JPH09119734A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH09119734A
JPH09119734A JP7280361A JP28036195A JPH09119734A JP H09119734 A JPH09119734 A JP H09119734A JP 7280361 A JP7280361 A JP 7280361A JP 28036195 A JP28036195 A JP 28036195A JP H09119734 A JPH09119734 A JP H09119734A
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor heat
refrigerant
way valve
refrigerant pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7280361A
Other languages
Japanese (ja)
Inventor
Toshihiko Nishimoto
敏彦 西本
Nobuoki Shima
伸起 嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7280361A priority Critical patent/JPH09119734A/en
Publication of JPH09119734A publication Critical patent/JPH09119734A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the defrosting performance by so disposing a T-shaped branch that the refrigerant tube on the four-way valve side before branching becomes horizontal and the tube after branching becomes vertical, and connecting the tube branched to the lower side to the lower side pass of an outdoor heat exchanger. SOLUTION: The refrigerant introduced from a compressor 3 to the outdoor heat exchanger 1 via a four-way valve 4 is branched to the upper and lower side passes of the exchanger 1 by a T-shaped branch 8. The vertical refrigerant tube 10b branched to the lower side is connected to the lower side pass of the exchanger 1. Thus, the branch flow of the refrigerant at the branch 8 is fed more to the lower side refrigerant tube 10b due to the gravity. Accordingly, the lower side pass refrigerant flow rate required for more heat quantity is increased due to the heat exchange with melted sherbet-like drain, and the defrosting time can be shortened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はヒートポンプ式空気
調和機に係り、特に室外熱交換器の冷媒分流特性を改善
した空気調和機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type air conditioner, and more particularly to an air conditioner with improved refrigerant distribution characteristics of an outdoor heat exchanger.

【0002】[0002]

【従来の技術】一般に、ヒートポンプ式の空気調和機
は、圧縮機、四方弁、室内熱交換器、減圧機構および室
外熱交換器を冷媒配管で順次接続して冷凍サイクルを構
成し、四方弁を切り換え冷媒の循環方向を反転させるこ
とで、室内を冷房および暖房することができる。
2. Description of the Related Art Generally, a heat pump type air conditioner has a refrigeration cycle in which a compressor, a four-way valve, an indoor heat exchanger, a pressure reducing mechanism and an outdoor heat exchanger are connected in sequence to form a refrigeration cycle. By inverting the circulation direction of the switching refrigerant, it is possible to cool and heat the room.

【0003】ところで、暖房運転時に外気温が低い場合
は室外熱交換器に着霜が生じ、この霜が成長すると熱交
換器性能が低下してしまうため、四方弁を冷房運転側に
切り換える反転除霜等の除霜運転が必要になる。
By the way, when the outdoor air temperature is low during heating operation, frost is formed on the outdoor heat exchanger, and if the frost grows, the heat exchanger performance is deteriorated. Therefore, the four-way valve is switched to the cooling operation side. Defrosting operation such as frost is required.

【0004】四方弁を冷房運転側に切り換える反転除霜
運転は、圧縮機から吐出された高温高圧の冷媒を室外熱
交換器に導いて加熱し、付着した霜を除去するものであ
るが、熱交換器配管での圧力損失を減少して熱交換器の
効率を高めるために冷媒流路を上下2パスにした図4に
示すような室外熱交換器1で、この反転除霜運転を行っ
た場合、溶けてシャーベット状になったドレンが、熱交
換器フィン7を伝って上から下へ流れ落ちるため、熱交
換器の下方より上方の方が早く除霜が終了する。
In the reverse defrosting operation in which the four-way valve is switched to the cooling operation side, the high-temperature and high-pressure refrigerant discharged from the compressor is introduced into the outdoor heat exchanger to be heated to remove the frost adhering thereto. This reversal defrosting operation was performed in the outdoor heat exchanger 1 as shown in FIG. 4 in which the refrigerant flow path is made up of two upper and lower paths to reduce the pressure loss in the exchanger piping and improve the efficiency of the heat exchanger. In this case, since the melted and sherbet-shaped drain flows down from the upper side to the lower side along the heat exchanger fins 7, the defrosting ends earlier in the upper part than in the lower part of the heat exchanger.

【0005】すると、上側パスの熱交換パイプ6aでは
冷媒の凝縮が行われなくなり、冷媒は気体の状態のまま
となる。一方、下側パスの熱交換パイプ6bではドレン
との熱交換で冷媒は凝縮して液体となるため、下側パス
の熱交換パイプ6bの管内流通抵抗が上側パスの熱交換
パイプ6aの管内流通抵抗より大きくなり、室外熱交換
器1の下側パスに冷媒が流れ難くなる。
Then, the refrigerant is not condensed in the heat exchange pipe 6a in the upper path, and the refrigerant remains in a gas state. On the other hand, in the heat exchange pipe 6b of the lower path, the refrigerant is condensed and becomes a liquid by heat exchange with the drain, so that the pipe flow resistance of the heat exchange pipe 6b of the lower pass is the pipe flow of the heat exchange pipe 6a of the upper pass. It becomes larger than the resistance, and it becomes difficult for the refrigerant to flow to the lower path of the outdoor heat exchanger 1.

【0006】[0006]

【発明が解決しようとする課題】このような室外熱交換
器1を具備した空気調和機では、室外熱交換器1の下側
の除霜に時間がかかるため除霜運転時間が長くなってし
まう。除霜運転時は室内の暖房ができないので、除霜運
転時間が長くなると室温低下が大きくなり快適性に欠け
るという問題が生じる。
In an air conditioner equipped with such an outdoor heat exchanger 1, it takes a long time to defrost the lower side of the outdoor heat exchanger 1, so that the defrosting operation time becomes long. . Since the interior of the room cannot be heated during the defrosting operation, if the defrosting operation time becomes long, there is a problem that the room temperature is lowered and the comfort is deteriorated.

