JPS60234763A - Production of piston - Google Patents

Production of piston

Info

Publication number
JPS60234763A
JPS60234763A JP59091505A JP9150584A JPS60234763A JP S60234763 A JPS60234763 A JP S60234763A JP 59091505 A JP59091505 A JP 59091505A JP 9150584 A JP9150584 A JP 9150584A JP S60234763 A JPS60234763 A JP S60234763A
Authority
JP
Japan
Prior art keywords
piston
composite material
base material
mold
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59091505A
Other languages
Japanese (ja)
Other versions
JPH0440105B2 (en
Inventor
Hiroshi Okamura
宏 岡村
Shigeru Tagami
田上 滋
Masaaki Kudo
工藤 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IZUMI JIDOSHA KOGYO KK
Izumi Automotive Industry Co
Mitsubishi Motors Corp
Original Assignee
IZUMI JIDOSHA KOGYO KK
Izumi Automotive Industry Co
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IZUMI JIDOSHA KOGYO KK, Izumi Automotive Industry Co, Mitsubishi Motors Corp filed Critical IZUMI JIDOSHA KOGYO KK
Priority to JP59091505A priority Critical patent/JPS60234763A/en
Publication of JPS60234763A publication Critical patent/JPS60234763A/en
Publication of JPH0440105B2 publication Critical patent/JPH0440105B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/0009Cylinders, pistons
    • B22D19/0027Cylinders, pistons pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0696W-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0015Multi-part pistons
    • F02F3/003Multi-part pistons the parts being connected by casting, brazing, welding or clamping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0085Materials for constructing engines or their parts
    • F02F7/0087Ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0603Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston at least part of the interior volume or the wall of the combustion space being made of material different from the surrounding piston part, e.g. combustion space formed within a ceramic part fixed to a metal piston head
    • F02B2023/0612Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston at least part of the interior volume or the wall of the combustion space being made of material different from the surrounding piston part, e.g. combustion space formed within a ceramic part fixed to a metal piston head the material having a high temperature and pressure resistance, e.g. ceramic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/16Fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To produce easily a piston consisting of a composite material having high quality by using a mat obtd. by molding ceramic fibers and metallic base metal to form a rough material consisting of the composite material having a simple shape and casting a molten metal into a casting mold thereby forming the molded composite material having the prescribed shape by which an anchor effect is induced. CONSTITUTION:The ceramic fibers (including whiskers) of alumina, silicon carbide, etc. are molded to manufacture the cylindrical mat 10 having the simple shape. Said mat is installed in the casting mold and the molten metallic base material such as aluminum alloy is poured into the mold to form the part 12 consisting of the metallic base material alone. The cylindrical rough material 14 is thus obtd. A part 20 forming part of the inside circumferential surface of a combination chamber 18 and a wedge-shaped anchor part 22 are suitably worked to such material 14 to form a mold composite material 24. Such material 24 is subjected to a cleaning treatment and is installed in the casting mold for the piston. The molten metal of the metallic base material is cast therein and the casting piston 16 is manufactured.

Description

【発明の詳細な説明】 本発明は、ピストン、特に内燃機関用ピストンの製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing pistons, particularly pistons for internal combustion engines.

高温、高圧の燃焼ガスに接しながら作動する内燃機関の
ピストンにおいて、その所望部分特にピストン冠部を、
アルミナ、炭化硅素等の無機質繊維(ウィスカを含む)
あるいは粉末にアルミニウム合金、マグネシウム合金、
鉄基合金等の金属基材を含浸させた複合材によって構成
することにより、耐熱衝撃性、耐摩耗性等を改善し得る
ことは、良く知られているところである。そして従来の
複合材ピストンの製造方法は、予め所要の形状に成形し
た上記無機質繊維の成形体即ちマ、・トを、直接ピスト
ンの鋳型内の所望位置に設置し、オートクレーブ法、冷
間焼結法、ホットプレス法、溶湯鍛造法等によシ金属基
材と複合化させ、複合材ピストンを得るものであった。
In the piston of an internal combustion engine that operates in contact with high-temperature, high-pressure combustion gas, the desired part, especially the piston crown,
Inorganic fibers such as alumina and silicon carbide (including whiskers)
Or powdered aluminum alloy, magnesium alloy,
It is well known that thermal shock resistance, abrasion resistance, etc. can be improved by constructing a composite material impregnated with a metal base material such as an iron-based alloy. Conventional methods for manufacturing composite pistons involve placing the above-mentioned inorganic fiber molded body, which has been pre-formed into a desired shape, directly into a desired position within a piston mold, and then using an autoclave method or a cold sintering method. A composite piston was obtained by compounding the piston with a metal base material by a method such as a hot pressing method, a hot pressing method, or a molten metal forging method.

