JPH09119317A - Intake controller for internal combustion engine - Google Patents

Intake controller for internal combustion engine

Info

Publication number
JPH09119317A
JPH09119317A JP7280082A JP28008295A JPH09119317A JP H09119317 A JPH09119317 A JP H09119317A JP 7280082 A JP7280082 A JP 7280082A JP 28008295 A JP28008295 A JP 28008295A JP H09119317 A JPH09119317 A JP H09119317A
Authority
JP
Japan
Prior art keywords
intake
intake passage
valve
passage
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7280082A
Other languages
Japanese (ja)
Inventor
Yasuyuki Ito
泰之 伊藤
Kazuhiko Kanetoshi
和彦 兼利
Takayuki Toshiro
隆之 戸城
Koichi Mori
浩一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP7280082A priority Critical patent/JPH09119317A/en
Publication of JPH09119317A publication Critical patent/JPH09119317A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve combustion at low-load low-speed to medium-load medium- speed and combustion stability, and provide large torque at the time of high-load high-speed. SOLUTION: In an intake device for internal combustion engine, which is mounted on a multiple-valve type engine and consists of a main intake passage 1, a plurality of sub intake passages 3-1 to 3-4 and an intake passage control valve 2, the upstream end parts 3-1a, 3-2a, 3-3a, 3-4a of the sub intake passages 3-1 to 3-4 are disposed at different positions so that the number of the sub intake passages 3-1 to 3-4 which permit intake to be passed according to the opening of an intake passage control valve 2 may be changed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の吸気制御装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake control device for an internal combustion engine.

【0002】[0002]

【従来の技術】従来の内燃機関の吸気制御装置として
は、例えば特開平5−39725号に示すようなものが
ある。
2. Description of the Related Art As a conventional intake air control device for an internal combustion engine, there is, for example, one disclosed in Japanese Patent Laid-Open No. 5-39725.

【0003】[0003]

【発明が解決しようとする課題】このような従来の内燃
機関の吸気制御装置にあっては、低負荷低回転時に副吸
気通路により吸気を供給することで燃焼室内にスワール
を形成させスワールの効果により燃焼改善効果により良
好な燃焼を可能にしていたが、高負荷時、高速時には十
分な量の吸気を燃焼室に送ることができず必要なトルク
を得ることが出来ない。また、主吸気通路に比べ径の小
さい副通路を用いるためにデポの堆積による詰まりが発
生したり、副吸気通路の加工が難しいという問題点があ
った。
In such an intake control device for a conventional internal combustion engine, the swirl is formed in the combustion chamber by supplying intake air through the auxiliary intake passage at low load and low rotation speed. As a result, good combustion was enabled by the combustion improving effect, but at the time of high load and high speed, a sufficient amount of intake air could not be sent to the combustion chamber, and the required torque could not be obtained. Further, since the auxiliary passage having a diameter smaller than that of the main intake passage is used, there are problems that clogging due to deposition of depots occurs and it is difficult to process the auxiliary intake passage.

【0004】本発明は上述の従来の問題点に着目してな
されたもので、低負荷低回転〜中負荷中回転時における
燃焼の改善および燃焼安定性の向上を図るとともに、高
負荷高回転時に大トルクを得ることを可能とすることを
第1の目的とし、さらに、副吸気通路における詰まりの
防止および加工性の向上を図ることを第2の目的として
いる。
The present invention has been made by paying attention to the above-mentioned conventional problems, and aims to improve the combustion and the combustion stability at low load low rotation to medium load medium rotation, and at the time of high load high rotation. A first object is to make it possible to obtain a large torque, and a second object is to prevent clogging in the auxiliary intake passage and improve workability.

【0005】[0005]

【課題を解決するための手段】上述の第1の目的を達成
するために、請求項1記載の発明では、1つの気筒に対
し吸気弁および吸気通路を有する多弁式エンジンにおい
て主吸気通路と複数の副吸気通路と吸気通路切り換え用
バルブからなる内燃機関の吸気装置において、前記吸気
通路切り換え用バルブを制御することにより、副吸気通
路の本数を変化させ、吸気流量,吸気方向を制御する構
成とした。
In order to achieve the above first object, in the invention according to claim 1, in a multi-valve engine having an intake valve and an intake passage for one cylinder, a main intake passage and a plurality of intake passages are provided. In the intake system for an internal combustion engine, which comprises the auxiliary intake passage and the intake passage switching valve, the number of auxiliary intake passages is changed by controlling the intake passage switching valve, and the intake flow rate and the intake direction are controlled. did.