【0007】このような問題を解決するために四方弁と
室外熱交換器を接続する冷媒配管のうち、上側パスに接
続する冷媒配管に絞り部を設けて、上下2パスの室外熱
交換器における除霜運転時の上側パスと下側パスの管内
流通抵抗を均一に調整することも考案されているが(実
開昭59−189066号公報)、この構成では暖房運
転時に、上側パスに接続する冷媒配管に設けた絞り部の
抵抗で、上側パスの管内流通抵抗が増えて、上側パスと
下側パスの管内流通抵抗が不均一となって、暖房運転の
運転効率が低下してしまう。
In order to solve such a problem, in the refrigerant pipe connecting the four-way valve and the outdoor heat exchanger, a throttle part is provided in the refrigerant pipe connecting to the upper path so that the upper and lower two-pass outdoor heat exchangers can be used. Although it has been devised to evenly adjust the flow resistance in the pipes of the upper path and the lower path during defrosting operation (Japanese Utility Model Laid-Open No. 59-189066), this configuration connects to the upper path during heating operation. Due to the resistance of the throttle portion provided in the refrigerant pipe, the flow resistance in the pipe of the upper path increases, the flow resistance in the pipe of the upper path and the lower path becomes non-uniform, and the operation efficiency of the heating operation decreases.

【0008】本発明は上記のような課題を解決するため
に、通常の暖房運転時にはほとんど影響させることな
く、除霜運転時における室外熱交換器の上側パスと下側
パスの管内流通パスの不均一を改善して、除霜性能を向
上させた空気調和機を実現することを目的としたもので
ある。
In order to solve the above-mentioned problems, the present invention hardly affects the normal heating operation and does not affect the in-pipe distribution path of the upper path and the lower path of the outdoor heat exchanger during the defrosting operation. The object is to realize an air conditioner with improved uniformity and improved defrosting performance.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
めに本発明は、圧縮機、四方弁、室内熱交換器、減圧機
構、室外熱交換器を冷媒配管で順次接続して冷凍サイク
ルを構成し、四方弁を切り換えることにより、冷房およ
び暖房運転が可能な空気調和機において、四方弁と室外
熱交換器の間で冷媒配管をT型分岐で分岐し、分岐前の
四方弁側の冷媒配管が水平に、分岐後の冷媒配管が垂直
になるようにT型分岐を配置し、上方側に分岐した冷媒
配管を室外熱交換器の上側パスに接続し、下方側に分岐
した冷媒配管を室外熱交換器の下側パスに接続したもの
である。
In order to solve the above problems, the present invention provides a refrigeration cycle in which a compressor, a four-way valve, an indoor heat exchanger, a pressure reducing mechanism, and an outdoor heat exchanger are sequentially connected by a refrigerant pipe. In the air conditioner capable of cooling and heating operation by switching the four-way valve, the refrigerant pipe is branched between the four-way valve and the outdoor heat exchanger with a T-shaped branch, and the refrigerant on the four-way valve side before branching is branched. The T-shaped branch is arranged so that the piping is horizontal and the refrigerant piping after branching is vertical, the refrigerant piping branched to the upper side is connected to the upper path of the outdoor heat exchanger, and the refrigerant piping branched to the lower side is connected. It is connected to the lower path of the outdoor heat exchanger.

【0010】また、本発明は、四方弁と室外熱交換器の
間で冷媒配管をT型分岐で分岐し、分岐前の四方弁側の
冷媒配管が水平に、分岐後の冷媒配管が上方と水平にな
るようにT型分岐を配置し、上方側に分岐した冷媒配管
を室外熱交換器の上側パスに接続し、水平側に分岐した
冷媒配管を室外熱交換器の下側パスに接続したものであ
る。
Further, according to the present invention, the refrigerant pipe is branched between the four-way valve and the outdoor heat exchanger by a T-shaped branch, the refrigerant pipe on the side of the four-way valve before branching is horizontal, and the refrigerant pipe after branching is upper. The T-shaped branch was arranged so as to be horizontal, the refrigerant pipe branched to the upper side was connected to the upper path of the outdoor heat exchanger, and the refrigerant pipe branched to the horizontal side was connected to the lower path of the outdoor heat exchanger. It is a thing.

【0011】また、本発明は、室外熱交換器の下側パス
から減圧機構までの冷媒配管が、室外熱交換器の下側パ
ス出口より高くならないようにして、減圧機構の入口が
室外熱交換器の下側パス出口より低い位置に配置される
ようにしたものである。
Further, according to the present invention, the refrigerant pipe from the lower path of the outdoor heat exchanger to the pressure reducing mechanism is prevented from being higher than the outlet of the lower path of the outdoor heat exchanger, so that the inlet of the pressure reducing mechanism can exchange the outdoor heat. It is designed to be placed at a position lower than the lower path exit of the vessel.

【0012】また、本発明は、室外熱交換器の下側パス
出口に対する、下側パスに接続されている減圧機構の入
口高さが、上側パス出口に対する、上側パスに接続され
ている減圧機構の入口高さと同じかまたは低くしたもの
である。
Further, according to the present invention, the inlet height of the pressure reducing mechanism connected to the lower path with respect to the lower path outlet of the outdoor heat exchanger is such that the pressure reducing mechanism connected to the upper path with respect to the upper path outlet. It is equal to or lower than the entrance height of.

【0013】さらに、本発明は、室外熱交換器を上側お
よび下側の上下2パスとし、かつ、除霜運転時に上側パ
スは下から上に、下側は上から下に冷媒が流れるように
したものである。
Further, according to the present invention, the outdoor heat exchanger has upper and lower two upper and lower paths, and the upper path passes the refrigerant downwardly and the lower side flows the refrigerant downwardly from the upper side during defrosting operation. It was done.

