JPH0355789Y2 - - Google Patents

Info

Publication number
JPH0355789Y2
JPH0355789Y2 JP1985121006U JP12100685U JPH0355789Y2 JP H0355789 Y2 JPH0355789 Y2 JP H0355789Y2 JP 1985121006 U JP1985121006 U JP 1985121006U JP 12100685 U JP12100685 U JP 12100685U JP H0355789 Y2 JPH0355789 Y2 JP H0355789Y2
Authority
JP
Japan
Prior art keywords
air
intake
passage
amount
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985121006U
Other languages
Japanese (ja)
Other versions
JPS6229443U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985121006U priority Critical patent/JPH0355789Y2/ja
Publication of JPS6229443U publication Critical patent/JPS6229443U/ja
Application granted granted Critical
Publication of JPH0355789Y2 publication Critical patent/JPH0355789Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) この考案は、複数の吸気弁と吸気通路を備えた
内燃機関の吸気装置に関する。
[Detailed Description of the Invention] (Industrial Field of Application) This invention relates to an intake system for an internal combustion engine that includes a plurality of intake valves and intake passages.

(従来の技術) 内燃機関の燃費向上等を目的として、燃焼室内
の吸気流動(スワール)を運転状態に応じて可変
制御する技術が種々提案されている(特開昭57−
105534号公報等参照)。
(Prior Art) Various technologies have been proposed to variably control the intake air flow (swirl) in the combustion chamber depending on the operating condition, with the aim of improving the fuel efficiency of internal combustion engines (Japanese Patent Application Laid-Open No. 1983-1999).
(Refer to Publication No. 105534, etc.)

第7図、第8図は、吸気マニホールド1の下流
の吸気通路を副吸気通路2と2つの主吸気通路
3,4とに分割したもので、主吸気通路3,4は
それぞれ吸気弁5,6を介して燃焼室7に接続さ
れ、副吸気通路2は吸気弁5の直前にて一方の主
吸気通路3と合流している。そして、主吸気通路
3,4に機関の低速低負荷時に閉じる遮断弁8,
9が介装されている。
7 and 8 show that the intake passage downstream of the intake manifold 1 is divided into an auxiliary intake passage 2 and two main intake passages 3 and 4. The auxiliary intake passage 2 is connected to the combustion chamber 7 via the intake valve 6, and the auxiliary intake passage 2 merges with one of the main intake passages 3 immediately before the intake valve 5. A shutoff valve 8, which closes when the engine is running at low speed and under low load, is installed in the main intake passages 3 and 4.
9 is interposed.

遮断弁8,9が閉じる低速低負荷時に、副吸気
通路2からのみ吸気が流入することで、吸気流が
偏ると共に流速が増大し、燃焼室7内に強いスワ
ールを発生する。従つて、燃焼速度が早まり、熱
効率が高まるので、燃費等の機関性能が向上され
る。
At low speed and low load when the shutoff valves 8 and 9 are closed, intake air flows only from the auxiliary intake passage 2, which biases the intake air flow and increases the flow velocity, creating a strong swirl within the combustion chamber 7. Therefore, the combustion speed is increased and thermal efficiency is increased, so engine performance such as fuel efficiency is improved.

また、遮断弁8,9が開く高速高負荷時には、
各通路2,3,4から吸気が流入するので、吸気
に抵抗を与えることがなく、従つて、吸気充填効
率が高まり初期の機関出力が確保される。尚、1
0,11は排気弁を示す。
In addition, at high speed and high load when the shutoff valves 8 and 9 open,
Since the intake air flows through each of the passages 2, 3, and 4, there is no resistance to the intake air, and therefore, the intake air filling efficiency is increased and the initial engine output is ensured. Furthermore, 1
0 and 11 indicate exhaust valves.

ところで、主吸気通路3,4のうち一方の通路
4では、遮断弁9の閉時に吸気弁6を通しての燃
焼室7からの燃焼ガスの吹返しにより、遮断弁9
にカーボン等が付着しやすく、遮断弁9が汚れや
すくなつている。
By the way, in one of the main intake passages 3 and 4, when the isolation valve 9 is closed, combustion gas blows back from the combustion chamber 7 through the intake valve 6, causing the isolation valve 9 to close.
Carbon and the like tend to adhere to the shutoff valve 9, making it easy to get dirty.