【0006】なお、前記吸気通路切り換え用バルブを、
弁軸を中心に回動する吸気制御弁と、この吸気制御弁が
当接する円弧状の内壁と、この内壁に開口する通路によ
り構成してもよい(請求項2)。また、低負荷運転時に
タンブル流を形成し、中負荷運転時にスワール流を形成
するように前記吸気通路切り換え用バルブを制御するよ
うに構成してもよい(請求項3)。
The intake passage switching valve is
The intake control valve may be configured to rotate about the valve shaft, an arc-shaped inner wall with which the intake control valve abuts, and a passage opening to the inner wall (claim 2). Further, the intake passage switching valve may be controlled so that a tumble flow is formed during low load operation and a swirl flow is formed during medium load operation (claim 3).

【0007】また、上述の第2の目的を達成するため
に、請求項4記載の発明では、前記副吸気通路をグルー
ブにより構成した。
Further, in order to achieve the above-mentioned second object, in the invention according to claim 4, the sub intake passage is constituted by a groove.

【0008】[0008]

【作用】本発明では、副吸気通路を複数持ちエンジンの
要求吸気量に合わせて吸気通路の数を変化させることに
より吸気量不足にならず、また吸気通路を複数にして吸
気量にあった通路の数にするために吸気の流速を一定に
出来、安定したスワール,タンブルを得られ、低空気量
時にも高空気量時にも良好な燃焼を得ることが出来、副
通路としてグルーブを使用することで従来の問題点であ
ったデポ等による詰まりは燃料に洗われることにより解
決され、また副通路としてグルーブを使用するのでパイ
プ等の副通路に比べ加工が楽になっている。
According to the present invention, the intake amount is not insufficient by having a plurality of auxiliary intake passages and changing the number of intake passages in accordance with the required intake amount of the engine. The flow velocity of the intake air can be made constant in order to obtain a constant number, and stable swirl and tumble can be obtained, good combustion can be obtained at both low air amount and high air amount, and a groove is used as a sub passage. However, clogging due to depots, which has been a problem in the past, is solved by being washed with fuel, and since a groove is used as a sub passage, processing is easier than with a sub passage such as a pipe.

【0009】[0009]

【実施例】以下、この発明を図に基づいて説明する。図
1,2は、この発明の第1実施例を示す図である。ま
ず、構成を説明すると、1はエンジン燃焼室内に吸気を
送る主吸気通路であり、2は主吸気通路1の上流に設け
られた吸気通路制御弁である。3−1〜3−4は主吸気
通路1にグルーブ状に設けられた副吸気通路である。こ
の副吸気通路3を通る吸気は吸気通路制御弁2によって
制御される。4は主吸気通路1を通る吸気に燃料を供給
する燃料噴射弁であり、5は吸入された混合気を燃焼さ
せる燃焼室、6a,6bは吸気バルブ、7は燃焼室5内
に吸入された混合気に火花点火させる点火栓である。8
は吸気ポートである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. 1 and 2 are diagrams showing a first embodiment of the present invention. First, the structure will be described. Reference numeral 1 is a main intake passage for sending intake air into the engine combustion chamber, and 2 is an intake passage control valve provided upstream of the main intake passage 1. 3-1 to 3-4 are sub intake passages provided in the main intake passage 1 in a groove shape. The intake air passing through the auxiliary intake passage 3 is controlled by the intake passage control valve 2. Reference numeral 4 is a fuel injection valve for supplying fuel to intake air passing through the main intake passage 1, 5 is a combustion chamber for burning the intake air-fuel mixture, 6a and 6b are intake valves, and 7 is intake into the combustion chamber 5. It is a spark plug that spark-ignites a mixture. 8
Is the intake port.

【0010】9は吸気制御弁であり、弁軸10を中心に
回動する。吸気制御弁9の端部9aが当接する吸気通路
内壁12は図1のように断面略円弧状をなす。
Reference numeral 9 is an intake control valve, which rotates around a valve shaft 10. The intake passage inner wall 12 with which the end portion 9a of the intake control valve 9 abuts has a substantially arcuate cross section as shown in FIG.