【0014】[0014]

【発明の実施の形態】本発明は、四方弁と室外熱交換器
の間で冷媒配管をT型分岐で分岐し、分岐前の四方弁側
の冷媒配管が水平に、分岐後の冷媒配管が垂直になるよ
うにT型分岐を配置し、上方側に分岐した冷媒配管を室
外熱交換器の上側パスに接続し、下方側に分岐した冷媒
配管を室外熱交換器の下側パスに接続することにより、
除霜運転時の室外熱交換器上側パスと下側パスへの分岐
比率が下側パスの方が多くなり、暖房運転時に影響する
ことなく除霜運転時の上側パスと下側パスの流通抵抗の
不均一だけを改善でき、除霜性能が向上して暖房運転の
快適性が向上する。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, a refrigerant pipe is branched between a four-way valve and an outdoor heat exchanger by a T-shaped branch, the refrigerant pipe on the four-way valve side before branching is horizontal, and the refrigerant pipe after branching is horizontal. The T-shaped branch is arranged vertically, the refrigerant pipe branched to the upper side is connected to the upper path of the outdoor heat exchanger, and the refrigerant pipe branched to the lower side is connected to the lower path of the outdoor heat exchanger. By
The ratio of branching to the upper and lower paths of the outdoor heat exchanger during defrost operation is higher in the lower path, and the flow resistance of the upper path and lower path during defrost operation does not affect the heating operation. It is possible to improve only the non-uniformity of the air conditioning, improve the defrosting performance and improve the comfort of heating operation.

【0015】また、本発明は、四方弁と室外熱交換器の
間で冷媒配管をT型分岐で分岐し、分岐前の四方弁側の
冷媒配管が水平に、分岐後の冷媒配管が上方と水平にな
るようにT型分岐を配置し、上方側に分岐した冷媒配管
を室外熱交換器の上側パスに接続し、水平側に分岐した
冷媒配管を室外熱交換器の下側パスに接続することによ
り、除霜運転時の室外熱交換器上側パスと下側パスへの
分岐比率が下側パスの方が多くなり、暖房運転時に影響
することなく除霜運転時の上側パスと下側パスの流通抵
抗の不均一だけを改善でき、除霜性能が向上して暖房運
転の快適性が向上する。
Further, according to the present invention, the refrigerant pipe is branched between the four-way valve and the outdoor heat exchanger by a T-shaped branch, the refrigerant pipe on the side of the four-way valve before the branch is horizontal, and the refrigerant pipe after the branch is on the upper side. The T-shaped branch is arranged to be horizontal, the refrigerant pipe branched to the upper side is connected to the upper path of the outdoor heat exchanger, and the refrigerant pipe branched to the horizontal side is connected to the lower path of the outdoor heat exchanger. As a result, the branch ratio of the outdoor heat exchanger upper path and the lower path during the defrosting operation is higher in the lower path, and the upper path and the lower path during the defrosting operation do not affect the heating operation. It is possible to improve only the non-uniformity of the flow resistance of the, the defrosting performance is improved and the comfort of heating operation is improved.

【0016】また、本発明は、室外熱交換器の下側パス
から減圧機構までの冷媒配管が、室外熱交換器の下側パ
ス出口より高くならないようにして、減圧機構の入口が
室外熱交換器の下側パス出口より低い位置に配置される
ようにすることにより、除霜運転時に室外熱交換器の下
側パスに液冷媒が溜り難くなり、暖房運転時に影響する
ことなく除霜運転時の上側パスと下側パスの流通抵抗の
不均一だけを改善でき、除霜性能が向上して暖房運転の
快適性が向上する。
Further, according to the present invention, the refrigerant pipe from the lower path of the outdoor heat exchanger to the pressure reducing mechanism does not become higher than the outlet of the lower path of the outdoor heat exchanger, so that the inlet of the pressure reducing mechanism can exchange the outdoor heat. By placing it lower than the outlet of the lower path of the heat exchanger, it becomes difficult for the liquid refrigerant to accumulate in the lower path of the outdoor heat exchanger during the defrosting operation, and there is no effect during the heating operation during the defrosting operation. It is possible to improve only the non-uniformity of the flow resistance of the upper path and the lower path, the defrosting performance is improved, and the comfort of heating operation is improved.

【0017】また、本発明は、室外熱交換器の下側パス
出口に対する、下側パスに接続されている減圧機構の入
口高さが、上側パス出口に対する、上側パスに接続され
ている減圧機構の入口高さと同じかまたは低くすること
により、除霜運転時に室外熱交換器の下側パスに液冷媒
が溜り難くなり、暖房運転時に影響することなく除霜運
転時の上側パスと下側パスの流通抵抗の不均一だけを改
善でき、除霜性能が向上して暖房運転の快適性が向上す
る。
Further, according to the present invention, the inlet height of the pressure reducing mechanism connected to the lower path with respect to the lower path outlet of the outdoor heat exchanger is such that the pressure reducing mechanism connected to the upper path with respect to the upper path outlet. By making it equal to or lower than the inlet height of the, it becomes difficult for liquid refrigerant to accumulate in the lower path of the outdoor heat exchanger during defrosting operation, and the upper path and lower path during defrosting operation do not affect during heating operation. It is possible to improve only the non-uniformity of the flow resistance of the, the defrosting performance is improved and the comfort of heating operation is improved.

【0018】さらに、本発明は、室外熱交換器を上側お
よび下側の上下2パスとし、かつ、除霜運転時に上側パ
スは下から上に、下側は上から下に冷媒が流れるように
することにより、除霜運転時に室外熱交換器の下側パス
に液冷媒が溜り難くなり、暖房運転時に影響することな
く除霜運転時の上側パスと下側パスの流通抵抗の不均一
だけを改善でき、除霜性能が向上して暖房運転の快適性
が向上する。
Further, according to the present invention, the outdoor heat exchanger has upper and lower two upper and lower paths, and during the defrosting operation, the upper path passes from the bottom to the top and the lower side allows the refrigerant to flow from the top to the bottom. By doing so, it becomes difficult for the liquid refrigerant to accumulate in the lower path of the outdoor heat exchanger during the defrosting operation, and only the non-uniform flow resistance of the upper path and the lower path during the defrosting operation is not affected during the heating operation. It can be improved, the defrosting performance is improved, and the comfort of heating operation is improved.

