JPH09122077A - Method of photographing optional part in direction of axis of eye to be inspected in ophthalmological camera - Google Patents

Method of photographing optional part in direction of axis of eye to be inspected in ophthalmological camera

Info

Publication number
JPH09122077A
JPH09122077A JP7306553A JP30655395A JPH09122077A JP H09122077 A JPH09122077 A JP H09122077A JP 7306553 A JP7306553 A JP 7306553A JP 30655395 A JP30655395 A JP 30655395A JP H09122077 A JPH09122077 A JP H09122077A
Authority
JP
Japan
Prior art keywords
eye
photographing
imaging
optical system
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7306553A
Other languages
Japanese (ja)
Inventor
Kuniomi Abe
国臣 阿部
Tatsuya Kasahara
達也 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KONAN KK
Original Assignee
KONAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KONAN KK filed Critical KONAN KK
Priority to JP7306553A priority Critical patent/JPH09122077A/en
Publication of JPH09122077A publication Critical patent/JPH09122077A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method which enables photographing of not only the epithelium and endothelium of a cornea and the top surface and rear surface of a lens but also a part therebetween optionally by allowing altering and setting of a part to be photographed in the direction of an eye axis in an ophthalmological camera in which a photographing system is moved in the direction of the eye axis after alignment to detect a photographing position for automatically photographing. SOLUTION: A photographing system 3 in which a slit luminous flux is projected to an eye to be inspected and reflected light from an eye part thereof is observed or photographed by a TV camera 8 from the direction at an angle to the axis 10 of illumination light is moved in the direction of the eye axis of the eye to be inspected. During the movement of the photographing system 3 in the direction of the eye axis, reflected light admitted sequentially into a photoreceptive element 30 for detecting position provided on the photographing system 3 is selected and used as position detection signal and a display on a menu is changed by operating a mouse 40 for the menu on a screen of a monitor 33 beforehand to select and set a part. The part thus obtained and an optional part on the eye axis further displaced from the part are photographed by light emitted from a strobe 13. Thus, expanded taken images of the parts are written into a frame memory 32 to be displayed on the monitor 33.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、被検眼の角膜
面、水晶体面、又は装着した眼内レンズ上面等、眼科撮
影装置における被検眼の眼軸上の任意部位を選択して撮
影するための撮影方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is for selecting and photographing an arbitrary region on the eye axis of an eye to be examined in an ophthalmologic photographing apparatus, such as a corneal surface of the eye to be examined, a crystalline lens surface, or an upper surface of an installed intraocular lens. Regarding shooting method.

【0002】[0002]

【従来の技術】コンタクトレンズの影響を見るためや、
白内障手術の術前術後の診療に角膜内皮細胞の状態を観
察する必要があり、従来から、被検者の眼球の角膜内皮
細胞の拡大観察乃至拡大写真撮影のため、被検者の眼球
面に対し顕微鏡の対物レンズを非接触型又は接触型とし
て、スリット照明光を眼軸に対し斜方向から被観察部に
向け照射し、角膜表面からの反射光と内皮細胞の像光線
とを分離して被検部の角膜内皮細胞をテレビカメラ等に
より撮影するようにした装置が用いられている。これ等
の装置では角膜内皮の観察・撮影はできても、角膜上皮
細胞の拡大観察・撮影はできないため、この点に着目し
て、本出願人は先に、特願平5−294177号(特開
平7−75624号)により、角膜内皮細胞は云うに及
ばず、被検眼に所定のコンタクトレンズを装着して撮影
することにより、従来困難視されていた角膜上皮細胞の
拡大像を容易に撮影することのできる角膜細胞撮影装置
の提案を行った。
2. Description of the Related Art To see the effects of contact lenses,
It is necessary to observe the state of corneal endothelium in pre- and post-treatment of cataract surgery, and conventionally, for the purpose of magnifying observation or taking a magnified photograph of corneal endothelial cells of the eyeball of the subject, the eyeball of the subject's eye On the other hand, the objective lens of the microscope is a non-contact type or a contact type, and slit illumination light is radiated toward the observation area obliquely to the eye axis to separate the reflected light from the corneal surface and the image light rays of the endothelial cells. There is used a device in which the corneal endothelial cells in the test area are photographed by a television camera or the like. With these devices, although the corneal endothelium can be observed and photographed, the corneal epithelial cells cannot be magnified and photographed. Therefore, the present applicant pays attention to this point, and the applicant previously filed Japanese Patent Application No. 5-294177 ( According to Japanese Patent Application Laid-Open No. 7-75624), not only corneal endothelial cells but also a corneal epithelial cell, which has been difficult in the past, can be easily photographed by wearing a predetermined contact lens on the eye to be photographed. We have proposed a corneal cell imaging device that can do this.

【0003】[0003]

【発明が解決しようとする課題】前記のごとく、単一装
置で角膜内皮細胞や角膜上皮細胞の拡大観察・撮影は可
能になったが、被検眼の眼軸方向の広い範囲から所望の
部位、すなわち角膜上皮、角膜内皮、水晶体上面、水晶
体後面などを自動的に選択撮影することができるものは
現状では存在していない。本発明はこのような実情に基
づいてなされたものであって、被検眼の眼軸方向の撮影
部位を任意に変更設定できるようにして前記角膜上皮、
角膜内皮、水晶体上面、水晶体後面や装着した眼内レン
ズ上面を撮影することができるのみならず、その間の部
位でも任意に撮影部位を設定して自動的に撮影すること
のできる眼科撮影装置における被検眼の眼軸方向の任意
部位の撮影方法を提供することを目的としている。
As described above, it has become possible to magnify and observe corneal endothelial cells or corneal epithelial cells with a single device, but a desired site can be selected from a wide range in the axial direction of the eye to be examined. That is, at present, there is no one that can automatically and selectively photograph the corneal epithelium, the corneal endothelium, the upper surface of the lens, the rear surface of the lens, and the like. The present invention has been made based on such a situation, the corneal epithelium, so that the imaging site in the axial direction of the eye to be examined can be arbitrarily changed and set,
Not only can images of the corneal endothelium, the upper surface of the crystalline lens, the posterior surface of the crystalline lens, and the upper surface of the attached intraocular lens be taken, but also in the area between them, it is possible to automatically set the imaging site and automatically capture images in the ophthalmic imaging device. It is an object of the present invention to provide a method for photographing an arbitrary part of the eye examination in the axial direction of the eye.

【0004】[0004]

【課題を解決するための手段】前記目的を達成するため
に、本発明の眼科撮影装置における被検眼の眼軸方向の
任意部位の撮影方法においては、被検眼にスリット光束
を投射する照明光学系と、被検眼の前記スリット光束に
よる照明部位の反射光による眼部像を投射光軸と角度を
持つ方向から観察・撮影するようにした観察撮影光学系
とからなる撮影系を被検眼の眼軸方向移動せしめ、該撮
影系が眼軸方向に移動中、前記観察撮影光学系に付設し
た位置検知用受光素子に順次入射する反射光を位置検出
信号として選択して使用し、被検眼の眼軸方向の任意部
位を撮影するという方法をとっている。
In order to achieve the above object, in an imaging method of an arbitrary portion of an eye to be inspected in an eye axis direction in an ophthalmologic imaging apparatus of the present invention, an illumination optical system for projecting a slit light beam on the eye to be inspected. And an observation and photographing optical system for observing and photographing an eye part image by reflected light of the illuminated part by the slit light flux of the eye to be examined from a direction having an angle with the projection optical axis. Direction, and while the photographing system is moving in the axial direction of the eye, the reflected light sequentially incident on the position detecting light receiving element attached to the observation and photographing optical system is selected and used as the position detection signal, and the eye axis of the eye to be inspected. The method is to take an image of an arbitrary part of the direction.

【0005】この際、撮影に先立ち、予め撮影系のX・
Y方向のアライメントを手動などで行っておいた後、前
記照明光学系により被検眼にスリット光束を投射し、前
記撮影系を眼軸方向に角膜頂点へ向けて移動つまり前進
せしめると、前記観察撮影光学系にその撮影位置を検知
せしめるべく付設した撮影画面と一定関係位置にある位
置検知用受光素子には、順次眼軸上の各眼部の反射光が
入射し信号の山ができ、信号が得られる。すなわち1番
目(1st) に角膜上面(上皮)、2番目(2nd) に角膜内
皮、3番目(3rd) に水晶体上面、4番目(4th) に水晶体
後面(図6参照)の信号が得られる。従って、之等の信
号を撮影系の位置検出信号として選択使用することによ
り、被検眼の眼軸方向の所望部位を撮影することができ
る。
At this time, prior to photographing, the X.
After manually performing alignment in the Y direction, a slit light beam is projected onto the eye to be inspected by the illumination optical system, and the imaging system is moved or advanced toward the corneal apex in the axial direction of the eye. The reflected light of each eye on the eye axis sequentially enters the signal receiving element for position detection, which is in a certain relation with the shooting screen attached to the optical system to detect the shooting position. can get. That is, signals of the upper surface of the cornea (epithelium) are obtained at the first (1st), the corneal endothelium at the second (2nd), the upper surface of the crystalline lens at the third (3rd), and the posterior surface of the crystalline lens at the fourth (4th) (see FIG. 6). Therefore, by selectively using these signals as the position detection signals of the imaging system, it is possible to image a desired part of the subject's eye in the axial direction of the eye.