そこで、この例ではその吹返しを防ぐように、
遮断弁9の下流側に開口する空気通路12を形成
し、図示しない絞弁(スロツトル弁)の上流から
空気を遮断弁9下流側の主吸気通路4へ直接供給
するようにしている。
Therefore, in this example, to prevent that blowback,
An air passage 12 is formed that opens downstream of the cutoff valve 9, and air is directly supplied from upstream of a throttle valve (not shown) to the main intake passage 4 downstream of the cutoff valve 9.

尚、13,14は空気通路12を開閉する電磁
弁とその制御回路で、電磁弁13は遮断弁8,9
の閉時に空気通路12を開くようになつている。
In addition, 13 and 14 are electromagnetic valves and their control circuits that open and close the air passage 12, and the electromagnetic valve 13 is connected to the cutoff valves 8 and 9.
When the air passage 12 is closed, the air passage 12 is opened.

(考案が解決しようとする問題点) しかしながら、このような従来例にあつては、
空気通路12の径が一定であるため、次のような
問題を生じる。
(Problem that the invention attempts to solve) However, in such conventional examples,
Since the diameter of the air passage 12 is constant, the following problem occurs.

例えば、空気通路12の径が大きいと、遮断弁
9の汚れ防止には効果的となるが、機関のアイド
リング時のように吸気量が極小さい運転条件で
は、空気通路12からの空気量が多すぎてその分
副吸気通路2から流入する吸気量が少なくなり、
このため燃焼室7にて良好なスワールが得られな
くなつてしまう。
For example, if the diameter of the air passage 12 is large, it will be effective in preventing contamination of the shutoff valve 9, but under operating conditions such as when the engine is idling, where the amount of intake air is extremely small, the amount of air from the air passage 12 will be large. Therefore, the amount of intake air flowing in from the sub-intake passage 2 decreases accordingly.
For this reason, it becomes impossible to obtain a good swirl in the combustion chamber 7.

その半面、空気通路12の径が小さいと、吸気
量が大きい運転条件では、燃焼室7から吹返えさ
れるガス量が増加するにもかかわらず、空気通路
12からの空気量が不足するようになり、従つて
遮断弁9の汚れを防止することは難しい。特に汚
れがひどくなると、遮断弁9が作動不良を起こし
たり、固着することもある。
On the other hand, if the diameter of the air passage 12 is small, under operating conditions where the amount of intake air is large, the amount of air from the air passage 12 will be insufficient even though the amount of gas blown back from the combustion chamber 7 will increase. Therefore, it is difficult to prevent the shutoff valve 9 from becoming dirty. If the dirt becomes particularly severe, the shutoff valve 9 may malfunction or become stuck.

この考案は、運転状態に応じて所定のスワール
を確保しながら遮断弁の汚れを防止することを目
的としている。
The purpose of this invention is to prevent the isolation valve from becoming contaminated while ensuring a predetermined swirl depending on the operating state.

(問題点を解決するための手段) この考案は、第1図に示すように、燃焼室Aに
それぞれ吸気弁B,Cを介して接続する常用の副
吸気通路Dと、高出力用の主吸気通路Eとを設
け、主吸気通路Eに負荷に応じて開閉する遮断弁
Fを介装した内燃機関において、機関の運転状態
を検出する手段G,H,Iと、前記遮断弁Fの下
流側に開口して主吸気通路Eへ空気を供給するバ
イパス空気通路Jと、この供給空気量を制御する
バイパス空気量制御手段Kとを設け、前記運転状
態検出手段G,H,Iからの信号に基づき、前記
遮断弁Fの閉時に吸入空気量が増大するほど前記
供給空気量を増加させるようにしている。
(Means for solving the problem) As shown in Fig. 1, this invention consists of a commonly used auxiliary intake passage D connected to the combustion chamber A via intake valves B and C, and a main intake passage for high output. In an internal combustion engine, the main intake passage E is provided with a shutoff valve F that opens and closes depending on the load, and means G, H, and I for detecting the operating state of the engine, and downstream of the shutoff valve F are provided. A bypass air passage J that opens on the side and supplies air to the main intake passage E, and a bypass air amount control means K that controls the amount of air supplied are provided, and a bypass air passage J that is open to the side and supplies air to the main intake passage E, and a bypass air amount control means K that controls the amount of air supplied, Based on this, the supply air amount is increased as the intake air amount increases when the shutoff valve F is closed.