【0019】[0019]

【実施例】以下、本発明の一実施例について図面を参考
に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0020】図3は本発明の第1の実施例の冷凍サイク
ル図で、暖房運転は圧縮機3から吐出された高温高圧の
気体冷媒が、室内熱交換器2に導かれるように四方弁4
が切り換えられ、室内熱交換器2で室内に放熱して室内
を暖房し、冷媒は高圧の液冷媒となる。この冷媒は減圧
機構5a、5bで減圧され低温低圧の気液混合の冷媒と
なって室外熱交換器1に入り、室外から吸熱して低温低
圧の気体冷媒となって圧縮機3に戻る。冷房は四方弁4
で暖房とは逆方向に冷媒が循環するようにして、室内か
ら吸熱して室内を冷房する。
FIG. 3 is a refrigerating cycle diagram of the first embodiment of the present invention. In heating operation, the four-way valve 4 is provided so that the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 is guided to the indoor heat exchanger 2.
The indoor heat exchanger 2 radiates heat to the room to heat the room, and the refrigerant becomes a high-pressure liquid refrigerant. This refrigerant is decompressed by the decompression mechanisms 5a and 5b, becomes a low temperature low pressure gas-liquid mixed refrigerant, enters the outdoor heat exchanger 1, and absorbs heat from the outside to become a low temperature low pressure gas refrigerant and returns to the compressor 3. Air conditioning is a four-way valve 4
The refrigerant circulates in the opposite direction to the heating so as to absorb heat from the room and cool the room.

【0021】暖房運転時に外気温が低い場合には室外熱
交換器1に着霜が生じ、この霜が成長すると熱交換器性
能が低下してしまうため、四方弁4を冷房運転側に切り
換える反転除霜運転を行っている。
When the outside air temperature is low during the heating operation, frost forms on the outdoor heat exchanger 1, and if the frost grows, the heat exchanger performance deteriorates. Therefore, the four-way valve 4 is switched to the cooling operation side. Defrosting operation is in progress.

【0022】この時、圧縮機3から四方弁4を介して室
外熱交換器1に導かれる冷媒は、分岐8によって室外熱
交換器1の上側パスと下側パスに分流される。ここで、
分岐8はT型の分岐で、分流前の四方弁4側の冷媒配管
9が水平に分岐8に入り、分流後の冷媒配管10a、1
0bが垂直になるように分岐8を配置し、上方側に分岐
した冷媒配管10aを室外熱交換器1の上側パスに接続
し、下方側に分岐した冷媒配管10bを室外熱交換器1
の下側パスに接続している。このため、分岐8での冷媒
の分流は重力のため下側の冷媒配管10bの方に多く流
れることになる。
At this time, the refrigerant introduced from the compressor 3 to the outdoor heat exchanger 1 via the four-way valve 4 is branched by the branch 8 into the upper path and the lower path of the outdoor heat exchanger 1. here,
The branch 8 is a T-shaped branch, in which the refrigerant pipe 9 on the side of the four-way valve 4 before the diversion enters the branch 8 horizontally and the refrigerant pipes 10a, 1 after diversion
The branch 8 is arranged so that 0b is vertical, the refrigerant pipe 10a branched to the upper side is connected to the upper path of the outdoor heat exchanger 1, and the refrigerant pipe 10b branched to the lower side is connected to the outdoor heat exchanger 1.
Connected to the lower path. For this reason, a large amount of the refrigerant split in the branch 8 flows toward the lower refrigerant pipe 10b due to gravity.

【0023】従って、溶けたシャーベット状のドレンと
の熱交換のために、より多くの熱量を必要とする下側パ
スの冷媒流量が増えることになり、効率的に除霜を行う
ことができて除霜時間を短くすることができる。しか
も、暖房運転時は分岐8は合流側となるため暖房運転時
の上側パスと下側パスの冷媒流量には影響を及ぼすこと
がない。
Therefore, the heat exchange with the melted sherbet-like drain increases the flow rate of the refrigerant in the lower path which requires a larger amount of heat, and the defrosting can be efficiently performed. The defrosting time can be shortened. Moreover, since the branch 8 is on the merging side during the heating operation, it does not affect the refrigerant flow rates of the upper path and the lower path during the heating operation.

【0024】また、第1の実施例では、室外熱交換器1
の下側パス出口に対する、下側パスに接続されている減
圧機構5bの入口高さHbが、上側パス出口に対する、
上側パスに接続されている減圧機構5aの入口高さHa
より低くなっている。除霜運転時には溶けたシャーベッ
ト状のドレンとの熱交換のためにより多くの冷媒が下側
パスに凝縮して液冷媒が溜り易くなるが、上記の理由に
より熱交換器1の出口から減圧機構5a、5bまでのヘ
ッド高さが下側パスの方が低く、冷媒を押し上げること
による抵抗が少ないため冷媒が溜ってしまうことがなく
なり、下側パスの流通抵抗が増えて冷媒流量が減ってし
まうことがない。このため、効率的に除霜を行うことが
できて除霜時間を短くすることができる。しかも、暖房
運転時は冷媒が下に流れる方向なのでヘッド差の影響は
殆どない。
Also, in the first embodiment, the outdoor heat exchanger 1
The inlet height Hb of the pressure reducing mechanism 5b connected to the lower path with respect to the lower path outlet is
Inlet height Ha of the pressure reducing mechanism 5a connected to the upper path
It is lower. During the defrosting operation, more refrigerant condenses in the lower path due to heat exchange with the melted sherbet-like drain, and the liquid refrigerant easily accumulates. The head height up to 5b is lower in the lower path, and the resistance due to pushing up the refrigerant is less, so the refrigerant does not accumulate, and the flow resistance in the lower path increases and the refrigerant flow rate decreases. There is no. Therefore, the defrosting can be efficiently performed and the defrosting time can be shortened. In addition, since the refrigerant flows downward during the heating operation, there is almost no influence of the head difference.

【0025】このようにして、本発明の第1の実施例で
は、暖房運転時に影響することなく除霜運転時の上側パ
スと下側パスの流通抵抗の不均一だけを改善でき、除霜
性能が向上して暖房運転の快適性が向上させることがで
きる。
As described above, in the first embodiment of the present invention, it is possible to improve only the non-uniformity of the flow resistance of the upper path and the lower path during the defrosting operation without affecting the heating operation, and the defrosting performance is improved. Can improve the comfort of heating operation.

【0026】次に、本発明の第2の実施例について説明
する。冷凍サイクルの概要は第1の実施例と同じで、暖
房運転、冷房運転の方法についても同一である。
Next, a second embodiment of the present invention will be described. The outline of the refrigeration cycle is the same as that of the first embodiment, and the heating operation and cooling operation methods are also the same.