【0006】前記照明光学系によりスリット光束を被検
眼に投射するに際し、投射光軸を眼軸方向に対し25°か
ら15°の間の角度に設定することは、水晶体の上面及び
後面を撮影するのに効果的である。その理由を次に述べ
る。図8には、水晶体を撮影するときの投射光及び反射
光の光路図が、照射角度を変化させて示されており、図
8(A) は撮影箇所が水晶体上面で、図8(b) は撮影箇所
が水晶体後面の場合を示す。また角膜2の背面で水晶体
42前面に位置する虹彩41中央の瞳孔径は明室で無散瞳状
態の約4mmの場合を示している。スリット光束の角度を
示した各投射光軸(10 °〜30°) は、それぞれ該光軸を
挾んだ所定巾の光束を有していることから、図8(B) か
ら明らかなように、無散瞳で水晶体42の後面を撮影する
には、照射角度が25°未満でなければ(例えば30°の場
合)投射光が虹彩41により邪魔されることが理解され
る。
When the slit optical flux is projected onto the subject's eye by the illumination optical system, the projection optical axis is set to an angle between 25 ° and 15 ° with respect to the eye axis direction so that the upper surface and the rear surface of the crystalline lens are photographed. It is effective for The reason will be described below. FIG. 8 shows optical paths of projected light and reflected light when photographing the crystalline lens, with the irradiation angle being changed. In FIG. 8 (A), the photographing position is the crystalline lens upper surface, and FIG. Indicates the case where the imaging location is on the rear surface of the crystalline lens. Also on the back of the cornea 2
42 The iris 41 located in front of the iris 41 has a central pupil diameter of about 4 mm in a bright room with non-mydriasis. Since each projection optical axis (10 ° to 30 °) indicating the angle of the slit luminous flux has a luminous flux of a predetermined width sandwiching the optical axis, as is clear from FIG. 8 (B). It is understood that, in order to image the rear surface of the lens 42 with a non-mydriasis, the projection light is obstructed by the iris 41 unless the irradiation angle is less than 25 ° (for example, 30 °).

【0007】また、スリット光束の投射光軸の角度が15
°未満になると、水晶体後面撮影時には水晶体後面から
の反射光が水晶体上面からの反射光に接近し〔図8(B)
参照〕,一方、水晶体上面撮影時には、水晶体上面から
の反射光が、角膜上皮からの反射光に接近し、且つ水晶
体後面からの反射光の影響を受け〔図8(A) 参照〕、各
光束は巾を有していることから、これら水晶体面撮影時
には被検部(撮影部)からの反射光が邪魔される。従っ
て、水晶体42の前面及び後面等水晶体面の撮影は、スリ
ット光の投射光軸を眼軸方向に対し25°から15°の間に
設定することにより、明室で無散瞳で良好に観察撮影す
ることができ、このことは実験とよく合致し確認するこ
とができた。
Further, the angle of the projection light axis of the slit light beam is 15
When the angle is less than °, the reflected light from the rear surface of the lens approaches the reflected light from the upper surface of the lens when photographing the rear surface of the lens [Fig. 8 (B)].
On the other hand, when photographing the upper surface of the crystalline lens, the reflected light from the upper surface of the crystalline lens approaches the reflected light from the corneal epithelium and is affected by the reflected light from the posterior surface of the crystalline lens (see FIG. 8 (A)). Since it has a width, the reflected light from the inspected part (imaging part) is obstructed during imaging of the lens surface. Therefore, when photographing the lens surface such as the front surface and the back surface of the lens 42, by setting the projection optical axis of the slit light between 25 ° and 15 ° with respect to the eye axis direction, it is possible to satisfactorily observe with a non-mydriatic pupil in a bright room. It was possible to take a picture, which was in good agreement with the experiment and could be confirmed.

【0008】また、前記選択した撮影系の位置検出信号
(これは観察撮影光学系の位置検出信号に該当)と、こ
れを起点として検出した前記観察撮影光学系の眼軸方向
の変位置とを組合せて、前記観察撮影光学系の撮影位置
を検出して撮影することは、前記選択した角膜面や水晶
体面以外の眼軸上のどの場所でも撮影することができ
る。
Further, the position detection signal of the selected photographing system (this corresponds to the position detection signal of the observation and photographing optical system) and the displacement position in the eye axis direction of the observation and photographing optical system detected by using this as a starting point. In combination, by detecting the photographing position of the observation photographing optical system and photographing, it is possible to photograph anywhere on the eye axis other than the selected corneal surface or crystalline lens surface.

【0009】この場合、前記観察撮影光学系に、眼軸方
向の移動量を連続的に検出する移動量検出手段(エンコ
ーダー等)を設け、この移動量検出手段により、前記観
察撮影光学系の眼軸方向の変位置を検出して撮影するの
が有利である。図7には、エンコーダーを使用し該エン
コーダーからのパルスをカウントして第1の検出位置で
ある選択した上皮撮影位置より眼軸方向に撮影系を前進
せしめた移動量を検出して撮影するときの一例が示され
ているが、この選択位置は何処でもよく、例えば水晶体
上面位置よりの移動量を検出して水晶体内の任意位置の
撮影を行うことができる。
In this case, the observation / photographing optical system is provided with a movement amount detecting means (encoder or the like) for continuously detecting the movement amount in the axial direction of the eye. It is advantageous to detect the axial displacement and take a picture. FIG. 7 shows a case in which an encoder is used to count the pulses from the encoder and detect the amount of movement that advances the imaging system in the axial direction from the selected epithelial imaging position, which is the first detection position, for imaging. However, the selected position may be anywhere, and for example, the amount of movement from the upper surface of the crystalline lens can be detected to photograph an arbitrary position inside the crystalline lens.

【0010】前記観察撮影光学系の前記検出した眼軸方
向の変位置は、あらかじめ設定した複数個の変位置から
選択設定するようにすると、被検眼の眼軸方向の任意部
位の選択撮影をすみやかに行うことができ、該任意部位
の撮影効率を上げることができる。
If the detected variable position of the observation / photographing optical system in the axial direction is selected and set from a plurality of preset variable positions, the selective photographing of an arbitrary part of the eye to be examined in the axial direction is promptly performed. It is possible to improve the imaging efficiency of the arbitrary part.

【0011】一方、前記位置検知用受光素子による検出
位置と、観察撮影光学系による結像位置との相対関係を
光学的にずらして撮影する方法もとることができる。此
の場合、スリット光による被検眼からの被検眼部の像光
線をミラーによって分離した位置検知用受光素子への光
路と、撮影画面への光路との相対関係を、共役関係より
光学的に変え、位置検出信号を検出したときの観察撮影
光学系の結像位置を眼軸方向に変位せしめることによ
り、位置検知用受光素子に眼軸上の各部の反射光が入射
したとき、撮影画面に何を結像させるかを変えることが
できる。
On the other hand, it is possible to use a method in which the relative position between the detection position of the position detecting light receiving element and the image forming position of the observation / photographing optical system is optically shifted to perform photographing. In this case, the relative relationship between the optical path to the position detection light receiving element where the image light of the eye to be inspected from the eye to be inspected by the slit light is separated by the mirror and the optical path to the photographing screen is optically determined from the conjugate relationship. By changing the image forming position of the observation / photographing optical system when the position detection signal is detected in the eye axis direction, when the reflected light of each part on the eye axis enters the position detecting light receiving element, You can change what is imaged.

【0012】[0012]

【発明の実施の形態】本発明の眼科撮影装置における被
検眼の眼軸方向の任意部位の撮影方法は、被検眼にスリ
ット光束を投射する照明光学系と、被検眼の前記スリッ
ト光束による照明部位の反射光による眼部像を投射光軸
と角度を持つ方向から観察・撮影するようにした観察撮
影光学系とからなる撮影系を眼軸方向に移動せしめて、
該撮影系が眼軸方向に移動中、前記観察撮影光学系に付
設したPSD等の受光素子に入射する反射光の信号を用
いて被検部を撮影するようにした眼科撮影装置に用いら
れるが、次に該撮影方法の実施の形態を添付の図面に基
づいて説明する。図1は、本発明方法の実施の形態を示
す光路図で、図2は該実施の形態の電気回路のブロック
図である。
BEST MODE FOR CARRYING OUT THE INVENTION A method for photographing an arbitrary portion of an eye to be inspected in an ophthalmic photographing apparatus according to the present invention includes an illumination optical system for projecting a slit light beam on the eye to be inspected, and an illumination portion of the eye to be inspected by the slit light beam. Move the imaging system consisting of the observation and imaging optical system that observes and shoots the eye part image by the reflected light from the direction that has an angle with the projection optical axis,
It is used in an ophthalmologic imaging apparatus configured to image a subject by using a signal of reflected light incident on a light receiving element such as PSD attached to the observation and imaging optical system while the imaging system is moving in the axial direction of the eye. Next, an embodiment of the photographing method will be described with reference to the accompanying drawings. FIG. 1 is an optical path diagram showing an embodiment of the method of the present invention, and FIG. 2 is a block diagram of an electric circuit of the embodiment.