【0011】前記副吸気通路3−1〜3−4の上流側端
部は、この円弧状の吸気通路内壁12に位置する。
The upstream side ends of the sub intake passages 3-1 to 3-4 are located on the arc-shaped intake passage inner wall 12.

【0012】本実施例は、主吸気通路1が下流側におい
て2つの吸気ポート8a,8bに分岐する、いわゆるサ
イアミーズ形式の吸気通路を形成する。
In this embodiment, the main intake passage 1 forms a so-called Siamese type intake passage in which the main intake passage 1 branches into two intake ports 8a and 8b on the downstream side.

【0013】次に、実施例の作用を説明する。アイドル
状態や、低負荷低回転時等のエンジンの必要吸気量が少
ないときは吸気制御弁9を閉じて主吸気通路1には空気
が流れず副吸気通路3−1〜3−4のみに吸入空気が流
れるようにする。この時、吸気制御弁9が全閉であり
(図1の位置)、副吸気通路3−1,3−4の上流側端
部3−1a,3−4aは吸気制御弁9よりも上流側に位
置し、副吸気通路3−2,3−3は下流側に位置するの
で吸入空気は副吸気通路3−1,3−4を通って燃焼室
5に供給される。副吸気通路3−1,3−4によって供
給された吸気は副吸気通路3−1,3−4を通るあいだ
に指向性と一定の流速を持ち副吸気通路3−1,3−4
を出ても拡散すること無く燃焼室5に入り、燃焼室5内
に縦向きの強い渦流(タンブル)を成形し燃焼性を改善
する。
Next, the operation of the embodiment will be described. When the amount of intake air required by the engine is small, such as in an idle state or under low load and low rotation, the intake control valve 9 is closed and air does not flow into the main intake passage 1 and is sucked into only the sub intake passages 3-1 to 3-4. Allow the air to flow. At this time, the intake control valve 9 is fully closed (position in FIG. 1), and the upstream end portions 3-1a and 3-4a of the auxiliary intake passages 3-1 and 3-4 are located upstream of the intake control valve 9. Since the auxiliary intake passages 3-2 and 3-3 are located on the downstream side, intake air is supplied to the combustion chamber 5 through the auxiliary intake passages 3-1 and 3-4. The intake air supplied by the auxiliary intake passages 3-1 and 3-4 has directivity and a constant flow velocity while passing through the auxiliary intake passages 3-1 and 3-4, and the auxiliary intake passages 3-1 and 3-4.
Even if it goes out, it enters the combustion chamber 5 without diffusion and forms a strong vertically oriented vortex (tumble) in the combustion chamber 5 to improve the combustibility.

【0014】次に中負荷時、中回転時等、エンジンの必
要吸入空気量が多くなると、吸気制御弁9を開いてい
く。この時、吸気制御弁9は、図示されていないアクチ
ュエータで、アクセル回度やエアフローメータの信号な
どから必要吸入空気量をECU(エンジンコントロール
ユニット)で算出して開度を制御される。すると今まで
閉ざされていた副吸気通路3−2や3−3と連通する事
になる。まず3−2の上流側端部3−2aが吸気制御弁
9の上流側に位置するようになり、さらに吸気制御弁9
が開くと、このために吸気流量が多くなっても吸気抵抗
を起こすことなく吸気することが可能となる。本実施例
においては高流量時の副吸気通路3−2,3−3を片側
の吸気ポート8aにしか付けていないので、吸気制御弁
9が閉じていた時には燃焼室5内の混合気の流れは副吸
気通路3−1,3−4により形成されていたタンブル流
A(図1参照)のみであった燃焼室5内の吸気の流れ
が、吸気制御弁9を開いていくことにより副吸気通路3
−2,3−3によって吸気ポート8a側から燃焼室5へ
流入する吸気量が多くなるので、横向きの強い渦流(ス
ワール)B(図2参照)を形成して燃焼安定性を向上さ
せることが出来る。
Next, when the required intake air amount of the engine becomes large at the time of medium load, medium rotation, etc., the intake control valve 9 is opened. At this time, the intake control valve 9 is an actuator (not shown), and the opening degree is controlled by calculating the required intake air amount by an ECU (engine control unit) from the accelerator rotation rate, the signal of the air flow meter, and the like. Then, the auxiliary intake passages 3-2 and 3-3 which have been closed until now are communicated. First, the upstream end 3-2a of 3-2 comes to be located on the upstream side of the intake control valve 9, and the intake control valve 9
When is opened, intake can be performed without causing intake resistance even if the intake flow rate increases for this reason. In this embodiment, the auxiliary intake passages 3-2 and 3-3 at the time of high flow rate are attached only to the intake port 8a on one side. Therefore, when the intake control valve 9 is closed, the flow of the air-fuel mixture in the combustion chamber 5 is increased. Is only the tumble flow A (see FIG. 1) formed by the auxiliary intake passages 3-1 and 3-4, and the intake flow in the combustion chamber 5 opens the intake control valve 9 to open the auxiliary intake air. Passage 3
-2, 3-3 increases the amount of intake air flowing into the combustion chamber 5 from the intake port 8a side, so that a strong lateral swirl (swirl) B (see FIG. 2) can be formed to improve combustion stability. I can.