【0027】暖房運転時には第1の実施例と同様にして
反転除霜運転を行い、圧縮機3から四方弁4を介して室
外熱交換器1に導かれる冷媒は、分岐8によって室外熱
交換器1の上側パスと下側パスに分流される。ここで、
分岐8はT型の分岐で、分流前の四方弁4側の冷媒配管
9が水平に分岐8に入り、分流後の冷媒配管10a、1
0bを一方が上方に他方が水平になるように分岐8を配
置し、上方側に分岐した冷媒配管10aを室外熱交換器
1の上側パスに接続し、水平側に分岐した冷媒配管10
bを室外熱交換器1の下側パスに接続している。このた
め、分岐8での冷媒の分流は、冷媒流の慣性と重力によ
って、水平側の冷媒配管10bの方に多く流れることに
なる。
In the heating operation, the reverse defrosting operation is performed in the same manner as in the first embodiment, and the refrigerant introduced from the compressor 3 to the outdoor heat exchanger 1 via the four-way valve 4 is branched to the outdoor heat exchanger. It is divided into an upper path and a lower path of 1. here,
The branch 8 is a T-shaped branch, in which the refrigerant pipe 9 on the side of the four-way valve 4 before the diversion enters the branch 8 horizontally and the refrigerant pipes 10a, 1 after diversion
0b is arranged so that one side is upward and the other side is horizontal, and the refrigerant pipe 10a branched to the upper side is connected to the upper path of the outdoor heat exchanger 1, and the refrigerant pipe 10 branched to the horizontal side is connected.
b is connected to the lower path of the outdoor heat exchanger 1. Therefore, a large amount of the refrigerant split in the branch 8 flows toward the horizontal refrigerant pipe 10b due to the inertia and gravity of the refrigerant flow.

【0028】従って、溶けたシャーベット状のドレンと
の熱交換のために、より多くの熱量を必要とする下側パ
スの冷媒流量が増えることになり、効率的に除霜を行う
ことができて除霜時間を短くすることができる。しか
も、暖房運転時は分岐8は合流側となるため暖房運転時
の上側パスと下側パスの冷媒流量には影響を及ぼすこと
がない。
Therefore, the heat exchange with the melted sherbet-like drain increases the flow rate of the refrigerant in the lower path, which requires a larger amount of heat, and the defrosting can be performed efficiently. The defrosting time can be shortened. Moreover, since the branch 8 is on the merging side during the heating operation, it does not affect the refrigerant flow rates of the upper path and the lower path during the heating operation.

【0029】また、第2の実施例では、室外熱交換器1
の下側パスから減圧機構5bまでの冷媒配管11bが、
室外熱交換器1の下側パス出口より高くならないように
して、減圧機構5bの入口が室外熱交換器1の下側パス
出口より低い位置に配置している。また、室外熱交換器
1を上側および下側の上下2パスとし、かつ、除霜運転
時に上側パスは下から上に、下側は上から下に冷媒が流
れるようにしている。除霜運転時には溶けたシャーベッ
ト状のドレンとの熱交換のためにより多くの冷媒が下側
パスに凝縮して液冷媒が溜り易くなるが、上記の理由に
より熱交換器1の出口と減圧機構5bのヘッド高さが0
のため、従来例のヘッド高さがある場合のように冷媒を
押し上げることによる抵抗がない。また、上側パスは冷
媒を押し上げる方向に流れるのに対し、下側パスは冷媒
が下に下がって行く方向に流れるので、下側パスの方が
冷媒流通抵抗が小さくなる。従って、下側パスに冷媒が
溜ってしまうことがなくなり、下側パスの流通抵抗が増
えて冷媒流量が減ってしまうことがない。このため、効
率的に除霜を行うことができて除霜時間を短くすること
ができる。しかも、暖房運転時もヘッド差は0なので影
響がなく、また、暖房運転時の室外熱交換器1は気体冷
媒の成分が多くなるので冷媒の流れ方向による影響は少
ない。
Also, in the second embodiment, the outdoor heat exchanger 1
The refrigerant pipe 11b from the lower path to the pressure reducing mechanism 5b is
The inlet of the pressure reducing mechanism 5b is arranged at a position lower than the lower path outlet of the outdoor heat exchanger 1 so as not to be higher than the lower path outlet of the outdoor heat exchanger 1. Further, the outdoor heat exchanger 1 has two upper and lower paths, and the upper path allows the refrigerant to flow from the bottom to the top and the lower path allows the refrigerant to flow from the top to the bottom during the defrosting operation. During the defrosting operation, more refrigerant condenses in the lower path due to heat exchange with the melted sherbet-like drain, and the liquid refrigerant easily accumulates. Head height is 0
Therefore, there is no resistance due to pushing up the refrigerant as in the case of the conventional head height. Further, while the upper path flows in the direction in which the refrigerant is pushed up, the lower path flows in the direction in which the refrigerant descends, so the refrigerant flow resistance in the lower path becomes smaller. Therefore, the refrigerant does not accumulate in the lower path, and the flow resistance of the lower path does not increase and the refrigerant flow rate does not decrease. Therefore, the defrosting can be efficiently performed and the defrosting time can be shortened. Moreover, since the head difference is 0 even during the heating operation, there is no effect, and since the outdoor heat exchanger 1 during the heating operation has a large amount of the gas refrigerant component, the refrigerant flow direction has little effect.

【0030】このようにして、本発明の第2の実施例で
は、暖房運転時に影響することなく除霜運転時の上側パ
スと下側パスの流通抵抗の不均一だけを改善でき、除霜
性能が向上して暖房運転の快適性が向上させることがで
きる。
As described above, in the second embodiment of the present invention, only the non-uniformity of the flow resistance of the upper path and the lower path during the defrosting operation can be improved without affecting the heating operation, and the defrosting performance can be improved. Can improve the comfort of heating operation.