しかしながら、上記製造方法では、無機質繊維をピスト
ンの所望部位において複雑な形状に均等に分配させ、均
質な従って安定した特性を有するピストンを得ることは
困難である。
However, with the above manufacturing method, it is difficult to uniformly distribute the inorganic fibers in a complicated shape in a desired region of the piston, and to obtain a piston that is homogeneous and therefore has stable characteristics.

本発明は、上述した従来の製造方法の欠点を改善するた
めに創案されたもので、アルミカ、炭化硅素等のセラミ
ηり繊維(ウィスカを含む)を成形したマットあるいは
セラミ、7り粉末にアルミニウム合金等の金属基材を溶
湯鍛造により含浸させる方法、セラミック繊維(あるい
は粉末)及び金属基材を高圧射出する方法又は金属粉末
と茎ラミ、7り繊維又は粉末とを混合し焼結する方法等
により単純形状の複合材粗材を作る工程と、上記複合材
粗材を鋳造後に碇留効果を生起しかつ鋳型に適合する形
状に加工して成形複合材を作る工程と、上記成形複合材
をピストン鋳型内に設置し金属基材を注湯して溶湯鍛造
を行ないピストンを鋳造する工程とを包含することを特
徴とするピストンの製造方法を要旨とするものである。
The present invention was devised to improve the drawbacks of the conventional manufacturing methods described above. A method of impregnating a metal base material such as an alloy by molten metal forging, a method of high-pressure injection of ceramic fibers (or powder) and a metal base material, a method of mixing and sintering a metal powder with a laminate, a 7-grip fiber, or a powder, etc. a step of producing a composite rough material with a simple shape; a step of producing a molded composite material by processing the composite material rough material into a shape that produces an anchoring effect and fits a mold after casting; The gist of the present invention is a method for manufacturing a piston, which includes the steps of placing the piston in a piston mold, pouring a metal base material, performing molten metal forging, and casting the piston.