【0015】このように吸気制御弁9は、図5に示すよ
うにエンジンの必要吸気量に応じて制御され、副吸気通
路3−1〜3−4への接続を行い、吸気制御弁9により
流路を切り換えられた吸気はこの副吸気通路3−1〜3
−4にそって進み、指向性と一定の流速をもって燃焼室
5に流れ込む。それにより、燃焼室5内には吸気制御弁
9の開度に応じて、タンブル,スワールを形成すること
になり、タンブルにより燃焼を改善し、スワールにより
燃焼安定性を向上させることが出来る。
In this way, the intake control valve 9 is controlled according to the required intake amount of the engine as shown in FIG. 5, is connected to the auxiliary intake passages 3-1 to 3-4, and is controlled by the intake control valve 9. The intake air whose flow path has been switched is the auxiliary intake passage 3-1 to 3-3.
-4, flowing into the combustion chamber 5 with directivity and a constant flow velocity. As a result, tumble and swirl are formed in the combustion chamber 5 in accordance with the opening degree of the intake control valve 9. Combustion can be improved by tumble and combustion stability can be improved by swirl.

【0016】この時、スワール,タンブルを形成させる
副吸気通路3−1〜3−4をパイプ等にせずブルーブに
することにより、デポの堆積やデポによる詰まりが燃料
にさらされる事により無くなり、不具合が起こらなくな
り、吸気がグルーブ内を高流速で流れるのでグルーブ内
に負圧が起こり、ミスト化している燃料が流れに吸い込
まれ、効果的に燃焼室5内に充填されるので、燃料噴射
弁4から噴射された燃料が吸気通路内に残ることもなく
なり壁流を減少させる事が出来る効果もある。また、加
工性を考えた時には主吸気通路1との一体成形ができる
ので容易に作ることが出来、主吸気通路1に副吸気通路
3−1〜3−4が一体になっているのでレイアウトも容
易に出来る。
At this time, by making the auxiliary intake passages 3-1 to 3-4 for forming swirls and tumbles blues without using pipes or the like, the accumulation of depots and the clogging due to depots are eliminated by being exposed to the fuel, which causes a problem. Occurs, and the intake air flows at a high flow rate in the groove, so that a negative pressure occurs in the groove and the mist fuel is sucked into the flow and is effectively filled in the combustion chamber 5, so that the fuel injection valve 4 The fuel injected from is not left in the intake passage, and the wall flow can be reduced. Also, considering workability, it can be easily molded because it can be integrally formed with the main intake passage 1, and the main intake passage 1 and the auxiliary intake passages 3-1 to 3-4 are integrated, so that the layout is also Easy to do.

【0017】また、高回転、高負荷運転時は、吸気制御
弁9はさらに開き、その端部9aは吸気通路内壁12の
円弧状部分より抜け出すので、吸気の流れは副吸気通路
3−1〜3−4よりも主吸気通路1が主流となり、大量
の吸気を燃焼室5へ供給することができ、所望のエンジ
ンの大出力を発生させることができる。
Further, at the time of high rotation and high load operation, the intake control valve 9 is further opened, and the end portion 9a thereof comes out from the arc-shaped portion of the inner wall 12 of the intake passage. The main intake passage 1 becomes the main flow rather than 3-4, a large amount of intake air can be supplied to the combustion chamber 5, and a desired large output of the engine can be generated.