【0031】[0031]

【発明の効果】上記の実施例から明らかなように、本発
明は、四方弁と室外熱交換器の間で冷媒配管をT型分岐
で分岐し、分岐前の四方弁側の冷媒配管が水平に、分岐
後の冷媒配管が垂直になるようにT型分岐を配置し、上
方側に分岐した冷媒配管を室外熱交換器の上側パスに接
続し、下方側に分岐した冷媒配管を室外熱交換器の下側
パスに接続することにより、除霜運転時に溶けたシャー
ベット状のドレンとの熱交換のために、より多くの熱量
を必要とする下側パスの冷媒流量が増えることになり、
効率的に除霜を行うことができて除霜時間を短くするこ
とができる。しかも、暖房運転時は分岐は合流側となる
ため暖房運転時の上側パスと下側パスの冷媒流量には影
響を及ぼすことがない。
As is apparent from the above embodiments, the present invention divides the refrigerant pipe between the four-way valve and the outdoor heat exchanger into T-shaped branches, and the refrigerant pipe on the four-way valve side before branching is horizontal. , A T-shaped branch is arranged so that the refrigerant pipe after branching is vertical, the refrigerant pipe branched to the upper side is connected to the upper path of the outdoor heat exchanger, and the refrigerant pipe branched to the lower side is subjected to outdoor heat exchange. By connecting to the lower path of the vessel, due to heat exchange with the sherbet-like drain melted during defrosting operation, the refrigerant flow rate of the lower path that requires a larger amount of heat will increase,
The defrosting can be performed efficiently and the defrosting time can be shortened. Moreover, since the branch is on the merging side during the heating operation, it does not affect the refrigerant flow rates of the upper path and the lower path during the heating operation.

【0032】また、本発明は、四方弁と室外熱交換器の
間で冷媒配管をT型分岐で分岐し、分岐前の四方弁側の
冷媒配管が水平に、分岐後の冷媒配管が上方と水平にな
るようにT型分岐を配置し、上方側に分岐した冷媒配管
を室外熱交換器の上側パスに接続し、水平側に分岐した
冷媒配管を室外熱交換器の下側パスに接続することによ
り、除霜時に溶けたシャーベット状のドレンとの熱交換
のために、より多くの熱量を必要とする下側パスの冷媒
流量が増えることになり、効率的に除霜を行うことがで
きて除霜時間を短くすることができる。しかも、暖房運
転時は分岐は合流側となるため暖房運転時の上側パスと
下側パスの冷媒流量には影響を及ぼすことがない。
Further, according to the present invention, the refrigerant pipe is branched between the four-way valve and the outdoor heat exchanger by a T-shaped branch, the refrigerant pipe on the four-way valve side before branching is horizontal, and the refrigerant pipe after branching is on the upper side. The T-shaped branch is arranged to be horizontal, the refrigerant pipe branched to the upper side is connected to the upper path of the outdoor heat exchanger, and the refrigerant pipe branched to the horizontal side is connected to the lower path of the outdoor heat exchanger. As a result, due to heat exchange with the melted sherbet-like drain during defrosting, the refrigerant flow rate in the lower path, which requires a larger amount of heat, will increase, and defrosting can be performed efficiently. The defrosting time can be shortened. Moreover, since the branch is on the merging side during the heating operation, it does not affect the refrigerant flow rates of the upper path and the lower path during the heating operation.

【0033】また、本発明は、室外熱交換器の下側パス
から減圧機構までの冷媒配管が、室外熱交換器の下側パ
ス出口より高くならないようにして、減圧機構の入口が
室外熱交換器の下側パス出口より低い位置に配置される
ようにすることにより、除霜運転時に溶けたシャーベッ
ト状のドレンとの熱交換のためにより多くの冷媒が下側
パスに凝縮して液冷媒が溜り易くなっても、室外熱交換
器の出口から減圧機構までのヘッド高さが下側パスの方
が低く、冷媒を押し上げることによる抵抗が少ないため
冷媒が溜ってしまうことがなくなり、下側パスの流通抵
抗が増えて冷媒流量が減ってしまうことがない。このた
め、効率的に除霜を行うことができて除霜時間を短くす
ることができる。しかも、暖房運転時は冷媒が下に流れ
る方向なのでヘッド差の影響は殆どない。
Further, in the present invention, the refrigerant pipe from the lower path of the outdoor heat exchanger to the pressure reducing mechanism is prevented from being higher than the outlet of the lower path of the outdoor heat exchanger so that the inlet of the pressure reducing mechanism can exchange the outdoor heat. By placing it at a position lower than the lower path outlet of the vessel, more refrigerant condenses in the lower path due to heat exchange with the sherbet-like drain melted during defrosting operation, and the liquid refrigerant becomes Even if it easily collects, the head height from the outlet of the outdoor heat exchanger to the decompression mechanism is lower in the lower path, and there is less resistance by pushing up the refrigerant, so the refrigerant does not accumulate and the lower path The flow resistance of the refrigerant does not increase and the flow rate of the refrigerant does not decrease. Therefore, the defrosting can be efficiently performed and the defrosting time can be shortened. In addition, since the refrigerant flows downward during the heating operation, there is almost no influence of the head difference.

【0034】また、本発明は、室外熱交換器の下側パス
出口に対する、下側パスに接続されている減圧機構の入
口高さが、上側パス出口に対する、上側パスに接続され
ている減圧機構の入口高さと同じかまたは低くすること
により、除霜運転時に溶けたシャーベット状のドレンと
の熱交換のためにより多くの冷媒が下側パスに凝縮して
液冷媒が溜り易くなっても、室外熱交換器下側パスの出
口から減圧機構までのヘッド高さが0なので、冷媒を押
し上げることによる抵抗がないため冷媒が溜ってしまう
ことがなくなり、下側パスの流通抵抗が増えて冷媒流量
が減ってしまうことがない。このため、効率的に除霜を
行うことができて除霜時間を短くすることができる。し
かも、暖房運転時に除霜運転時と流れ方向が変わっても
ヘッド差は0なので影響はない。
Further, according to the present invention, the inlet height of the pressure reducing mechanism connected to the lower path with respect to the lower path outlet of the outdoor heat exchanger is such that the pressure reducing mechanism connected to the upper path with respect to the upper path outlet. By making it equal to or lower than the inlet height of, even if more refrigerant condenses in the lower path due to heat exchange with the sherbet-like drain melted during defrosting operation Since the head height from the outlet of the lower path of the heat exchanger to the pressure reducing mechanism is 0, there is no resistance due to pushing up the refrigerant, so that the refrigerant does not accumulate and the flow resistance of the lower path increases and the refrigerant flow rate increases. It never decreases. Therefore, the defrosting can be efficiently performed and the defrosting time can be shortened. Moreover, even if the flow direction changes during the heating operation and during the defrosting operation, the head difference is 0, so there is no effect.