【0013】図1において、被検眼1の眼球面2にスリ
ット光束を投射する照明光学系と、被検眼に向け撮影光
軸位置合わせのためのアライメント用指標光を投影して
その被検眼部からの反射光を前眼部像とともにテレビカ
メラ8で撮像するようにした前眼部観察光学系を備える
とともに、眼球面に投射したスリット投射光に基づき前
記前眼部観察光学系と別光路を介して前記テレビカメラ
8により被検眼部の拡大観察乃至拡大写真撮影を行う拡
大撮影光学系を備えた観察撮影光学系とからなる撮影系
3が示されており、該撮影系3は前眼部観察光学系の光
軸4に直交する紙面に垂直なXY方向及び紙面の上下方
向であるY方向とは手動により移動可能になっており、
観察光学系光軸4の方向であるZ方向に後述するZ軸駆
動機構によって移動させられる。
In FIG. 1, an illumination optical system for projecting a slit light beam onto an eye spherical surface 2 of an eye to be inspected 1 and an index light for alignment for aligning a photographing optical axis toward the eye to be inspected and the eye to be inspected portion thereof. The anterior ocular segment observation optical system configured to capture the reflected light from the anterior ocular segment image together with the anterior ocular segment image with the anterior ocular segment observation optical system based on the slit projection light projected on the ocular spherical surface. Through the television camera 8, there is shown a photographing system 3 including an observation photographing optical system having a magnifying photographing optical system for performing magnifying observation or photographing of a subject's eye, and the photographing system 3 is an anterior eye. The XY direction perpendicular to the paper surface orthogonal to the optical axis 4 of the partial observation optical system and the Y direction which is the vertical direction of the paper surface can be manually moved.
It is moved in the Z direction, which is the direction of the optical axis 4 of the observation optical system, by a Z axis drive mechanism described later.

【0014】眼球面2の被検部の照明光源として、前記
観察撮影光学系による撮影位置検出時に用いる照明ラン
プ11と、被検部細胞の拡大写真撮影時に用いるストロボ
放電管13とが、照明ランプ11の発する光の集光レンズ12
による集束位置とストロボ放電管13の発する光の集光レ
ンズ14による集束位置とが同一位置になるように、照明
ランプ11の光は可視光透過・赤外光反射ミラー15により
その赤外光が反射される一方、ストロボ放電管13の光
(可視光は)は、該ミラー15を通過してそれぞれスリッ
ト16の位置に集束するように配置されている。この場
合、必要に応じて照明ランプ11と該可視光透過・赤外光
反射ミラー15との間の光路に可視光カットフィルターを
挿入し、ストロボ放電管13と集光レンズ14との間の光路
に赤外光カットフィルターを挿入する。スリット16を通
過した光は投影レンズ17を通して被検者の眼球1の角膜
2乃至水晶体を斜方向から、撮影系3の撮影位置検出時
には照明ランプ11による照明光により、また撮影時には
ストロボ光により、眼軸4に対して所定角度で投射する
ようになっている。
As an illumination light source for the portion to be inspected of the eye spherical surface 2, an illumination lamp 11 used for detecting a photographing position by the observation and photographing optical system and a strobe discharge tube 13 used for photographing a magnified photograph of cells in the portion to be inspected are illumination lamps. Condensing lens 12 for the light emitted by 11
The light of the illumination lamp 11 is converted by the visible light transmitting / infrared light reflecting mirror 15 so that the infrared light of the illumination lamp 11 becomes While being reflected, the light (visible light) of the stroboscopic discharge tube 13 is arranged so as to pass through the mirror 15 and be focused at the position of each slit 16. In this case, a visible light cut filter is inserted in the optical path between the illumination lamp 11 and the visible light transmitting / infrared light reflecting mirror 15 as needed, and the optical path between the strobe discharge tube 13 and the condenser lens 14 is inserted. Insert an infrared light cut filter into. The light that has passed through the slit 16 passes through the projection lens 17 through the cornea 2 or the crystalline lens of the subject's eyeball 1 from the oblique direction, by the illumination light from the illumination lamp 11 when the photographing position of the photographing system 3 is detected, and by the strobe light when photographing. The projection is performed at a predetermined angle with respect to the eye axis 4.

【0015】撮影系3のアライメントをするべく前眼部
を観察するための光学系では、眼軸上に位置すべき前眼
部観察光学系光軸4上に、前方より順次所定位置にビー
ムスプリッター5、前眼部撮影レンズ6、及び該光軸4
と45°交叉した赤外光透過・可視光反射ミラー7が配設
されて、前眼部撮影レンズ6により後方のテレビカメラ
8前面のCCD受光面9に前眼部像が結像するととも
に、後述する撮影系光軸合わせ(アライメント)のため
の近赤外光が投影結像するようになっている。
In the optical system for observing the anterior segment of the eye for aligning the photographing system 3, the beam splitter is sequentially located at a predetermined position from the front on the optical axis 4 of the anterior segment observing optical system which should be located on the eye axis. 5, anterior ocular segment photographing lens 6, and the optical axis 4
Infrared light transmitting / visible light reflecting mirror 7 intersecting with 45 ° is arranged, and an anterior eye image is formed on CCD light receiving surface 9 in front of television camera 8 behind by anterior eye part photographing lens 6, Near-infrared light for optical axis alignment (alignment) of a photographing system described later is projected and imaged.

【0016】また、前記照明光学系の投射光軸10と前記
前眼部観察光学系光軸4を挾んで反対側には、眼球部に
対する照明ランプ11又はストロボ放電管13による斜のス
リット状照明光線の反射光を受けて被観察部の眼部細胞
を拡大観察乃至拡大写真撮影する一方、撮影系3の撮影
位置合わせをするための拡大撮影光学系が設けられ、被
検部の拡大撮影像が前記テレビカメラ8前面のCCD受
光面9に結像するとともに、後述する位置検知用受光素
子(PSD)30 上に結像するようになっている。すなわち、
前眼部観察光学系の光軸4を挾んで照明光学系の投射光
軸10と対称位置にある光軸18上の所定位置に、眼球面側
に対物レンズ19が、また該対物レンズ19から所定距離を
おいてミラー20が、該光軸18と所定角度交叉して眼球部
からの前記投射光の反射光による像光線を前記前眼部観
察光学系光軸4上の所定位置に直交するように折曲げる
べく配置され、ミラー20により反射した像光線は視野絞
り21及び結像レンズ22を通って前記観察光学系光軸4と
45°交叉した赤外光透過・可視光反射ミラー7により拡
大像光線のうちストロボ光による可視光は全反射して、
テレビカメラ8のCCD受光面9上に被観察面の眼部細
胞の拡大撮影像として結像するとともに、拡大像光線の
うち赤外光は該赤外光透過・可視光反射ミラー7を通過
して後述する位置検知用受光素子(PSD) 30上に結像され
る。
On the opposite side of the projection optical axis 10 of the illumination optical system and the optical axis 4 of the anterior ocular segment observation optical system, oblique illumination of the illumination lamp 11 or strobe discharge tube 13 for the eyeball portion is performed. A magnified photographing optical system for aligning the photographing position of the photographing system 3 is provided while magnifying observation or magnifying photography of eye cells of the examined portion by receiving reflected light of a light beam, and magnified photographed image of the examined portion. Is imaged on the CCD light receiving surface 9 on the front surface of the television camera 8 and also on the position detecting light receiving element (PSD) 30 described later. That is,
An objective lens 19 on the eyeball side, and from the objective lens 19 at a predetermined position on an optical axis 18 that is symmetrical to the projection optical axis 10 of the illumination optical system while sandwiching the optical axis 4 of the anterior segment observation optical system. The mirror 20 intersects with the optical axis 18 at a predetermined distance and crosses the image ray of the reflected light of the projection light from the eyeball portion at a predetermined position on the optical axis 4 of the anterior ocular segment observation optical system. The image light beam, which is arranged so as to be bent as described above, is reflected by the mirror 20 and passes through the field stop 21 and the imaging lens 22 to form the optical axis 4 of the observation optical system.
The visible light from the strobe light in the magnified image light is totally reflected by the infrared light transmitting / visible light reflecting mirror 7 intersecting at 45 °,
An image is formed on the CCD light receiving surface 9 of the television camera 8 as a magnified photographed image of eye cells on the surface to be observed, and infrared light of the magnified image light beam passes through the infrared light transmitting / visible light reflecting mirror 7. An image is formed on a position detecting light receiving element (PSD) 30 which will be described later.