以下本発明方法の実施例を添付図面について具体的に説
明する。本発明方法の実施に当っては、先ず第2図に示
すように、例えばアルミナ(直径数〜30μ、長さ数〜
100簡+アスペクト比10〜500以上2体積含有率
V、数〜30%) 、炭化硅素(直径005〜1μm、
長さ10〜500μm、アスペクト比10〜5002体
積含有率V、数〜30%)あるいはジルコニアファイバ
、窒化硅素ウィスカ等のセラミ1.り繊維(ウィスカを
含む)を成形して形状的に単純で均質性を得やすい円筒
状のマ、、、 ) 10を作り、これを対応する形状を
有する鋳型内に設置し、アルミニウム合金等の金属基材
の溶湯を注湯し、周知の溶湯鍛造法によって円筒状をな
す複合材の粗材14を製造する。第2図に示す円筒状粗
材14は、溶湯鍛造法により金属基材を含浸させたマ、
ソ) 10と金属基材単味の部分12とからなっている
。又他の例として、第3図に示すように、形状的に単純
な外周部分が中央部分よシやや厚い円板状のマ、、、 
) 10を上記同様の無機質繊維で成形し、同様の金属
基材を溶湯鍛造法によシ含浸させて、金属基材を含浸さ
せたマ、ノドと金属基粗 材単味の部分12とからなる円板状の複合体素材14を
得たものである。また、セラミ、ツク粉末とアルミニウ
ム合金等の金属基材を用い溶湯鍛造法床配 によって複合体素材14を製造してもよい。これ疼1 らの複合体素材14は、マ+ソ) 10が円筒或いは円
板のような極めて単純な形状をなしているので、その成
形も容易でら′す、又溶湯鍛造時に形くずれすることも
少ないので、出来上った製品としても素材も又極めて均
質で安定した品質を有するものである。(なおマ、、ト
即ち成形体それ自体は、良く知られているように、無機
繊維をフェルト状に層積したものが、最も一般的である
が、無機繊維の織布を一枚以上層積してもよいし、織布
と織布との間にフェルト状無機繊維を介在させたもので
もよい)なお、セラミック繊維又はウィスカ、セラミラ
フ粉末と金属基材と溶湯鍛造法による複合に限られず、
セラミック繊維又は粉末と金属基材とを高圧射出法によ
り複合し、あるいはセラミック繊維又は粉末と金属粉末
とを焼結する方法等に前日 次に、上述のようにして製造された複合体素材14は、
例えば第1図に示したピストン16の場合、燃焼室18
の内周面の一部を形成する部分20及び楔形碇留部22
を適宜の成形法例えば機械加工によって削成されて成形
複合材24に加工される。そして、必要に応じ脱脂等の
清浄化処理を行なったのち、別途準備されたピストンの
鋳型内に設置され、゛再び溶湯鍛造法によって金属基材
の溶湯が鋳込まれ製品としての鋳造ピストンが製造され
る。なお、溶湯鍛造法によってピストン16を鋳造する
工程において、成形複合材24を予熱(融点以下)して
おくことが肝要であり、これにより鋳着が容易かつ確実
になる利点がある。
Embodiments of the method of the present invention will be described in detail below with reference to the accompanying drawings. In carrying out the method of the present invention, first, as shown in FIG.
100 simple + aspect ratio 10-500 or more 2 volume content V, several to 30%), silicon carbide (diameter 005-1 μm,
length 10-500 μm, aspect ratio 10-5002, volume content V, several to 30%) or ceramics such as zirconia fibers and silicon nitride whiskers. The fibers (including whiskers) are molded to form a cylindrical matrix (...) 10 which is simple in shape and easy to obtain homogeneity, and placed in a mold with a corresponding shape. A cylindrical composite rough material 14 is produced by pouring a molten metal base material and using a well-known molten metal forging method. The cylindrical rough material 14 shown in FIG.
(g) 10 and a portion 12 made of a single metal base material. As another example, as shown in Fig. 3, there is a disk-shaped ma, which is simple in shape and has a slightly thicker outer circumferential portion than the central portion.
) 10 is molded with the same inorganic fiber as above, and is impregnated with the same metal base material by the molten metal forging method, and is made from a hole and a throat impregnated with the metal base material, and a portion 12 made of a single metal base material. A disk-shaped composite material 14 was obtained. Alternatively, the composite material 14 may be manufactured by a molten metal forging method using a metal base material such as ceramic, tsuku powder, and aluminum alloy. Since the composite material 14 of the present invention has an extremely simple shape such as a cylinder or a disk, it is easy to form it, and it also does not lose its shape during molten metal forging. As a result, both the finished product and the raw material are extremely homogeneous and of stable quality. (As is well known, the molded body itself is most commonly made of felt-like layers of inorganic fibers, but one or more layers of woven inorganic fibers are layered.) (or may have felt-like inorganic fibers interposed between woven fabrics), but is not limited to composites made by ceramic fibers, whiskers, ceramic rough powder, metal base material, and molten metal forging method. ,
The composite material 14 manufactured in the above manner is then subjected to a method such as combining ceramic fibers or powder and a metal base material by a high-pressure injection method or sintering ceramic fibers or powder and metal powder. ,
For example, in the case of the piston 16 shown in FIG.
A portion 20 forming a part of the inner circumferential surface of and a wedge-shaped anchor portion 22
The molded composite material 24 is processed into a molded composite material 24 by a suitable molding method such as machining. After performing cleaning treatments such as degreasing as necessary, it is placed in a separately prepared piston mold, and the molten metal base material is again cast using the molten metal forging method to produce the cast piston as a product. be done. In the process of casting the piston 16 by the molten metal forging method, it is important to preheat the molded composite material 24 (below its melting point), which has the advantage of making casting easier and more reliable.

