of the preform body 15 is 673K, the pouring temperature of the piston body 1 is 993K, the mold temperature is 473K, and the surface of the preform body 15 is washed with an alkaline solution or an organic solvent. , Degrease.

【0021】その後、図3Dに示すようにプリフォーム
体15が鋳込まれたピストン本体1のリングランド部3
の外周を切削加工して、プリフォーム体15の外周面と
リングランド部3の外面との間を肉厚を薄くする。続い
て、図1に示すようにトップリング溝4を切削により仕
上げ加工することによって製造が完了する。
Then, as shown in FIG. 3D, the ring land portion 3 of the piston body 1 in which the preform body 15 is cast.
The outer periphery of the preform body 15 is cut to reduce the thickness between the outer peripheral surface of the preform body 15 and the outer surface of the ring land portion 3. Then, as shown in FIG. 1, the top ring groove 4 is finished by cutting to complete the manufacturing.

【0022】以下、前記プリフォーム体15の試験材を
用いて所定温度で大気中並びにArガス中で加熱した場
合の炭素短繊維13の体積率Vfの変化を実験した結果
を説明する。
The results of experiments on the change in the volume ratio V f of the short carbon fibers 13 when the preform body 15 is heated in the atmosphere and Ar gas at a predetermined temperature will be described below.

【0023】先ず、プリフォーム体15の試験材15a
として前記リングを約15〜20mmの長さに切断したも
のを用い、これを、表1に示すように大気中とArガス
中で加熱試験を行った、 ・試験条件;加熱温度は350℃〜600℃として、各
々の温度で大気中加熱とArガス気流中加熱を行った。
Arガスの流量は15l/min 一定とした。また、保持
時間については10分間隔で60分迄とした。
First, a test material 15a for the preform body 15
The ring was cut into a length of about 15 to 20 mm, and a heating test was performed in the atmosphere and Ar gas as shown in Table 1. Test conditions; At 600 ° C., heating in the atmosphere and heating in an Ar gas stream were performed at each temperature.
The flow rate of Ar gas was fixed at 15 l / min. The holding time was set to 10 minutes at intervals of up to 60 minutes.

【0024】[0024]

【表1】 [Table 1]

【0025】・評価方法;炭素短繊維の減少(焼失)状
態を明らかにするために、まず加熱試験後の試験材15
aの全体及び断面の外観観察を行った。次に、走査型電
子顕微鏡(以下、SEMと称する)により、供試材表層
部の断面観察を行い、SEM写真により炭素短繊維径を
測定した(平均繊維径13.0μm)。
Evaluation method: First, in order to clarify the reduced (burnt) state of the short carbon fibers, the test material 15 after the heating test was performed.
The appearance of the whole a and the cross section was observed. Next, a cross-section of the surface layer of the sample material was observed with a scanning electron microscope (hereinafter referred to as SEM), and the carbon short fiber diameter was measured with an SEM photograph (average fiber diameter 13.0 μm).

【0026】この実験装置としては、図4に示すような
ものを用い、基台16,16上の管状炉17内に、石英
管18を挿通保持させ、この石英管18内部にプリフォ
ーム体15の試験片15aを並べてある。また、石英管
18の一端側から内部にArガスボンベ19内のArガ
スが送り込まれるようになっている。更に、試験片15
aの近傍の温度を検出する温度計20がセットされてい
る。
As this experimental apparatus, the one shown in FIG. 4 was used, and the quartz tube 18 was inserted and held in the tubular furnace 17 on the bases 16 and 16, and the preform body 15 was placed inside the quartz tube 18. The test pieces 15a of 1 are arranged. Further, the Ar gas in the Ar gas cylinder 19 is fed into the quartz tube 18 from one end thereof. Furthermore, the test piece 15
A thermometer 20 for detecting the temperature near a is set.

【0027】そして、この実験結果を表2に示す。The results of this experiment are shown in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】これらの実験結果かも明らかなように、A
rガス中では温度変化や保持時間に拘わらず繊維径に変
化が生じないが、大気中では、400℃で50〜60分
間の保持時間で試験片15aの表面付近のみ繊維径が減
少し、また、450℃では保持時間が30〜50分間、
500℃では保持時間20〜40分間、550℃では保
持時間が10〜30分間で繊維径の減少が見られた。
As is clear from the results of these experiments, A
In the r gas, the fiber diameter does not change regardless of the temperature change and the holding time, but in the air, the fiber diameter decreases only in the vicinity of the surface of the test piece 15a with the holding time of 400 ° C. for 50 to 60 minutes, and , Holding time at 450 ° C for 30 to 50 minutes,
At 500 ° C., a holding time of 20 to 40 minutes, and at 550 ° C., a holding time of 10 to 30 minutes showed a decrease in fiber diameter.