【0017】一方、前眼部観察光学系には、前記前眼部
観察光学系光軸4上のビームスプリッター5に対し該光
軸4と直角方向の側方から、被検者に対して固視標を提
示するための固視標光と、眼軸と前記光軸4とを合致せ
しめるためのアライメント光である近赤外光とを入射し
て、これら光線を該前眼部観察光学系光軸4上を進行せ
しめて眼球面2に入射せしめるようになっている。すな
わち、前眼部観察光学系の側方の所定位置にアライメン
ト光である近赤外光の発光ダイオード23と固視標光であ
る明滅可視光の発光ダイオード24とが、それぞれの光線
の光軸が前記観察光学系の光軸4と平行になるように配
設され、近赤外光発光ダイオード23からの近赤外光は集
光レンズ25、ミラー26、近赤外光反射・可視光透過ミラ
ー27、ミラー28、集光レンズ29を通ってビームスプリッ
ター5内の反射面で反射されて前眼部観察光学系光軸4
上を眼球面に入射するようになっているとともに、明滅
可視光の発光ダイオード24からの明滅可視光は前記近赤
外光反射・可視光透過ミラー27を通過し、前記近赤外光
と同じくミラー28、集光レンズ29、ビームスプリッター
5を経て前眼部観察光学系光軸4上を進行し眼球面2に
入射するようになっている。
On the other hand, in the anterior segment observation optical system, the anterior segment observation optical system is fixed to the subject from the side of the beam splitter 5 on the optical axis 4 in a direction perpendicular to the optical axis 4. A fixation target light for presenting a target and a near-infrared light which is an alignment light for matching the eye axis and the optical axis 4 are made incident, and these rays are directed to the anterior segment observation optical system. It is adapted to travel on the optical axis 4 and enter the eye spherical surface 2. That is, the light-emitting diode 23 of near-infrared light that is alignment light and the light-emitting diode 24 of blinking visible light that is fixation target light at the predetermined positions on the side of the anterior ocular segment observation optical system are the optical axes of the respective rays. Is arranged so as to be parallel to the optical axis 4 of the observation optical system, and the near-infrared light from the near-infrared light-emitting diode 23 is condensed by a condenser lens 25, a mirror 26, near-infrared light reflection / visible light transmission. After passing through the mirror 27, the mirror 28, and the condenser lens 29, the light is reflected by the reflecting surface in the beam splitter 5, and the anterior ocular segment observation optical system optical axis 4
It is designed to be incident on the upper surface of the eye, and blinking visible light from the light emitting diode 24 of blinking visible light passes through the near infrared light reflecting / visible light transmitting mirror 27 and is similar to the near infrared light. After passing through the mirror 28, the condenser lens 29, and the beam splitter 5, the light travels on the optical axis 4 of the anterior ocular segment observation optical system and enters the eye spherical surface 2.

【0018】また、前記拡大撮影光学系の光軸18がミラ
ー20で折曲げられて前記前眼部観察光学系光軸4と直交
する光軸上で、前記テレビカメラ8のCCD受光面9
と、前記前眼部観察光学系光軸4に45°交叉して配設さ
れた前記赤外光透過・可視光反射ミラー7の反射面に関
して共役位置に、前記スリット投射光に基づく被検眼部
の撮影位置を検知するために位置検知用受光素子(PSD)
30が配設されており、前記照明光学系と、前記アライメ
ント用指標光の近赤外光と固視標の可視光を被検眼に投
影する手段を設けた前記前眼部観察光学系と前記拡大撮
影光学系を備えた観察撮影光学系とからなる撮影系3
が、被検眼方向に前進するとき、前記拡大撮影光学系に
よる、角膜上皮、角膜内皮、水晶体上面、水晶体後面の
撮影位置を順次検出するようになっている。
The optical axis 18 of the magnifying and photographing optical system is bent by a mirror 20 so that the CCD light receiving surface 9 of the television camera 8 is located on the optical axis orthogonal to the optical axis 4 of the anterior ocular segment observation optical system.
And an eye to be inspected based on the slit projection light at a conjugate position with respect to the reflection surface of the infrared light transmitting / visible light reflecting mirror 7 arranged to intersect the optical axis 4 of the anterior segment observation optical system by 45 °. Position-sensing light-receiving element (PSD) to detect the shooting position
30 is provided, the illumination optical system, the near-infrared light of the alignment index light and the anterior ocular segment observation optical system provided with means for projecting visible light of the fixation target to the eye to be examined and the Imaging system 3 including observation and imaging optical system with magnifying imaging optical system
However, when moving forward in the direction of the subject's eye, the magnifying photographing optical system sequentially detects the photographing positions of the corneal epithelium, the corneal endothelium, the upper surface of the crystalline lens, and the posterior surface of the crystalline lens.

【0019】そして、テレビカメラ8の結像面であるC
CD受光面9で結像した画像により得られた受像信号
は、図2のブロック図に示す画像入出力制御回路31に入
力する。次に該制御回路31からの映像信号を受けたモニ
タ表示器33の画面に光軸位置合わせ(アライメント)時
には、前眼部像とともに眼球面2からのアライメント用
の近赤外光の反射光による光点が表示され、後述する被
検眼部選択のモード設定後手動により撮影系3をX・Y
方向に動かして被検眼に対し光軸合わせするときのアラ
イメント状況を確認できるようになっている。
C, which is the image plane of the television camera 8,
The image receiving signal obtained from the image formed on the CD light receiving surface 9 is input to the image input / output control circuit 31 shown in the block diagram of FIG. Next, at the time of optical axis alignment (alignment) on the screen of the monitor display 33 which receives the video signal from the control circuit 31, the reflected light of the near-infrared light for alignment from the eye spherical surface 2 together with the anterior segment image. The light spot is displayed, and the imaging system 3 is manually operated in X and Y after the mode for selecting the eye to be inspected, which will be described later, is set.
It is possible to check the alignment status when the optical axis is aligned with the eye to be inspected by moving in the direction.

【0020】被検部の撮影に際しては、後述する被検部
の撮影モードを設定した後、撮影系3のアライメントを
行い撮影を行う。すなわち、検者であるドクターが、ア
ライメントを確認した後、画像入出力制御回路31に接続
された図示せざる制御盤の撮影ボタンを押すことによ
り、画像入出力制御回路31から電気信号をZ方向位置制
御回路34に入力し、該Z方向位置制御回路34からの駆動
信号でZ軸駆動機構36を作動せしめ、撮影系3、具体的
には撮影系3を搭載した架台を当初の待機位置より被検
眼の眼球面2に向け前進を開始せしめる。この前進開始
と同時に照明ランプ11を点灯して眼球面2に向け前進を
開始せしめる。この前進開始と同時に照明ランプ11を点
灯して眼球面2に向け赤外スリット光を投射し、拡大撮
影光学系による被検眼部の撮影を開始せしめる。
When the subject is photographed, a photographing mode of the subject to be described later is set, and then the photographing system 3 is aligned to perform photographing. That is, after checking the alignment, the doctor who is the examiner presses the photographing button of the control panel (not shown) connected to the image input / output control circuit 31 to send an electric signal from the image input / output control circuit 31 in the Z direction. The Z-axis drive mechanism 36 is operated by a drive signal from the Z direction position control circuit 34 by inputting it to the position control circuit 34, and the photographic system 3, specifically, the gantry on which the photographic system 3 is mounted is moved from the initial standby position. The forward movement is started toward the eye spherical surface 2 of the eye to be inspected. Simultaneously with the start of the forward movement, the illumination lamp 11 is turned on to start the forward movement toward the eye spherical surface 2. Simultaneously with the start of the forward movement, the illumination lamp 11 is turned on to project the infrared slit light toward the spherical surface 2 of the eye, and the photographing of the eye to be examined by the magnifying photographing optical system is started.

【0021】一方、モニタ表示器33には、マウス40が接
続されており、撮影前に該マウス40を操作してモニタ画
面の一隅(例えばモニタ画面の右下)にあるメニュー43
(図5参照)で撮影部位を選択できるようになってい
る。すなわち、該メニュー43は所定の矩形の分割した区
画内に、「AUTO」の文字と2つの小三角形の表示
「△」と「▽」とが表示されており、マウス40を操作
し、モニタ画面上の矢印等のアイコンをメニュー表示上
に移動させ、その位置でマウスボタンをONしてクリッ
クすることにより撮影位置を任意に選ぶことができる。
この実施の形態では、「AUTO」を選ぶと文字「AU
TO」は2に変り、さらにクリックを続けるとクリック
の度に文字は〔2〕→〔3〕→〔4〕→〔1〕→〔2〕
と順次変化し、〔1〕では角膜上面(上皮)が、〔2〕
では角膜内皮が、〔3〕では水晶体上面が〔4〕では水
晶後面が選択され、撮影モードが設定できるようになっ
ている。
On the other hand, a mouse 40 is connected to the monitor display 33, and the mouse 43 is operated before photographing to operate the menu 43 at one corner of the monitor screen (for example, the lower right of the monitor screen).
(See FIG. 5), the imaging region can be selected. That is, in the menu 43, the characters "AUTO" and the two small triangles "△" and "▽" are displayed in a predetermined rectangular division, and the mouse 40 is operated to display the monitor screen. The shooting position can be arbitrarily selected by moving the icon such as the arrow on the menu display and turning on the mouse button at that position and clicking.
In this embodiment, when "AUTO" is selected, the character "AU" is selected.
"TO" changes to 2, and if you continue clicking, the character will be [2] → [3] → [4] → [1] → [2] with each click.
The upper surface of the cornea (epithelium) in [1] becomes [2]
The corneal endothelium is selected, the crystalline upper surface is selected in [3], and the crystalline posterior surface is selected in [4], so that the photographing mode can be set.