(作用) 従つて、遮断弁Fが閉じている状態ではバイパ
ス空気通路Jから遮断弁Fの下流側に供給される
空気量が増加するため、燃焼室Aからの燃焼ガス
の吹返しによる遮断弁Fの汚れが的確に防止さ
れ、他方極低速低負荷状態ではバイパス空気通路
Jからの空気量を少なくして副吸気通路Dからの
流入吸気による良好なスワールの生成が保たれ
る。
(Function) Therefore, when the shutoff valve F is closed, the amount of air supplied from the bypass air passage J to the downstream side of the shutoff valve F increases, so that the shutoff valve is closed due to the blowback of combustion gas from the combustion chamber A. Contamination of F is accurately prevented, and on the other hand, in extremely low speed and low load conditions, the amount of air from the bypass air passage J is reduced to maintain good swirl formation by the intake air flowing in from the auxiliary intake passage D.

(実施例) 第2図、第3図は本考案の実施例を示す概略構
成図とそのa−a断面図で、7は燃焼室、5,6
は吸気弁、3,4は吸気マニホールド1の下流に
て分割された主吸気通路、2は同じく分割され吸
気弁5の直前にて一方の主吸気通路3に合流する
副吸気通路である。
(Example) Figures 2 and 3 are a schematic configuration diagram showing an example of the present invention and its a-a sectional view, where 7 is a combustion chamber, 5, 6
3 and 4 are intake valves, 3 and 4 are main intake passages that are divided downstream of the intake manifold 1, and 2 is a sub-intake passage that is also divided and joins one of the main intake passages 3 immediately before the intake valve 5.

8,9は図示しないアクチユエータにより駆動
され、機関の低速低負荷時に主吸気通路3,4を
閉じる遮断弁である。
Reference numerals 8 and 9 indicate shutoff valves that are driven by actuators (not shown) and close the main intake passages 3 and 4 when the engine is running at low speed and low load.

ただし、この例では1気筒当たり2つの主吸気
通路3,4と遮断弁8,9を設けているが、副吸
気通路2が合流する主吸気通路3と遮断弁8を設
けず、第1図のようにしても良い。
However, in this example, two main intake passages 3, 4 and cutoff valves 8, 9 are provided per cylinder, but the main intake passage 3 and cutoff valve 8 where the auxiliary intake passage 2 joins are not provided, as shown in FIG. You can also do it like this.

そして、遮断弁9の下流側に開口して、図示し
ない絞弁の上流から遮断弁9の下流側の主吸気通
路4に直接空気を供給するバイパス空気通路15
が形成される。
A bypass air passage 15 opens downstream of the cutoff valve 9 and supplies air directly from upstream of a throttle valve (not shown) to the main intake passage 4 downstream of the cutoff valve 9.
is formed.

このバイパス空気通路15は、途中が第1の通
路16と第2の通路17とに分割され、第1の通
路16にオリフイス18が、第2の通路17にオ
リフイス19と電磁弁20がそれぞれ介装され
る。
This bypass air passage 15 is divided into a first passage 16 and a second passage 17 in the middle, and an orifice 18 is provided in the first passage 16, and an orifice 19 and a solenoid valve 20 are provided in the second passage 17. equipped.

一方、機関の運転状態を検出する手段として車
速を検出する車速センサ21と、機関回転数を検
出する回転センサ22と、機関吸入空気量を検出
する吸気量センサ23とが設けられる。
On the other hand, as means for detecting the operating state of the engine, there are provided a vehicle speed sensor 21 that detects the vehicle speed, a rotation sensor 22 that detects the engine rotational speed, and an intake air amount sensor 23 that detects the engine intake air amount.