【0030】したがって、前記条件下での加熱処理を行
うことにより、図5に示すようにプリフォーム体15の
表面部Zに前述のような炭素短繊維13の低体積率領域
(約20体積%)が生じ、内部Yに高体積率領域(約5
5体積%)が生じる。そして、このプリフォーム体15
にアルミニウム合金溶湯を高圧にて浸透,凝固させた場
合は、図5〜図7から明らかなように、表面部Zである
ピストン本体1との界面X付近では炭素短繊維13の体
積率Vfが約20%になっている(図6参照)のに対
し、図中右側の内部では体積率Vfが約55%になって
いる(図7参照)ことが明らかである。したがって、加
熱処理によって表面部Zから内部Yへの炭素短繊維13
の体積率を徐々に変化させた傾斜材料を簡単に得ること
が可能になった。
Therefore, by performing the heat treatment under the above-mentioned conditions, as shown in FIG. 5, on the surface portion Z of the preform body 15, the low volume fraction region (about 20% by volume) of the carbon short fiber 13 as described above is formed. ) Occurs, and a high volume ratio region (about 5
5% by volume). And this preform body 15
When the molten aluminum alloy is infiltrated and solidified at a high pressure in FIG. 5, as is clear from FIGS. 5 to 7, in the vicinity of the interface X with the piston body 1 which is the surface portion Z, the volume ratio V f of the carbon short fibers 13 is V f. Is about 20% (see FIG. 6), whereas it is clear that the volume ratio V f is about 55% inside the right side of the figure (see FIG. 7). Therefore, the carbon short fibers 13 from the surface portion Z to the inside Y are heated by the heat treatment.
It has become possible to easily obtain a graded material in which the volume ratio of is gradually changed.

【0031】この結果、複合部材11(プリフォーム体
15)とピストン本体1の界面付近、つまり表面部Z付
近の脆弱化が抑制されて強度が向上するため、表面部Z
を切削加工して最終的にトップリング溝4を成形加工し
た際に、該表面部Zが破損したり剥離するおそれがなく
なる。
As a result, weakening is suppressed near the interface between the composite member 11 (preform body 15) and the piston body 1, that is, near the surface portion Z, and the strength is improved.
When the top ring groove 4 is finally formed by cutting and cutting, the surface portion Z is not likely to be damaged or peeled off.

【0032】また、ピストン本体1内に複合部材11を
鋳込んだ後には、該両者の界面付近における機械的性質
の大きな差が生じなくなるため、ピストンの実働時の高
い熱負荷による割れ等の発生が防止される。
Further, after the composite member 11 is cast into the piston body 1, a large difference in mechanical properties does not occur in the vicinity of the interface between the two, so that cracking due to high heat load during actual operation of the piston occurs. Is prevented.

【0033】なお、前記プリフォーム15の加熱温度は
高温になるほど短時間で目的のものが得られるが、サイ
クルタイムに合わせて適切な温度を選択する。但し、6
00℃以上の加熱温度では所望のものが得られないこと
は前記表の通りである。
The higher the heating temperature of the preform 15 is, the shorter the desired temperature can be obtained. However, an appropriate temperature is selected according to the cycle time. However, 6
As shown in the above table, the desired product cannot be obtained at a heating temperature of 00 ° C. or higher.

【0034】[0034]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、複合部材全体に対して炭素短繊維が30〜60
体積%の割合いで配合された成形体を、酸化性雰囲気中
で加熱して、成形体表面部の炭素短繊維を燃焼させるこ
とにより、表面部の炭素短繊維の体積率を減少させたた
め、複合部材とピストン本体のアルミニウム合金母材と
の界面付近である表面部の脆弱化が抑制されて強度が向
上する。
As is apparent from the above description, according to the present invention, the short carbon fibers are contained in the composite member in an amount of 30 to 60.
The volume ratio of the short carbon fibers on the surface part was decreased by heating the compact compounded in a volume ratio of 100% in an oxidizing atmosphere to burn the short carbon fibers on the surface part of the compact. The weakening of the surface portion near the interface between the member and the aluminum alloy base material of the piston body is suppressed, and the strength is improved.