【0018】次に、図3に示す第2実施例について説明
する。第2実施例では、副吸気通路3−1〜3−3を1
つの吸気ポート8aのみに向けて設けることにより、高
負荷・高回転時は、吸気制御弁9が円弧状の吸気通路内
壁12から抜け出た状態となりタンブルが形成され、そ
れ以外では、副吸気通路3−1〜3−3からの吸気によ
りタンブル,スワールを同時に形成させ双方の効果によ
り燃焼安定性を得ることが出来る。
Next, a second embodiment shown in FIG. 3 will be described. In the second embodiment, the auxiliary intake passages 3-1 to 3-3 are set to 1
By providing only one intake port 8a, at the time of high load / high rotation, the intake control valve 9 comes out of the arc-shaped intake passage inner wall 12 to form a tumble, and in other cases, the auxiliary intake passage 3 is formed. The tumble and swirl are simultaneously formed by the intake air from -1 to 3-3, and the combustion stability can be obtained by both effects.

【0019】次に、図4に示す第3実施例について説明
する。
Next, a third embodiment shown in FIG. 4 will be described.

【0020】第3実施例では副吸気通路3−1〜3−6
をそれぞれ3本づつ各吸気ポート8a,8bに向けて対
称的に設けることにより、低負荷低回転域〜高負荷回転
域までタンブルによる燃焼改善の効果を得ることが出来
る。これにより、副吸気通路3−1〜3−6を使わない
時に比べ空燃比をリーン状態にすることが出来るので燃
費を低く抑えることが出来る。
In the third embodiment, the auxiliary intake passages 3-1 to 3-6
By arranging three of them symmetrically toward each intake port 8a, 8b, the effect of combustion improvement by tumble can be obtained from the low load low rotation range to the high load rotation range. As a result, the air-fuel ratio can be made leaner than when the auxiliary intake passages 3-1 to 3-6 are not used, and fuel consumption can be suppressed to a low level.

【0021】[0021]

【発明の効果】以上説明してきたように、請求項1〜3
に記載の発明によれば、その構成を副吸気通路を複数持
ち吸気通路制御弁により制御して、エンジンの必要吸入
空気量に応じて副吸気通路を切り替えるように構成した
ため、高負荷時や高回転時にタンブル,スワールを形成
し燃焼改善、燃焼安定性の効果を得ることが出来る。
As described above, according to claims 1 to 3.
According to the invention described in (1), the configuration is such that it has a plurality of auxiliary intake passages and is controlled by the intake passage control valve to switch the auxiliary intake passages according to the required intake air amount of the engine. Tumble and swirl are formed at the time of rotation, and the effects of combustion improvement and combustion stability can be obtained.

【0022】また、請求項4記載の発明によれば、副吸
気通路をパイプなどにせずグルーブとしたため、デポに
よる詰まり等の不具合をなくし吸気ポートの壁流を減ら
し、加工も楽にできるという効果が得られる。
According to the fourth aspect of the invention, since the sub-intake passage is not a pipe or the like but is a groove, it is possible to eliminate problems such as clogging due to depots, reduce the wall flow of the intake port, and facilitate machining. can get.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例の上方から見た構造説明図である。FIG. 1 is a structural explanatory view of a first embodiment viewed from above.

【図2】第1実施例の側面から見た構造説明図である。FIG. 2 is a structural explanatory view as seen from a side surface of the first embodiment.

【図3】第2実施例の上方から見た構造説明図である。FIG. 3 is a structural explanatory view of the second embodiment viewed from above.

【図4】第3実施例の上方から見た構造説明図である。FIG. 4 is a structural explanatory view of the third embodiment viewed from above.

【図5】必要吸入空気量と吸気通路制御弁開度の関係を
示す図である。
FIG. 5 is a diagram showing a relationship between a required intake air amount and an intake passage control valve opening degree.