【0022】一方、前記選択した部位以外の任意部位を
撮影する場合は、前記小三角形の表示「△」又は「▽」
を選びクリックすると文字「AUTO」は3桁数字にな
り、クリック後ボタンをホールドすることにより「△」
のときは000 →256 と変化し、「▽」のときは256 →00
0 と変化し、ボタンを開放すると数字は止まるようにな
っており、メニュー43上で設定停止しせしめた数字分、
角膜上面よりカウントした位置を撮影位置として設定で
きるようになっている。なお、この場合、この実施の態
様では角膜上面検知が確実なことから角膜上面をカウン
トの始点としているが、他の部位検知をカウントの始点
に用いてもよい。このときは、メニューの「AUTO」
表示を希望の部位の表示、例えば水晶体上面の〔3〕に
することにより、水晶体上面をカウントの始点として変
位置を設定することができる。これにより眼軸上のどの
部位でも撮影モードを設定できる。
On the other hand, when photographing an arbitrary part other than the selected part, the small triangle display "△" or "▽" is displayed.
When you select and click, the character "AUTO" becomes a three-digit number, and after clicking, hold the button to display "△".
When it is, it changes from 000 to 256, and when it is "▽", it is 256 to 00
It changes to 0, and when you release the button, the number will stop, and the number you stopped setting on menu 43,
The position counted from the upper surface of the cornea can be set as the photographing position. In this case, in this embodiment, the upper surface of the cornea is used as the starting point of counting because detection of the upper surface of the cornea is reliable. However, other site detection may be used as the starting point of counting. At this time, the menu "AUTO"
By changing the display to a display of a desired portion, for example, [3] on the upper surface of the crystalline lens, the variable position can be set with the upper surface of the crystalline lens as the starting point of counting. Thus, the photographing mode can be set at any part on the eye axis.

【0023】前記のごとくして撮影モード設定後、撮影
形3のアライメントを行った後撮影ボタンを押して撮影
形3を被検眼方向に前進せしめ撮影を行う。このとき、
撮影形3が被検眼1方向に前進するに伴い、被検眼1の
眼軸上の各眼部からの反射光による拡大像光線(赤外
線)が、拡大撮影光学形の光路を経て前記位置検知用受
光素子30に順次入光し、該受光素子30からの受光信号が
スリット光反射検出回路37に入力して、角膜上面(上
皮)による第1合焦位置検出、角膜内皮による第2合焦
位置検出、水晶体上面による第3合焦位置検出、水晶体
後面による第4合焦位置検出が順次行われる。すなわ
ち、位置検知用受光素子30に前記の順でできた信号の山
から眼軸上の各眼部の検出が行われる。このとき、前記
マウス40のメニュー43上での選択操作により画像入出力
制御回路31を介してスリット光反射検出回路37に設定さ
れた撮影部位を検出したスリット光反射検出回路37から
の信号がZ方向位置制御回路34に入力してZ軸駆動機構
36が撮影形3の移動を停止せしめる。
After the photographing mode is set as described above, the photographing form 3 is aligned and then the photographing button is pressed to move the photographing form 3 toward the eye to be photographed. At this time,
As the imaging form 3 advances in the direction of the eye 1 to be inspected, the magnified image light beam (infrared ray) due to the reflected light from each eye part on the eye axis of the eye 1 to be inspected is passed through the optical path of the magnifying imaging optical type to detect the position. Light is sequentially input to the light receiving element 30, and a light reception signal from the light receiving element 30 is input to the slit light reflection detection circuit 37 to detect the first focus position by the upper surface of the cornea (epithelium) and the second focus position by the corneal endothelium. The detection, the third focus position detection by the upper surface of the crystalline lens, and the fourth focus position detection by the rear surface of the crystalline lens are sequentially performed. That is, each eye part on the eye axis is detected from the peak of the signal generated by the position detection light receiving element 30 in the above order. At this time, the signal from the slit light reflection detection circuit 37 which detects the imaging region set in the slit light reflection detection circuit 37 via the image input / output control circuit 31 by the selection operation on the menu 43 of the mouse 40 is Z. Input to the directional position control circuit 34 to input the Z-axis drive mechanism.
36 stops the movement of shooting form 3.

【0024】この撮影形3の移動停止と同時に、スリッ
ト光反射検出回路37からの信号でストロボ発光制御回路
37が作動してストロボ放電管13が発光し(このとき近赤
外光発光ダイオード23はアライメントを終り消灯してい
る)、被検眼部からの反射光が拡大撮影光学系の光路を
経て被検眼部の拡大像がテレビカメラ8の受光面に結像
し、テレビカメラ8からの被検眼部の細胞拡大像の映像
信号は、画像入出力制御回路31よりフレームメモリ32に
書き込まれる一方、モニタ表示器33に該拡大像が表示さ
れる。また、このようにして自動的に撮影された被検眼
部の細胞拡大像はフレームメモリ32から必要に応じ画像
入出力制御回路31で読み出して、ビデオプリンタ35から
打ち出すことができ、被検眼の選択した眼部細胞拡大像
の画像プリント(撮影写真)をカルテにつけることがで
きる。
At the same time as the movement of the photographing type 3 is stopped, a strobe light emission control circuit is generated by a signal from the slit light reflection detection circuit 37.
37 is activated and the strobe discharge tube 13 emits light (at this time, the near-infrared light emitting diode 23 has finished alignment, and is turned off), and the reflected light from the subject's eye is passed through the optical path of the magnifying imaging optical system to reach the subject. An enlarged image of the optometry portion is formed on the light receiving surface of the television camera 8, and a video signal of the enlarged cell image of the subject's eye portion from the television camera 8 is written from the image input / output control circuit 31 to the frame memory 32. The enlarged image is displayed on the monitor display 33. Further, the cell magnified image of the eye to be inspected automatically taken in this way can be read out from the frame memory 32 by the image input / output control circuit 31 if necessary, and can be launched from the video printer 35. An image print (photograph) of the selected eye cell magnified image can be attached to the chart.

【0025】また、前記選択した部位以外の任意部位を
撮影する場合、この実施の態様ではマウス40操作による
モニタのメニュー43の小三角形「△」又は「▽」指定
後、ホールドしたボタンを開放してメニュー上の変化す
る数字を所定数字に停止せしめ、角膜上面撮影位置より
任意量変位せしめた撮影位置の設定を行う。この設定
後、前記と同様にX・Yアライメント後撮影ボタンを押
すことによりZ軸駆動機構36を作動せしめて撮影系3を
当初の待機位置より被検眼の眼球面2に向け前進を開始
せしめるが、撮影系3の前進量は撮影系3に付設された
エンコーダ等のZ方移動量検出器39が撮影系3の眼軸方
向の変位量をパルスカウントして検出して行く。このと
き、マウス40により、画像入出力制御回路31を介してス
リット光反射検出回路37に設定した検出撮影部位である
角膜上面の撮影位置検出後の撮影系3の変位量は、これ
をカウントしたZ方向移動検出器(エンコーダ)39から
の信号としてZ方向位置制御回路34に入力し、該Z方向
位置制御回路34からの信号でZ軸駆動機構36の駆動を停
止して撮影系3の移動を停止させると同時に、ストロボ
発光制御回路38を作動せしめてストロボ放電管13が発光
し、前記角膜上面撮影位置から前記設定した数字をカウ
ント変位した撮影位置で自動的に撮影を行うことができ
る。
In the case of photographing an arbitrary part other than the selected part, in this embodiment, after holding the small triangle "△" or "▽" in the menu 43 of the monitor by operating the mouse 40, the held button is released. Then, the changing number on the menu is stopped at a predetermined number, and the photographing position is set by being displaced by an arbitrary amount from the corneal upper surface photographing position. After this setting, the Z-axis drive mechanism 36 is operated by pushing the photographing button after the XY alignment in the same manner as described above, and the photographing system 3 is started to advance from the initial standby position toward the eyeball 2 of the eye to be examined. The Z-direction movement amount detector 39 such as an encoder attached to the photographing system 3 detects the amount of forward movement of the photographing system 3 by pulse counting the amount of displacement of the photographing system 3 in the axial direction. At this time, the displacement amount of the imaging system 3 after detecting the imaging position of the upper surface of the cornea which is the detection imaging site set in the slit light reflection detection circuit 37 by the mouse 40 via the image input / output control circuit 31 is counted. A signal from the Z-direction movement detector (encoder) 39 is input to the Z-direction position control circuit 34, and the drive of the Z-axis drive mechanism 36 is stopped by the signal from the Z-direction position control circuit 34 to move the imaging system 3. At the same time, the strobe light emission control circuit 38 is operated to cause the strobe discharge tube 13 to emit light, and the photographing can be automatically performed at the photographing position where the set number is displaced from the photographing position on the upper surface of the cornea.