【0035】この結果、複合部材の切削加工時における
表面部の破損や剥離等が防止される。
As a result, damage or peeling of the surface portion during cutting of the composite member can be prevented.

【0036】また、ピストンのエンジンへの組み付け後
における該ピストンの実働時の高い熱負荷による複合部
材の割れ等の発生が防止される。
Further, it is possible to prevent the composite member from cracking due to a high heat load when the piston is actually operated after the piston is assembled to the engine.

【0037】尚、複合部材の内部の炭素短繊維の体積率
は大きいため、チタン酸カリウムウィスカーとの共働作
用によってピストンリングに対するリング溝内周面の耐
摩耗性と耐凝着性が向上する。
Since the volume fraction of the carbon short fibers inside the composite member is large, the wear resistance and the adhesion resistance of the inner peripheral surface of the ring groove to the piston ring are improved by the synergistic action with the potassium titanate whiskers. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法に供されるピストンの要部断
面図。
FIG. 1 is a sectional view of an essential part of a piston used in a manufacturing method of the present invention.

【図2】同ピストンの縦断面図。FIG. 2 is a vertical sectional view of the piston.

【図3】Aはプリフォーム体の一部を示す断面図。Bは
同プリフォーム体を加熱処理した後の断面図、Cはピス
トン本体にプリフォーム体を鋳込んだ状態を示す部分断
面図、Dはリングランド部の外周を切削加工した部分断
面図。
FIG. 3A is a cross-sectional view showing a part of a preform body. B is a cross-sectional view after the preform body is heat-treated, C is a partial cross-sectional view showing a state in which the preform body is cast into the piston body, and D is a partial cross-sectional view in which the outer periphery of the ring land portion is cut.

【図4】本発明に供されるプリフォーム体の実験装置の
概略図。
FIG. 4 is a schematic view of an experimental apparatus for a preform body used in the present invention.

【図5】本発明に供される複合部材を断面して炭素短繊
維の分布を示す拡大図である。
FIG. 5 is an enlarged view showing a distribution of short carbon fibers in a cross section of the composite member used in the present invention.

【図6】図5のZ部拡大図である。6 is an enlarged view of a Z portion of FIG.

【図7】AのY部拡大図である。FIG. 7 is an enlarged view of a Y portion of A.

【図8】Aは従来の複合部材を示す斜視図、BはAの破
線部を切り出した斜視図、CはBのE部拡大図である。
8A is a perspective view showing a conventional composite member, B is a perspective view in which a broken line portion of A is cut out, and C is an enlarged view of an E portion of B. FIG.

【符号の説明】[Explanation of symbols]