上記最終鋳造工程において、溶湯鍛造法を採用すること
によって、成形複合材の表面に発生しやすい金属基材の
酸化皮膜等が効果的〈破壊され、成形複合材とその後に
鋳込まれた金属基材との境界面又は境界域での結合強度
が高−19、更に上記楔形碇留部22を設けることによ
って、両者の結合強度は一層強化されることが明らかで
ある。このようにして製造されたピストン16は、その
冠部における複合材部分の均質性が高く、所望の耐熱性
2機械的強度、耐摩耗性等優れた特性を有し、ばらつき
が少なく品質優良である。(なお、上8己燃焼室18の
内周面の一部を形成する部分2番は、ピストン全体の鋳
造後に機械加工によって削設してもよい。) 中に鎖線で示した楔形碇留部22aを、第3図の金属基
材単味部分12に削成したのち、第1図の場合と同様に
して、ピストン16を鋳造したものである。このピスト
ンにおいても、上述したと同様の高品質の製品が得られ
ることは明白である。
In the above final casting process, by adopting the molten metal forging method, the oxide film of the metal base material that tends to occur on the surface of the molded composite material is effectively destroyed. It is clear that the bonding strength at the interface or boundary area with the material is high -19, and by further providing the wedge-shaped anchoring portion 22, the bonding strength between the two is further strengthened. The piston 16 manufactured in this way has a high homogeneity of the composite material part in its crown, has excellent properties such as desired heat resistance, mechanical strength, and wear resistance, and is of excellent quality with little variation. be. (Note that part No. 2, which forms part of the inner circumferential surface of the upper self-combustion chamber 18, may be cut by machining after the entire piston is cast.) The wedge-shaped anchoring portion shown by the chain line inside. 22a is cut into the plain metal base portion 12 shown in FIG. 3, and then the piston 16 is cast in the same manner as in the case shown in FIG. It is clear that a high quality product similar to that described above can be obtained with this piston.

更に、第5図に示した本発明方法の実施例は、ピストン
16の冠部の外周部分のみにリング状の成形複合材24
を配置したものであって、碇留部22bが段状に形成さ
れた点で、第1図及び第4図のピストンとは異なるが、
その他は上述したピストンと実質的に同一であって、同
様の高品質製品を得ることができる。
Furthermore, the embodiment of the method of the present invention shown in FIG.
This piston differs from the pistons shown in FIGS. 1 and 4 in that the anchoring portion 22b is formed in a step-like manner.
Otherwise, it is substantially the same as the piston described above, and a similar high quality product can be obtained.

次に本発明方法によるピストンと従来構造によるぎスト
ンとの熱衝撃試験及び耐摩耗性比較試験結果を第6図及
び第7図に示す。第6図は熱衝撃試験結果を示すもので
、第8図に示す加熱冷却サイクル試験を行なうことによ
シ生じた亀裂数をサイクル数に応じて比較したものであ
り、従来構造のアルミニウム合金製ピストンAと較べて
本発明方法により炭化硅素、アルミニウム合金複合材を
使用したピストンBの方が亀裂数が著しく低減している
ことが明らかである。又第7図は、摺動距離570m、
摺動速度0.12 m/sec 、加圧力18.9kg
、相手材ボロン鋳鉄にて摩耗量を測定したもので、従来
構造のピストンAよシも本発明方法によるピストンBの
方が、摩耗量が極めて少ないことが明白である。
Next, the results of a thermal shock test and a wear resistance comparison test between a piston according to the method of the present invention and a piston having a conventional structure are shown in FIGS. 6 and 7. Figure 6 shows the results of the thermal shock test, and compares the number of cracks caused by the heating and cooling cycle test shown in Figure 8 according to the number of cycles. It is clear that compared to piston A, piston B, which uses a silicon carbide and aluminum alloy composite material by the method of the present invention, has a significantly reduced number of cracks. Also, Fig. 7 shows a sliding distance of 570 m,
Sliding speed 0.12 m/sec, pressing force 18.9 kg
, the amount of wear was measured using boron cast iron as a mating material, and it is clear that the amount of wear of piston B manufactured by the method of the present invention is extremely smaller than that of piston A having a conventional structure.

なお、第1図、第4図、第5図に示したピスト伺れもピ
ストンの冠部に複合材部分を設けた場合に関するもので
あるが、ピストンのその他の部分例えばピストンスカー
ト部に複合材部分を形成し、上記と同様の効果を奏し得
ることは明らかでちる。
Note that the piston openings shown in FIGS. 1, 4, and 5 relate to cases in which a composite material is provided in the crown of the piston, but other parts of the piston, such as the piston skirt, are provided with a composite material. It is obvious that the same effect as above can be achieved by forming a part.