【0026】次に、前記の撮影系3により、被検眼の眼
軸方向の所要部位を選択して自動的に撮影するときの操
作手順を、図3に示すフローチャートに基づいて説明す
る。この場合、撮影に先立ち、被検眼の撮影準備(モー
ド設定)を行う。ステップ101 〜105 は、被検眼の眼軸
上のどの部位を撮影するか選択設定する場合の手順を示
している。先ず、マウス40を操作してモニタ表示器33
(以下、モニタ33と称す)の画面上の一隅(画面の右
下)等に表示されたメニュー43上で「AUTO」を選び
クリックする(ステップ101)。すると「AUTO」の文
字表示が数字の「2」に変る(ステップ2)。さらにク
リックを続けると(ステップ103)、クリックの度に数字
は〔2〕→〔3〕→〔4〕→〔1〕→〔2〕と順次変化
する(ステップ104)。このとき、〔1〕は角膜上面、
〔2〕は角膜内皮、〔3〕は水晶体上面、〔4〕は水晶
体後面を意味しているので、所要Noの数字を選択してメ
ニュー41上に表示せしめる(ステップ105)。これにより
眼軸上の撮影部位が決定される。例えば〔4〕を選択す
ると撮影部位は水晶体後面となる(図5参照)。
Next, an operation procedure for selecting a desired portion of the eye to be inspected in the axial direction of the eye to be automatically photographed by the photographing system 3 will be described with reference to the flowchart shown in FIG. In this case, preparation for imaging of the subject's eye (mode setting) is performed prior to imaging. Steps 101 to 105 show a procedure for selectively setting which part on the eye axis of the subject's eye to be imaged. First, operate the mouse 40 to display the monitor display 33
"AUTO" is selected and clicked on the menu 43 displayed in one corner (lower right of the screen) of the screen (hereinafter referred to as the monitor 33) (step 101). Then, the character display of "AUTO" changes to the number "2" (step 2). When the click is continued (step 103), the number sequentially changes with each click (2) → [3] → [4] → [1] → [2] (step 104). At this time, [1] is the upper surface of the cornea,
[2] means the corneal endothelium, [3] means the upper surface of the lens, and [4] means the rear surface of the lens. Therefore, the required number is selected and displayed on the menu 41 (step 105). As a result, the imaging region on the eye axis is determined. For example, if [4] is selected, the imaged region will be the posterior surface of the crystalline lens (see FIG. 5).

【0027】このようにして撮影部位を設定した後、ア
ライメントのため撮影系3の近赤外線発光ダイオード2
3、可視光発光ダイオード24を点灯し、固視標である可
視光発光ダイオード24からの明滅可視光の固視を被検者
に指示して固視せしめ、モニタ33の画面にテレビカメラ
8からの前眼部像を出さしめる。そして、アライメント
用指標光の角膜反射像の光点を、被検者頭部が固定され
たアゴ台の操作による高さの調整とともに、架台に搭載
された撮影系3のXY方向へのハンドル操作などにより
モニタ33の撮影画面上の所定位置(中央)へ移動せし
め、撮影系3の被検眼に対するX・Y方向のアライメン
トを行う(ステップ106)。
After setting the region to be photographed in this manner, the near infrared light emitting diode 2 of the photographing system 3 for alignment.
3. The visible light emitting diode 24 is turned on, and the subject is instructed to fix the blinking visible light from the visible light emitting diode 24, which is the fixation target, to fix the subject, and the television 33 is displayed on the screen of the monitor 33. The image of the anterior segment of. Then, the light point of the corneal reflection image of the alignment index light is adjusted in height by operating the jaw base to which the head of the subject is fixed, and the handle of the imaging system 3 mounted on the gantry in the XY directions is operated. For example, the monitor 33 is moved to a predetermined position (center) on the photographing screen and alignment of the photographing system 3 in the X and Y directions with respect to the subject's eye is performed (step 106).

【0028】前記アライメント終了後、撮影ボタンを押
すと(ステップ107)、Z軸が駆動されて撮影系3は前進
せしめられる(ステップ108)。この撮影系3の前進途中
でPSD(位置検知用受光素子)30に順次入射するスリ
ット反射光からスリット光反射検出回路37で、被検眼1
の眼軸上の眼部各位置、すなわち、角膜上面、角膜内
皮、水晶体上面、水晶体後面からのスリット光反射の光
量の山のピークが順次検出されて行き、前記選択してメ
ニュー41上に表示された所望の撮影位置が検出されると
(ステップ109)、Z軸の駆動は停止し(ステップ110)、
撮影系3の前進を停止させると同時に、ストロボを発光
せしめてテレビカメラ8で撮影を行い、フレームメモリ
32へ眼軸上の選択した部位の細胞拡大像が書き込まれる
とともに、該部位の細胞拡大像がモニタ33に表示され
(ステップ111)、撮影は終了する(ステップ112)。この
とき、撮影部位として水晶体後面を選択したときは、モ
ニタ33の画面には、水晶体後面の細胞拡大像が表示され
るとともに、該画面のメニュー41に撮影部位として数字
「4」が表示される。
After the completion of the alignment, when the photographing button is pressed (step 107), the Z axis is driven and the photographing system 3 is advanced (step 108). While the imaging system 3 is moving forward, the slit light reflection detection circuit 37 detects the slit reflected light sequentially entering the PSD (light receiving element for position detection) 30,
Each eye position on the eye axis, that is, the peak of the light amount of the slit light reflection from the upper surface of the cornea, the corneal endothelium, the upper surface of the crystalline lens, and the posterior surface of the crystalline lens is sequentially detected, and the peak is selected and displayed on the menu 41. When the desired photographing position is detected (step 109), the drive of the Z axis is stopped (step 110),
At the same time as stopping the forward movement of the shooting system 3, the strobe is turned on to shoot with the TV camera 8, and the frame memory
A cell magnified image of the selected site on the ocular axis is written to 32, and a cell magnified image of the site is displayed on the monitor 33 (step 111), and the photographing ends (step 112). At this time, when the posterior surface of the crystalline lens is selected as the imaging region, a cell enlarged image of the posterior surface of the crystalline lens is displayed on the screen of the monitor 33, and the number “4” is displayed as the imaging region in the menu 41 of the screen. .

【0029】次に、前記撮影系3を被検眼方向に前進せ
しめて、角膜上面を撮影系3に付設したエンコーダ39に
よるパルスカウントの始点として任意量移動せしめた部
位を撮影するときの操作手順を図4に示すフローチャー
トに基づいて説明する。図4においてステップ201 〜20
4 は、被検眼の眼軸上の角膜上面撮影位置より任意量変
位した撮影位置を選択設定し撮影準備(モード設定)す
る場合の手順を示している。先ずマウス40を操作してモ
ニタ画面の一隅等に表示されたメニュー43上で小三角形
表示「△」又は「▽」を選びクリックする(ステップ20
1)。すると「AUTO」の文字表示が3桁数字に変る
(ステップ202)。さらにそのままボタンを押し続けると
「△」のときは000 →256 と変化し、「▽」のときは25
6 →000 と変化し(ステップ203)、希望する所定数字が
表示されたときボタンを開放すると数字は停止する(ス
テップ204)。これにより角膜上面撮影位置から所定量変
位した撮影位置による眼軸上の撮影部位が決定される。
例えば、数字表示が055 でボタンを開放すると、該数字
で表示の変化は停止し(図5参照)、撮影部位は、第1
番目のスリット光検出位置である角膜上面撮影位置より
55パルスカウントして撮影系が前進した位置による撮影
部位に設定される(図7参照)。
Next, the operation procedure for advancing the imaging system 3 in the direction of the eye to be imaged and imaging the site where the upper surface of the cornea has been moved by an arbitrary amount as the starting point of pulse counting by the encoder 39 attached to the imaging system 3 will be described. A description will be given based on the flowchart shown in FIG. Steps 201 to 20 in FIG.
4 shows a procedure for selecting and setting a photographing position which is displaced from the corneal upper surface photographing position on the eye axis of the eye to be examined by an arbitrary amount and preparing for photographing (mode setting). First, the mouse 40 is operated to select and click the small triangle display "△" or "▽" on the menu 43 displayed in one corner or the like of the monitor screen (step 20).
1). Then, the character display of "AUTO" is changed to a three-digit number (step 202). If you continue to press the button, it will change from 000 to 256 when "△" and 25 when "▽".
The number changes from 6 to 000 (step 203), and when the desired predetermined number is displayed, releasing the button stops the number (step 204). As a result, the imaging site on the eye axis is determined by the imaging position displaced from the corneal upper surface imaging position by a predetermined amount.
For example, if the number display is 055 and the button is released, the change in the display with the number stops (see FIG. 5), and the imaging region is the first
From the corneal upper surface imaging position which is the th slit light detection position
55 pulses are counted and set in the imaging region according to the position where the imaging system has advanced (see FIG. 7).