【符号の説明】[Explanation of symbols]

1 主吸気通路 2 吸気通路制御弁 3−1〜3−6 副吸気通路 4 燃料噴射弁 5 燃焼室 6 吸気バルブ 7 点火栓 8 吸気ポート 9 吸気制御弁 12 吸気通路内壁 1 main intake passage 2 intake passage control valve 3-1 to 3-6 sub-intake passage 4 fuel injection valve 5 combustion chamber 6 intake valve 7 spark plug 8 intake port 9 intake control valve 12 intake passage inner wall

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 浩一 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Mori 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 1つの気筒に対し吸気弁および吸気通路
を有する多弁式エンジンにおいて主吸気通路と複数の副
吸気通路と吸気通路切り換え用バルブからなる内燃機関
の吸気装置において、 前記吸気通路切り換え用バルブを制御することにより、
副吸気通路の本数を変化させ、吸気流量,吸気方向を制
御することを特徴とした内燃機関の吸気制御装置。
1. An intake system for an internal combustion engine comprising a main intake passage, a plurality of auxiliary intake passages, and an intake passage switching valve in a multi-valve engine having an intake valve and an intake passage for one cylinder. By controlling the valve,
An intake control device for an internal combustion engine, characterized in that the number of auxiliary intake passages is changed to control the intake flow rate and the intake direction.
【請求項2】 前記吸気通路切り換え用バルブを、弁軸
を中心に回動する吸気制御弁と、この吸気制御弁が当接
する円弧状の内壁と、この内壁に開口する通路により構
成したことを特徴とする請求項1記載の内燃機関の吸気
制御装置。
2. The intake passage switching valve is constituted by an intake control valve that rotates about a valve shaft, an arc-shaped inner wall with which the intake control valve abuts, and a passage that opens into the inner wall. The intake control device for an internal combustion engine according to claim 1, characterized in that:
【請求項3】 低負荷運転時にタンブル流を形成し、中
負荷運転時にスワール流を形成するように前記吸気通路
切り換え用バルブを制御するようにしたことを特徴とす
る請求項1または2記載の内燃機関の吸気制御装置。
3. The intake passage switching valve is controlled so that a tumble flow is formed during low load operation and a swirl flow is formed during medium load operation. Intake control device for internal combustion engine.
【請求項4】 前記副吸気通路をグルーブにより構成し
たことを特徴とする請求項1ないし3記載の内燃機関の
吸気制御装置。
4. The intake control device for an internal combustion engine according to claim 1, wherein the auxiliary intake passage is formed by a groove.
JP7280082A 1995-10-27 1995-10-27 Intake controller for internal combustion engine Pending JPH09119317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7280082A JPH09119317A (en) 1995-10-27 1995-10-27 Intake controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7280082A JPH09119317A (en) 1995-10-27 1995-10-27 Intake controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH09119317A true JPH09119317A (en) 1997-05-06

Family

ID=17620066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7280082A Pending JPH09119317A (en) 1995-10-27 1995-10-27 Intake controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH09119317A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053378A1 (en) * 2021-09-30 2023-04-06 本田技研工業株式会社 Air intake structure for internal combustion engine
WO2023053377A1 (en) * 2021-09-30 2023-04-06 本田技研工業株式会社 Air intake structure for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053378A1 (en) * 2021-09-30 2023-04-06 本田技研工業株式会社 Air intake structure for internal combustion engine
WO2023053377A1 (en) * 2021-09-30 2023-04-06 本田技研工業株式会社 Air intake structure for internal combustion engine

Similar Documents

Publication Publication Date Title
JPH076395B2 (en) Internal combustion engine intake system
JPH0821342A (en) Fuel injection type engine
JP4032906B2 (en) Multi-cylinder engine intake system
JPH09119317A (en) Intake controller for internal combustion engine
JP3433851B2 (en) Engine intake control device
JP2000008970A (en) Internal combustion engine exhaust gas recirculation system
JPH02176115A (en) Intake control device for internal combustion engine
JPS627923A (en) Intake structure of engine
JPS63201336A (en) Multiple throttle type internal combustion engine
JPS633424Y2 (en)
JP2529692B2 (en) Multiple throttle device for internal combustion engine
JPH0583736B2 (en)
JP2004124738A (en) Intake system for multiple cylinder engine
JP2968066B2 (en) Engine intake system
JPH0861190A (en) Fuel injection type engine
JP2533172Y2 (en) Intake manifold for internal combustion engine
JPS588230A (en) Suction device for multi-cylinder internal combustion engine
JPS59147867A (en) Fuel injection type internal-combustion engine
JPH0343388Y2 (en)
JP2000186640A (en) Intake device of internal combustion engine
JPH10252577A (en) Egr distributing device of internal combustion engine
JPH0678729B2 (en) Intake device for intake 2-valve engine
JPS61167123A (en) Intake device of engine
JP2576124B2 (en) Engine intake system with multiple intake valves
JPH0355789Y2 (en)