叙上のように、本発明に係るピストンの製造方法は、ア
ルミナ・炭化硅素等のセラミ1.り繊維(ウィスカを含
む)を成形したマ、ットβるいはセラミック粉末にアル
ミニウム合金等の金属基材を溶湯鍛造により含浸させる
方法、セラミ1.り繊維(あるいは粉末)及び金属基材
を高圧射出する方法又は金属粉末とセラミ5.り繊維又
は粉末とを混合し焼結する方法等によシ単純形状の複合
材粗材を作る工程と、上記複合材粗材を鋳造後に碇留効
果を生起するしかつ鋳型に適合する形状に加工して成形
複合材を作る工程と、上記成形複合材をピストン鋳型内
に設置し金属基材を注湯して溶湯鍛造を行ないピストン
を鋳造する工程とを包含することを特徴とし、従来の製
造方法に較べて品質的にばらつきがなく、高品質の複合
材ピストンを容易に製造することができるので、極めて
有益である。
As mentioned above, the piston manufacturing method according to the present invention uses ceramics such as alumina and silicon carbide. Ceramic 1. A method of impregnating a metal base material such as an aluminum alloy into a matt beta or ceramic powder formed by molding fibers (including whiskers) with a metal base material such as an aluminum alloy by molten metal forging. 5. A method of high-pressure injection of fibers (or powder) and metal substrates or metal powders and ceramics. A process of making a simple-shaped composite material by mixing and sintering the composite material with fibers or powder, and shaping the composite material into a shape that produces an anchoring effect and fits the mold after casting. It is characterized by including the steps of processing to produce a molded composite material, and placing the molded composite material in a piston mold, pouring a metal base material, performing molten metal forging, and casting the piston. This method is extremely advantageous because it can easily manufacture high-quality composite pistons with no variation in quality compared to other manufacturing methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の第1実施例を示すピストン断面図
、第2図及び第3図は本発明方法の実施に際し使用する
複合材粗材の断面図、第4図及び第5図は、本発明方法
の第2及び第3実施例を示すピストン断面図、第6図は
本発明方法によるピストンの熱衝撃試験結果を示した線
図、第7図は本発明方法によるピストンの摩耗量を測定
した試験結果の線図、第8図は第6図の熱衝撃試験を実
施した際の加熱冷却サイクルのパターンを示す図面であ
る。 10・・・繊維成形体 16・・ピスト/14・・・−
複合材粗材 24・・・成形複合体第1図 牙2図 牙4図 第5図
FIG. 1 is a sectional view of a piston showing a first embodiment of the method of the present invention, FIGS. 2 and 3 are sectional views of a composite raw material used in carrying out the method of the present invention, and FIGS. 4 and 5 are , a sectional view of a piston showing the second and third embodiments of the method of the present invention, FIG. 6 is a diagram showing the results of a thermal shock test of a piston according to the method of the present invention, and FIG. 7 shows the amount of wear of a piston according to the method of the present invention. FIG. 8 is a diagram showing the test results of the measurement of . 10...Fiber molded body 16...Pist/14...-
Composite raw material 24... Molded composite Figure 1 Figure 2 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] アルミナ、炭化硅素等のセラミック繊維(ウィスカを含
む)を成形したマットあるいはセラミック粉末にアルミ
ニウム合金等の金属基材を溶湯鍛造によシ含浸させる方
法、セラミ、ツク繊維(あるいは粉末)及び金属基材を
高圧射出する方法又は金属粉末とセラミ、り繊維又は粉
末とを混合し焼結する方法等により単純形状の複合材粗
材を作る工程と、上記複合材粗材を鋳造後に碇留効果を
生起しかつ鋳型に適合する形状に加工して成形複合材を
作る工程と、上記成形複合材をぎストン鋳型内に設置し
金属基材を注湯して溶湯鍛造を行ないピストンを鋳造す
る工程とを包含することを特徴とするピスト/の製造方
法。
A method of impregnating a mat or ceramic powder made of ceramic fibers (including whiskers) such as alumina or silicon carbide with a metal base material such as aluminum alloy by molten metal forging, ceramic, Tsuku fiber (or powder), and metal base material A process of making a simple-shaped composite raw material by high-pressure injection or a method of mixing and sintering metal powder with ceramic, fiber, or powder, and creating an anchoring effect after casting the composite raw material. and a step of producing a molded composite material by processing it into a shape that fits the mold, and a step of placing the molded composite material in a piston mold, pouring a metal base material, and performing molten metal forging to cast a piston. A method for manufacturing a piston, comprising:
JP59091505A 1984-05-08 1984-05-08 Production of piston Granted JPS60234763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59091505A JPS60234763A (en) 1984-05-08 1984-05-08 Production of piston