【0030】このようにして撮影部位を設定した後、前
述の4つの撮影部位から所要Noを選択して撮影する場合
と同様にして撮影系3のX・Y方向のアライメントを行
い(ステップ205)、撮影ボタンを押す(ステップ206)。
これによりZ軸が駆動されて撮影系3は前進せしめられ
る(ステップ207)。この撮影途中でPSD(位置検知用
受光素子)30に順次入射するスリット反射光からの第1
番目の光量の山のピークである角膜上面の撮影位置が検
出された後エンコーダ39が上記設定された数字のパルス
をカウントすると(ステップ208)、Z軸の駆動は停止し
(ステップ209)、撮影系3の前進が停止すると同時に、
ストロボを発光せしめてテレビカメラ8で撮影を行い、
フレームメモリ32へ角膜上面撮影位置よりパルスカウン
トして所定量変位した撮影位置による眼軸上の撮影部位
の拡大画像が書き込まれるとともに該部位の拡大像がモ
ニタに表示され(ステップ210)、撮影は終了する。この
とき角膜上面から変位した撮影部位として、例えば撮影
位置の前進量である数字055 が表示される。
After the imaged region is set in this manner, the X-Y direction alignment of the image capturing system 3 is performed in the same manner as in the case where the required No. is selected from the four imaged regions described above and the image is captured (step 205). , Press the shooting button (step 206).
As a result, the Z axis is driven and the photographing system 3 is advanced (step 207). The first from the slit reflected light that sequentially enters the PSD (light receiving element for position detection) 30 during this shooting
After the imaging position on the upper surface of the cornea, which is the peak of the second peak of light intensity, is detected and the encoder 39 counts the pulse of the set number (step 208), the driving of the Z axis is stopped (step 209), and the imaging is performed. At the same time the advance of system 3 stops,
Let the flash fire and shoot with the TV camera 8,
A magnified image of the imaging region on the eye axis at the imaging position displaced by a predetermined amount by pulse counting from the corneal upper surface imaging position is written to the frame memory 32, and the enlarged image of the region is displayed on the monitor (step 210). finish. At this time, the number 055, which is the amount of advancement of the imaging position, is displayed as the imaging site displaced from the upper surface of the cornea.

【0031】このように、本発明の撮影方法によれば、
被検眼にスリット光束を投射する照明光学系と、被検眼
の前記スリット光束による照明部位の反射光による眼部
像を投射光軸と角度を持つ方向から観察・撮影するよう
にした観察撮影光学系とからなる撮影系を被検眼の眼軸
方向に移動せしめ、眼軸方向の広い範囲から角膜面、水
晶体面等所要部位を選択検出して自動的に撮影すること
ができ、同様にして眼内レンズ上面も検出撮影すること
ができるとともに、前記説明からも明らかなように検出
信号を取り出せない部位でも任意に撮影モードを設定し
て自動的に撮影することができる。
As described above, according to the photographing method of the present invention,
An illumination optical system for projecting a slit light flux onto the eye to be inspected, and an observation and photographing optical system for observing and photographing the eye image by the reflected light of the illuminated portion by the slit light flux of the eye to be inspected from a direction having an angle with the projection optical axis. By moving the imaging system consisting of and in the axial direction of the eye to be inspected, it is possible to select and detect the required parts such as the corneal surface and the crystalline lens surface from a wide range in the axial direction, and automatically perform imaging. The upper surface of the lens can be detected and photographed, and as is clear from the above description, even in a portion where the detection signal cannot be taken out, the photographing mode can be arbitrarily set and photographed automatically.

【0032】[0032]

【発明の効果】請求項1記載の本発明の眼科撮影装置に
おける被検眼の眼軸方向の任意部位の撮影方法によれ
ば、アライメント後、光学部である撮影系を眼軸方向に
移動させ、撮影位置を位置検知用受光素子により検出し
て撮影するようにした眼科撮影装置に用いて、被検眼の
角膜上面、角膜内皮、水晶体上面、水晶体後面、或いは
眼内レンズ上面など、眼軸方向の広い範囲を選択して、
自動的に撮影することができる。
According to the method of photographing an arbitrary portion of the eye to be inspected in the ophthalmic photographing apparatus of the present invention according to claim 1, after alignment, the photographing system which is the optical unit is moved in the eye axis direction. It is used in an ophthalmologic imaging device that detects the imaging position with a light-receiving element for position detection and takes an image, and the corneal upper surface of the eye to be examined, corneal endothelium, crystalline lens upper surface, crystalline lens posterior surface, or intraocular lens upper surface, etc. Select a wide range,
It can be taken automatically.

【0033】請求項2記載の発明によれば、前記眼科撮
影装置で、スリット光束の眼軸に対する投射角度を特定
することにより、従来困難であった無散瞳での水晶体前
面、後面の撮影を自動的に容易且つ良好に撮影すること
ができる。
According to the second aspect of the present invention, by specifying the projection angle of the slit light flux with respect to the eye axis in the ophthalmic photographing apparatus, it is difficult to photograph the front and rear surfaces of the lens with a non-mydriasis. It is possible to automatically and easily take a good picture.

【0034】請求項3記載の発明によれば、前記眼科撮
影装置で被検眼の眼軸上で検出信号を取り出せない部位
でも、自動的に撮影することができる。
According to the third aspect of the present invention, it is possible to automatically take an image even in a portion where the detection signal cannot be taken out on the eye axis of the eye to be inspected by the ophthalmic image taking apparatus.

【0035】請求項4記載の発明によれば、前記検出信
号を取り出せない部位の撮影を、エンコーダ等の移動量
検出手段を用いて、角膜上面等検出した撮影位置からの
撮影系の眼軸方向の変位量を容易に検出設定して容易に
撮影することができる。
According to the fourth aspect of the present invention, in the imaging of the part where the detection signal cannot be taken out, the movement amount detecting means such as an encoder is used to detect the upper surface of the cornea or the like from the imaging position to the axial direction of the imaging system. It is possible to easily detect and set the displacement amount of and to photograph easily.

【0036】請求項5記載の発明によれば、前記検出信
号を取り出せない部位の撮影を、エンコーダ等の移動量
検出手段を用いて角膜上面等検出した撮影位置からの眼
軸方向の変位量を撮影系に設定して撮影する際、あらか
じめ設定した複数個の変位量からすみやかに眼軸方向の
変位量を選択設定して撮影をすることができ、撮影効率
を上げることができる。
According to the fifth aspect of the present invention, the amount of displacement in the axial direction from the photographing position at which the detection of the detection signal cannot be extracted is detected by using the movement amount detecting means such as an encoder to detect the upper surface of the cornea. When setting a photographing system and photographing, it is possible to quickly select and set the displacement amount in the eye axis direction from a plurality of displacement amounts set in advance, and it is possible to improve the photographing efficiency.

【0037】請求項6記載の発明によれは、位置検知用
受光素子による検出位置と、撮影系による結像位置との
相対関係を光学的にずらして撮影することにより、位置
検知用受光素子に眼軸上の各部位の反射光が入射したと
き、撮影画面に前記各部位から眼軸上で変位した部位の
像を容易に結像せしめて撮影することができる。
According to the sixth aspect of the present invention, the relative position between the position detected by the light receiving element for position detection and the image forming position by the image pickup system is optically shifted, and the image is picked up. When reflected light from each part on the eye axis is incident, it is possible to easily form an image of the part displaced on the eye axis from each part on the photographing screen for photographing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の光路図てある。FIG. 1 is an optical path diagram of an embodiment of the present invention.

【図2】本発明の実施例のブロック図である。FIG. 2 is a block diagram of an embodiment of the present invention.

【図3】眼軸上の所要部位を選択検出して自動的に撮影
することきの手順を示すフローチャートである。
FIG. 3 is a flowchart showing a procedure for automatically detecting a desired part on the eye axis by automatically detecting it.

【図4】角膜上面より撮影系の変位量を設定して撮影す
るときの手順を示すフローチャートである。
FIG. 4 is a flowchart showing a procedure for setting an amount of displacement of the imaging system from the upper surface of the cornea to perform imaging.

【図5】撮影前に撮影部位を選択するときの模式図であ
る。
FIG. 5 is a schematic diagram when selecting an imaging region before imaging.

【図6】撮影位置検出順と被検眼の撮影部位との関係図
である。
FIG. 6 is a relationship diagram between the order of detection of image capturing positions and the imaged region of the subject's eye.

【図7】検出した角膜上面(上皮)撮影位置より変位量
を設定して撮影する状態を示す図である。
FIG. 7 is a diagram showing a state in which a displacement amount is set based on a detected upper corneal (epithelial) imaging position and imaging is performed.

【図8】水晶体上面及び水晶体後面を撮影するときのス
リット投射光及び反射光の光路図である。
FIG. 8 is an optical path diagram of slit projection light and reflected light when photographing an upper surface of a lens and a rear surface of a lens.