【0035】さらに、本発明は、室外熱交換器を上側お
よび下側の上下2パスとし、かつ、除霜運転時に上側パ
スは下から上に、下側は上から下に冷媒が流れるように
することにより、除霜運転時には溶けたシャーベット状
のドレンとの熱交換のためにより多くの冷媒が下側パス
に凝縮して液冷媒が溜り易くなっても、上側パスは冷媒
を押し上げる方向に流れるのに対し、下側パスは冷媒が
下に下がって行く方向に流れるので、下側パスの方が冷
媒流通抵抗が小さくなり、下側パスに冷媒が溜ってしま
うことがなくなり、下側パスの流通抵抗が増えて冷媒流
量が減ってしまうことがない。このため、効率的に除霜
を行うことができて除霜時間を短くするとができる。し
かも、暖房運転時の室外熱交換器は気体冷媒の成分が多
くなるので冷媒の流れ方向による影響は少ない。
Further, according to the present invention, the outdoor heat exchanger has upper and lower two upper and lower paths, and during the defrosting operation, the upper path passes from the bottom to the top and the lower side allows the refrigerant to flow from the top to the bottom. By doing so, during defrosting operation, even though more refrigerant is condensed in the lower path due to heat exchange with the melted sherbet-like drain and liquid refrigerant easily accumulates, the upper path flows in a direction to push up the refrigerant. On the other hand, in the lower path, since the refrigerant flows in the direction in which the refrigerant flows downward, the refrigerant flow resistance in the lower path becomes smaller, and the refrigerant does not accumulate in the lower path. The flow resistance does not increase and the refrigerant flow rate does not decrease. Therefore, defrosting can be efficiently performed, and the defrosting time can be shortened. Moreover, since the outdoor heat exchanger during the heating operation contains a large amount of the gas refrigerant component, the influence of the refrigerant flow direction is small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施例の要部拡大図FIG. 1 is an enlarged view of a main part of the first embodiment.

【図2】第2の実施例の要部拡大図FIG. 2 is an enlarged view of a main part of the second embodiment.

【図3】第1の実施例の冷凍サイクル図FIG. 3 is a refrigeration cycle diagram of the first embodiment.

【図4】従来例の要部拡大図FIG. 4 is an enlarged view of a main part of a conventional example.

【符号の説明】[Explanation of symbols]

1 室外熱交換器 2 室内熱交換器 3 圧縮機 4 四方弁 5 減圧機構 6a 上側パスの熱交換パイプ 6b 下側パスの熱交換パイプ 7 熱交換器フィン 8 分岐 9 分岐前の冷媒配管 10a 上方側に分岐した冷媒配管 10b 下方側に分岐した冷媒配管 1 Outdoor Heat Exchanger 2 Indoor Heat Exchanger 3 Compressor 4 Four-way Valve 5 Pressure Reduction Mechanism 6a Upper Pass Heat Exchange Pipe 6b Lower Pass Heat Exchange Pipe 7 Heat Exchanger Fin 8 Branch 9 Refrigerant Pipe Before Branch 10a Upper Side Refrigerant pipe branched to 10b Refrigerant pipe branched to the lower side