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59091505A JPS60234763A (en) 1984-05-08 1984-05-08 Production of piston

Publications (2)

Publication Number Publication Date
JPS60234763A true JPS60234763A (en) 1985-11-21
JPH0440105B2 JPH0440105B2 (en) 1992-07-01

Family

ID=14028266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59091505A Granted JPS60234763A (en) 1984-05-08 1984-05-08 Production of piston

Country Status (1)

Country Link
JP (1) JPS60234763A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360634A (en) * 1988-12-05 1994-11-01 Adiabatics, Inc. Composition and methods for densifying refractory oxide coatings

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331014A (en) * 1976-09-01 1978-03-23 Mahle Gmbh Internal combustion engine pressed aluminium piston having different insert and method of manufacturing
JPS53124908U (en) * 1977-03-14 1978-10-04
JPS55103924A (en) * 1979-02-05 1980-08-08 Toyota Motor Corp Production of fiber-reinforced composite member
JPS5621505A (en) * 1979-07-30 1981-02-28 Toyo Noki Kk Supervising device of vacuum seeder
JPS56122659A (en) * 1980-02-28 1981-09-26 Aisin Seiki Co Ltd Production of ceramic insert piston
JPS5966964A (en) * 1982-10-12 1984-04-16 Toyota Motor Corp Production of piston for internal-combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331014A (en) * 1976-09-01 1978-03-23 Mahle Gmbh Internal combustion engine pressed aluminium piston having different insert and method of manufacturing
JPS53124908U (en) * 1977-03-14 1978-10-04
JPS55103924A (en) * 1979-02-05 1980-08-08 Toyota Motor Corp Production of fiber-reinforced composite member
JPS5621505A (en) * 1979-07-30 1981-02-28 Toyo Noki Kk Supervising device of vacuum seeder
JPS56122659A (en) * 1980-02-28 1981-09-26 Aisin Seiki Co Ltd Production of ceramic insert piston
JPS5966964A (en) * 1982-10-12 1984-04-16 Toyota Motor Corp Production of piston for internal-combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360634A (en) * 1988-12-05 1994-11-01 Adiabatics, Inc. Composition and methods for densifying refractory oxide coatings

Also Published As

Publication number Publication date
JPH0440105B2 (en) 1992-07-01

Similar Documents

Publication Publication Date Title
EP0143330A2 (en) Reinforced pistons
US4548126A (en) Piston with local inorganic fiber reinforcement and method of making the same
JP3705676B2 (en) Manufacturing method of piston for internal combustion engine
US6432557B2 (en) Metal matrix composite and piston using the same
JPWO2004087351A1 (en) Insulated plunger sleeve for die casting machine
US5097887A (en) Process of making a pressure-diecast, fiber-reinforced part
JPS60234763A (en) Production of piston
JPS6336958A (en) Improvement in manufacture of engineering component and improvement related to said improvement
JPS63126661A (en) Production of piston
JPH0650054B2 (en) Insulation structure of sub-chamber and its manufacturing method
EP0870919B1 (en) Piston for an internal combustion engine and a method for producing same
JP3156243B2 (en) Casting surface hardening method
JPS6221456A (en) Production of hollow casting
JPS60191654A (en) Piston for internal-combustion engine and production thereof
KR102541042B1 (en) Die casting using sintered material and die casting product manufactured therefrom
JP2890798B2 (en) Reentrant piston and method of manufacturing the same
JP3214657B2 (en) Piston for internal combustion engine and method of manufacturing the same
JPS60203353A (en) Production of cylinder for internal-combustion engine
JP2002130048A (en) Piston for internal combustion engine
JPS6245964A (en) Heat insulating piston and manufacture thereof
JPS62286660A (en) Composite member having excellent wear resistance and its production
JPS6411384B2 (en)
JPH0636978B2 (en) Manufacturing method of composite member
JPH07180606A (en) Fiber reinforced metal made piston
KR0128359B1 (en) Manufacturing process of light-weight composite material brake