【符号の説明】[Explanation of symbols]

1…眼球(被検眼)、 2…角膜(眼球面)、 3…撮
影系、 4…前眼部観察光学系光軸、又は眼軸、 5…
ビームスプリッター、 6…前眼部撮影レンズ、7…赤
外光透過・可視光反射ミラー、 8…テレビカメラ、
9…CCD受光面、10…照明光軸、 11…照明ランプ、
13…ストロボ放電管、 15…可視光透過・赤外光反射
ミラー、 16…スリット、 18…拡大撮影光学系光軸、
19…対物レンズ、 22…結像レンズ、 23…近赤外線
発光ダイオード、 24…可視光発光ダイオード、 30…
位置検知用受光素子、 32…フレームメモリ、 33…モ
ニタ表示器、 36…Z軸駆動機構、 37…スリット光反
射検出回路、 38…ストロボ発光制御回路、 39…Z方
向移動量検出器、 40…マウス、 41…瞳孔、 42…水
晶体、 43…メニュー。
1 ... Eyeball (eye to be examined), 2 ... Corneal (eye spherical surface), 3 ... Imaging system, 4 ... Anterior ocular segment observation optical system optical axis, or eye axis, 5 ...
Beam splitter, 6 ... Anterior ocular segment photographing lens, 7 ... Infrared light transmitting / visible light reflecting mirror, 8 ... Television camera,
9 ... CCD light receiving surface, 10 ... Illumination optical axis, 11 ... Illumination lamp,
13 ... Strobe discharge tube, 15 ... Visible light transmitting / infrared light reflecting mirror, 16 ... Slit, 18 ... Magnifying optical system optical axis,
19 ... Objective lens, 22 ... Imaging lens, 23 ... Near infrared light emitting diode, 24 ... Visible light emitting diode, 30 ...
Position detection light receiving element, 32 ... Frame memory, 33 ... Monitor display, 36 ... Z-axis drive mechanism, 37 ... Slit light reflection detection circuit, 38 ... Strobe light emission control circuit, 39 ... Z direction movement amount detector, 40 ... Mouse, 41 ... Pupil, 42 ... Lens, 43 ... Menu.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】被検眼にスリット光束を投射する照明光学
系と、被検眼の前記スリット光束による照明部位の反射
光による眼部像を投射光軸と角度を持つ方向から観察・
撮影するようにした観察撮影光学系とからなる撮影系を
被検眼の眼軸方向に移動せしめ、該撮影系が眼軸方向に
移動中、前記観察撮影光学系に付設した位置検知用受光
素子に順次入射する反射光を位置検出信号として選択し
て使用し、被検眼の眼軸方向の任意部位を撮影すること
を特徴とする眼科撮影装置における被検眼の眼軸方向の
任意部位の撮影方法。
1. An illumination optical system for projecting a slit light beam on an eye to be inspected, and an eye image by reflected light of an illumination site of the eye to be inspected by the slit light beam is observed from a direction having an angle with a projection optical axis.
An imaging system including an observation and imaging optical system for imaging is moved in the axial direction of the eye to be inspected, and while the imaging system is moving in the axial direction, a position detection light receiving element attached to the observation and imaging optical system is used. A method of photographing an arbitrary portion of an eye to be inspected in an eye axis direction in an ophthalmologic image pickup apparatus, wherein the sequentially incident reflected light is selected and used as a position detection signal to photograph an arbitrary portion of the eye to be inspected in the eye axis direction.
【請求項2】前記照明光学系の被検眼にスリット光束を
投射する投射光軸が、眼軸方向に対し25°から15°の角
度をなすことを特徴とする請求項1記載の眼科撮影装置
における被検眼の眼軸方向の任意部位の撮影方法。
2. The ophthalmologic imaging apparatus according to claim 1, wherein the projection optical axis of the illumination optical system for projecting the slit light flux on the eye to be examined forms an angle of 25 ° to 15 ° with respect to the eye axis direction. A method for photographing an arbitrary part of the eye to be examined in the axial direction of the eye.
【請求項3】前記選択した位置検出信号と、これを起点
として検出した前記観察撮影光学系の眼軸方向の変位量
とを組合せ、前記観察撮影光学系の撮影位置を検出して
撮影することを特徴とする請求項1又は2記載の眼科撮
影装置における被検眼の眼軸方向の任意部位の撮影方
法。
3. A combination of the selected position detection signal and the amount of displacement of the observation and photographing optical system in the eye axis direction detected by using this as a starting point to detect the photographing position of the observation and photographing optical system for photographing. The method for photographing an arbitrary part of an eye to be inspected in the eye axis direction in the ophthalmic photographing apparatus according to claim 1 or 2.
【請求項4】前記観察撮影光学系には、眼軸方向の移動
量を連続的に検出する移動量検出手段を設け、該移動量
検出手段により、前記観察撮影光学系の眼軸方向の変位
量を検出して撮影することを特徴とする請求項3記載の
眼科撮影装置における被検眼の眼軸方向の任意部位の撮
影方法。
4. The observation / photographing optical system is provided with a movement amount detecting means for continuously detecting the movement amount in the eye axis direction, and the displacement amount detecting means displaces the observation / photographing optical system in the eye axis direction. The method for imaging an arbitrary part of an eye to be inspected in the ophthalmic imaging apparatus according to claim 3, wherein the imaging is performed by detecting the amount.
【請求項5】前記観察撮影光学系の前記検出した眼軸方
向の変位量は、あらかじめ設定した複数個の変位量から
選択設定することを特徴とする請求項4記載の眼科撮影
装置における被検眼の眼軸方向の任意部位の撮影方法。
5. The eye to be inspected in the ophthalmic photographing apparatus according to claim 4, wherein the detected displacement amount of the observation and photographing optical system in the axial direction of the eye is selectively set from a plurality of displacement amounts set in advance. Method of photographing any part of the eye axis direction.
【請求項6】前記位置検知用受光素子による検出位置
と、観察撮影光学系による結像位置との相対関係を光学
的にずらして撮影することを特徴とする請求項3記載の
眼科撮影装置における被検眼の眼軸方向の任意部位の撮
影方法。
6. The ophthalmologic image taking apparatus according to claim 3, wherein the relative position between the detection position of the position detecting light receiving element and the image forming position of the observation and photographing optical system is optically shifted to perform photographing. A method for photographing an arbitrary part of the eye to be examined in the axial direction of the eye.
JP7306553A 1995-10-30 1995-10-30 Method of photographing optional part in direction of axis of eye to be inspected in ophthalmological camera Pending JPH09122077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7306553A JPH09122077A (en) 1995-10-30 1995-10-30 Method of photographing optional part in direction of axis of eye to be inspected in ophthalmological camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7306553A JPH09122077A (en) 1995-10-30 1995-10-30 Method of photographing optional part in direction of axis of eye to be inspected in ophthalmological camera

Publications (1)

Publication Number Publication Date
JPH09122077A true JPH09122077A (en) 1997-05-13

Family

ID=17958437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7306553A Pending JPH09122077A (en) 1995-10-30 1995-10-30 Method of photographing optional part in direction of axis of eye to be inspected in ophthalmological camera

Country Status (1)

Country Link
JP (1) JPH09122077A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176167A (en) * 1997-09-01 1999-03-23 Konan:Kk Ophthalmic examination device
JP2003000545A (en) * 2001-06-20 2003-01-07 Konan Medical Inc Corneal cell photographing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176167A (en) * 1997-09-01 1999-03-23 Konan:Kk Ophthalmic examination device
JP2003000545A (en) * 2001-06-20 2003-01-07 Konan Medical Inc Corneal cell photographing device

Similar Documents

Publication Publication Date Title
US7364295B2 (en) Fundus camera
EP0628281A1 (en) Method for obtaining images of a cornea and apparatus for same
JP2009201636A (en) Non-contact type tonometer
JP3569026B2 (en) Fundus camera
JP2011212240A (en) Fundus photographing device
JPH0833610A (en) Ophthalmological photographing device
JP5545982B2 (en) Fundus camera
JP2831538B2 (en) Corneal imaging equipment
JPH08565A (en) Ophthalmologic device
JP4359527B2 (en) Fundus camera
JPH07121255B2 (en) Corneal endothelial cell observation and imaging device
JP3490796B2 (en) Fundus camera
JPH09149888A (en) Method for photographing plural parts near optional part in visual line direction of eye to be examined and device therefor
JPH09122077A (en) Method of photographing optional part in direction of axis of eye to be inspected in ophthalmological camera
JP2008006105A (en) Fundus camera
JP2608852B2 (en) Corneal imaging device
JP5522629B2 (en) Fundus photographing device
JP3708694B2 (en) OPERATION POSITION DETERMINING DEVICE FOR OPTICAL DEVICE AND OPERATION POSITION DETERMINING DEVICE FOR retinal Imaging Device
US5412442A (en) Apparatus for photographing a corneal endothelium
JP3607773B2 (en) Ophthalmic imaging equipment
JPH1057319A (en) Ophthalmologic imaging apparatus
JP3415226B2 (en) Corneal cell imaging device
JP2831546B2 (en) Cornea imaging position display method and apparatus
JPH10113335A (en) Method and device for photographing cornea
JP4168533B2 (en) Ophthalmic device positioning mechanism

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041206