1…ピストン本体 4…トップリング溝 11…複合部材 12…アルミニウム合金材 13…炭素短繊維 14…チタン酸カリウムウィスカー 15…プリフォーム体(成形体) Z…表面部 1 ... Piston body 4 ... Top ring groove 11 ... Composite member 12 ... Aluminum alloy material 13 ... Short carbon fiber 14 ... Potassium titanate whisker 15 ... Preform body (molded body) Z ... Surface part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 友野 裕 大阪府大阪市此花区西九条5丁目3番28号 日立造船株式会社内 (72)発明者 小竹 誠一 大阪府大阪市此花区西九条5丁目3番28号 日立造船株式会社内 (72)発明者 藤田 順一 大阪府大阪市中央区平野町4丁目1番2号 大阪瓦斯株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuu Tomono 5-3-8 Nishikujo, Konohana-ku, Osaka City, Osaka Prefecture Hitachi Shipbuilding Co., Ltd. (72) Seiichi Kotake 5-chome, Nishikujo, Konohana-ku, Osaka, Osaka Prefecture 3-28 Hitachi Shipbuilding Co., Ltd. (72) Inventor Junichi Fujita 4-1-2 Hiranocho, Chuo-ku, Osaka City, Osaka Prefecture Osaka Gas Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム合金材からなるピストン本
体の外周に複数のピストンリング溝を形成すると共に、
該ピストンリング溝の少なくともトップリング溝の内周
壁を、炭素短繊維及びチタン酸カリウムウィスカーを複
合化した複合部材で形成し、前記炭素短繊維を前記複合
部材全体に対して30〜60%(体積%)の割合で配合
してなる内燃機関用ピストンの製造方法において、 前記複合部材は、炭素短繊維とチタン酸カリウムウィス
カーとからなる円環状の成形体を予め成形し、該成形体
を酸化性雰囲気中で所定の加熱温度および加熱時間の条
件下で加熱し、その後、該成形体を、前記ピストン本体
の成形時に溶湯アルミニウム合金材に含浸させて該ピス
トン本体と一体成形したことを特徴とする内燃機関用ピ
ストンの製造方法。
1. A plurality of piston ring grooves are formed on the outer periphery of a piston body made of an aluminum alloy material,
At least the inner peripheral wall of the top ring groove of the piston ring groove is formed of a composite member in which short carbon fibers and potassium titanate whiskers are combined, and the short carbon fibers account for 30 to 60% (volume) with respect to the entire composite member. %) In the method for producing a piston for an internal combustion engine, wherein the composite member preforms an annular shaped body composed of short carbon fibers and potassium titanate whiskers and oxidizes the shaped body. It is characterized in that it is heated under a condition of a predetermined heating temperature and a heating time in an atmosphere, and thereafter, the formed body is impregnated with a molten aluminum alloy material at the time of forming the piston body and integrally formed with the piston body. Manufacturing method of piston for internal combustion engine.
JP28960295A 1995-11-08 1995-11-08 Production of piston for internal combustion engine Pending JPH09122884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28960295A JPH09122884A (en) 1995-11-08 1995-11-08 Production of piston for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28960295A JPH09122884A (en) 1995-11-08 1995-11-08 Production of piston for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH09122884A true JPH09122884A (en) 1997-05-13

Family

ID=17745368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28960295A Pending JPH09122884A (en) 1995-11-08 1995-11-08 Production of piston for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH09122884A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260023A (en) * 2007-04-10 2008-10-30 Mitsui Mining & Smelting Co Ltd Method for producing metallic composite material, and member composed of the metallic composite material
CN112648104A (en) * 2020-12-07 2021-04-13 中国兵器科学研究院宁波分院 Whisker reinforced aluminum alloy piston and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260023A (en) * 2007-04-10 2008-10-30 Mitsui Mining & Smelting Co Ltd Method for producing metallic composite material, and member composed of the metallic composite material
CN112648104A (en) * 2020-12-07 2021-04-13 中国兵器科学研究院宁波分院 Whisker reinforced aluminum alloy piston and preparation method thereof
CN112648104B (en) * 2020-12-07 2022-07-19 中国兵器科学研究院宁波分院 Whisker reinforced aluminum alloy piston and preparation method thereof

Similar Documents

Publication Publication Date Title
US4852630A (en) Short fiber preform, method of making it, and composite material manufactured from it
JP5145046B2 (en) Method of making a piston for an internal combustion engine
US4708104A (en) Reinforced pistons
JP2994482B2 (en) Single cylinder or multiple cylinder block
JP3212245B2 (en) Casting method, casting apparatus and casting
JP3271737B2 (en) Porous mold material for casting and method for producing the same
JP3681354B2 (en) Metal matrix composite and piston using the same
JPH09122884A (en) Production of piston for internal combustion engine
JP2000225457A (en) Ceramic reinforced metallic compound material, and its manufacture
JPS63126661A (en) Production of piston
JP3126704B2 (en) Casting method for castings with composite materials cast
JPS60243239A (en) Manufacture of fiber reinforced composite material
JP3214657B2 (en) Piston for internal combustion engine and method of manufacturing the same
JPH0288730A (en) Ceramic whisker reinforced light alloy composite material and production thereof
JPH10288079A (en) Cylinder block and its casting method
JP3577748B2 (en) Metal-based composite and method for producing the same
JP2001123884A (en) Piston having adjusted mechanical characteristics
RU2052319C1 (en) Method of making mouth ring for glass molding machine
JP4258243B2 (en) Composite preform and method for producing sand mold provided with the same
RU2205970C2 (en) Piston of internal combustion engine and method of its manufacture
JPS60240854A (en) Piston for internal-combustion engine made of light metal
JPH07180606A (en) Fiber reinforced metal made piston
JPS60234763A (en) Production of piston
JPH11320075A (en) Molding for cylinder block and its production
KR0128359B1 (en) Manufacturing process of light-weight composite material brake