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、四方弁、室内熱交換器、減圧機
構、室外熱交換器を冷媒配管で順次接続して冷凍サイク
ルを構成し、前記四方弁を切り換えることにより、冷房
および暖房運転が可能な空気調和機において、前記四方
弁と室外熱交換器の間で冷媒配管をT型分岐で分岐し、
分岐前の前記四方弁側の冷媒配管が水平に、分岐後の冷
媒配管が垂直になるようにT型分岐を配置し、上方側に
分岐した冷媒配管を前記室外熱交換器の上側パスに接続
し、下方側に分岐した冷媒配管を室外熱交換器の下側パ
スに接続することを特徴とする空気調和機。
1. A refrigeration cycle is constructed by sequentially connecting a compressor, a four-way valve, an indoor heat exchanger, a pressure reducing mechanism, and an outdoor heat exchanger with a refrigerant pipe, and by switching the four-way valve, cooling and heating operations can be performed. In a possible air conditioner, the refrigerant pipe is branched with a T-shaped branch between the four-way valve and the outdoor heat exchanger,
The T-shaped branch is arranged so that the refrigerant pipe on the four-way valve side before branching is horizontal and the refrigerant pipe after branching is vertical, and the refrigerant pipe branched on the upper side is connected to the upper path of the outdoor heat exchanger. The air conditioner is characterized in that the refrigerant pipe branched to the lower side is connected to the lower path of the outdoor heat exchanger.
【請求項2】圧縮機、四方弁、室内熱交換器、減圧機
構、室外熱交換器を冷媒配管で順次接続して冷凍サイク
ルを構成し、前記四方弁を切り換えることにより、冷房
および暖房運転が可能な空気調和機において、前記四方
弁と室外熱交換器の間で冷媒配管をT型分岐で分岐し、
分岐前の前記四方弁側の冷媒配管が水平に、分岐後の冷
媒配管が上方と水平になるようにT型分岐を配置し、上
方側に分岐した冷媒配管を室外熱交換器の上側パスに接
続し、水平側に分岐した冷媒配管を室外熱交換器の下側
パスに接続することを特徴とする空気調和機。
2. A refrigeration cycle is constructed by sequentially connecting a compressor, a four-way valve, an indoor heat exchanger, a pressure reducing mechanism, and an outdoor heat exchanger with a refrigerant pipe, and by switching the four-way valve, cooling and heating operations can be performed. In a possible air conditioner, the refrigerant pipe is branched with a T-shaped branch between the four-way valve and the outdoor heat exchanger,
The T-shaped branch is arranged so that the refrigerant pipe on the side of the four-way valve before branching is horizontal and the refrigerant pipe after branching is horizontal with the upper side, and the refrigerant pipe branched on the upper side is used as the upper path of the outdoor heat exchanger. An air conditioner characterized by connecting and connecting a refrigerant pipe branched to a horizontal side to a lower path of an outdoor heat exchanger.
【請求項3】圧縮機、四方弁、室内熱交換器、減圧機
構、室外熱交換器を冷媒配管で順次接続して冷凍サイク
ルを構成し、前記四方弁を切り換えることにより、冷房
および暖房運転が可能な空気調和機において、前記室外
熱交換器の下側パスから前記減圧機構までの冷媒配管
が、前記室外熱交換器の下側パス出口より高くならない
ようにして、前記減圧機構の入口が前記室外熱交換器の
下側パス出口より低い位置に配置されるようにしたこと
を特徴とする空気調和機。
3. A refrigeration cycle is formed by sequentially connecting a compressor, a four-way valve, an indoor heat exchanger, a pressure reducing mechanism, and an outdoor heat exchanger to form a refrigeration cycle, and by switching the four-way valve, cooling and heating operations can be performed. In a possible air conditioner, the refrigerant pipe from the lower path of the outdoor heat exchanger to the pressure reducing mechanism is not higher than the lower path outlet of the outdoor heat exchanger, and the inlet of the pressure reducing mechanism is An air conditioner characterized in that it is arranged at a position lower than the lower path outlet of the outdoor heat exchanger.
【請求項4】圧縮機、四方弁、室内熱交換器、減圧機
構、室外熱交換器を冷媒配管で順次接続して冷凍サイク
ルを構成し、前記四方弁を切り換えることにより、冷房
および暖房運転が可能な空気調和機において、前記室外
熱交換器の下側パス出口に対する、下側パスに接続され
ている前記減圧機構の入口高さが、上側パス出口に対す
る、上側パスに接続されている前記減圧機構の入口高さ
と同じかまたは低くなっていることを特徴とする空気調
和機。
4. A refrigeration cycle is constructed by sequentially connecting a compressor, a four-way valve, an indoor heat exchanger, a decompression mechanism, and an outdoor heat exchanger with a refrigerant pipe, and by switching the four-way valve, cooling and heating operations can be performed. In a possible air conditioner, the inlet height of the decompression mechanism connected to the lower path with respect to the lower path outlet of the outdoor heat exchanger, the inlet pressure of the decompression mechanism with respect to the upper path outlet, the decompression connected to the upper path An air conditioner characterized by being equal to or lower than the entrance height of the mechanism.
【請求項5】圧縮機、四方弁、室内熱交換器、減圧機
構、室外熱交換器を冷媒配管で順次接続して冷凍サイク
ルを構成し、前記四方弁を切り換えることにより、冷房
および暖房運転が可能な空気調和機において、前記四方
弁と前記室外熱交換器の間で冷媒配管を分岐して、前記
室外熱交換器を上側および下側の上下2パスとし、か
つ、除霜運転時に上側パスは下から上に、下側は上から
下に冷媒が流れるようにしたことを特徴とする空気調和
機。
5. A refrigeration cycle is formed by sequentially connecting a compressor, a four-way valve, an indoor heat exchanger, a pressure reducing mechanism, and an outdoor heat exchanger to form a refrigeration cycle, and by switching the four-way valve, cooling and heating operations can be performed. In a possible air conditioner, a refrigerant pipe is branched between the four-way valve and the outdoor heat exchanger so that the outdoor heat exchanger has upper and lower two upper and lower paths, and an upper path during defrosting operation. The air conditioner is characterized in that the refrigerant flows from the bottom to the top and the bottom from the top to the bottom.
JP7280361A 1995-10-27 1995-10-27 Air conditioner Pending JPH09119734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7280361A JPH09119734A (en) 1995-10-27 1995-10-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7280361A JPH09119734A (en) 1995-10-27 1995-10-27 Air conditioner

Publications (1)

Publication Number Publication Date
JPH09119734A true JPH09119734A (en) 1997-05-06

Family

ID=17623942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7280361A Pending JPH09119734A (en) 1995-10-27 1995-10-27 Air conditioner

Country Status (1)

Country Link
JP (1) JPH09119734A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103727829A (en) * 2012-10-15 2014-04-16 海尔集团公司 Tubing structure of condenser and condenser
JP2015180851A (en) * 2015-07-24 2015-10-15 パナソニックIpマネジメント株式会社 Refrigeration cycle device
CN105352225A (en) * 2014-08-21 2016-02-24 广东美的制冷设备有限公司 Air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103727829A (en) * 2012-10-15 2014-04-16 海尔集团公司 Tubing structure of condenser and condenser
CN105352225A (en) * 2014-08-21 2016-02-24 广东美的制冷设备有限公司 Air conditioner
CN105352225B (en) * 2014-08-21 2018-02-02 广东美的制冷设备有限公司 Air conditioner
JP2015180851A (en) * 2015-07-24 2015-10-15 パナソニックIpマネジメント株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP5496217B2 (en) heat pump
US9377225B2 (en) Outdoor heat exchanger and air conditioner comprising the same
JPH0333985B2 (en)
CN107763774A (en) Air conditioner cooling cycle system and air conditioner
CN204630138U (en) Air-conditioner
CN108800384A (en) Air-conditioning system and air conditioner
CN102022853A (en) Air conditioner system
KR20120114576A (en) An air conditioner
CN105352225A (en) Air conditioner
CN113494790B (en) Refrigerating system, defrosting control method and refrigerating equipment thereof
JP2002318039A5 (en)
KR102136883B1 (en) A heat pump system
JPH09119734A (en) Air conditioner
JP2001099510A (en) Air conditioner
CN204063693U (en) Air-conditioner
JP2015121351A (en) Heat exchanger
JPH07332814A (en) Heat pump system
JP2000009370A (en) Air conditioner
KR100220725B1 (en) Refrigerant distribution structure of condenser for airconditioner
JP2013204913A (en) Heat exchanger
KR20210104476A (en) Air conditioner
JP2013204952A (en) Refrigeration cycle device
WO2015129398A1 (en) Air conditioner
JPH10160190A (en) Air conditioner
JPH1068560A (en) Refrigeration cycle device