これら各センサ21〜23からの検出信号は、
バイパス空気量制御手段としての制御回路24に
入力され、制御回路24はこれらの検出信号に基
づいて前記電磁弁20を開閉制御する。
The detection signals from each of these sensors 21 to 23 are
The signals are input to a control circuit 24 serving as bypass air amount control means, and the control circuit 24 controls opening and closing of the solenoid valve 20 based on these detection signals.

例えば、車速、回転数あるいは吸気量が所定値
よりも小さい運転状態では、制御回路24は電磁
弁20を閉じ、所定値以上の運転状態では、電磁
弁20を開くように制御する。
For example, the control circuit 24 closes the solenoid valve 20 when the vehicle speed, rotational speed, or intake amount is lower than a predetermined value, and opens the solenoid valve 20 when the vehicle speed, rotational speed, or intake amount is lower than a predetermined value.

次に作用を第4図のフローチヤートに基づいて
説明する。
Next, the operation will be explained based on the flowchart of FIG.

S1にて車速Vと回転数Nと吸気量Qが読込ま
れ、S2にて回転数Nと吸気量Qと定数kとから
機関の燃料供給量Tが算出される。
In S1, the vehicle speed V, rotational speed N, and intake air amount Q are read, and in S2, the engine fuel supply amount T is calculated from the rotational speed N, intake air amount Q, and constant k.

そして、S3〜S5にて車速Vと回転数Nと燃
料供給量Tがそれぞれ所定値と比較され、これら
の一つでも所定値よりも小さいときつまり機関の
極低速および低負荷域では、S6にて電磁弁20
が閉じられる。
Then, in S3 to S5, the vehicle speed V, the rotation speed N, and the fuel supply amount T are each compared with predetermined values, and if any one of these is smaller than the predetermined value, that is, in the extremely low speed and low load range of the engine, the process proceeds to S6. Solenoid valve 20
is closed.

従つて、このときバイパス空気通路15から第
1の通路16のみを通つた空気が遮断弁9の下流
側の主吸気通路4に供給されるが、この空気量は
少ないため、副吸気通路2から燃焼室7に流入す
る吸気量に影響を及ぼすことはなくなる。
Therefore, at this time, the air that has passed only through the first passage 16 from the bypass air passage 15 is supplied to the main intake passage 4 on the downstream side of the cutoff valve 9, but since the amount of air is small, the air that has passed only through the first passage 16 is supplied from the auxiliary intake passage 2. This no longer affects the amount of intake air flowing into the combustion chamber 7.

これにより、アイドリングを含む機関の極低速
低負荷時に、燃焼室7から遮断弁9側への燃焼ガ
スの吹返しを防止しつつ、副吸気通路2からの流
入空気により燃焼室7にて良好なスワールを確保
することができる。
This prevents combustion gas from blowing back from the combustion chamber 7 to the shutoff valve 9 side when the engine is operating at very low speeds and under low load, including idling, while ensuring that the air flowing in from the sub-intake passage 2 maintains a good flow in the combustion chamber 7. Swirl can be ensured.

この一方、S3〜S5にて車速Vと回転数Nと
燃料供給量Tのいずれも所定値以上のときには、
S7にて電磁弁20が開かれる。
On the other hand, when vehicle speed V, rotational speed N, and fuel supply amount T are all greater than predetermined values in S3 to S5,
The solenoid valve 20 is opened in S7.

すると、遮断弁9の下流側の主吸気通路4に
は、バイパス空気通路15から第1の通路16及
び第2の通路17を通つた空気が供給されること
になり、その空気量が増加される。
Then, air that has passed through the first passage 16 and the second passage 17 is supplied from the bypass air passage 15 to the main intake passage 4 on the downstream side of the shutoff valve 9, and the amount of air is increased. Ru.

このため、このような運転状態では、燃焼室7
から吹返される燃焼ガスも増加するが、この吹返
しをバイパス空気通路15からの空気によつて的
確に防ぐことができ、これにより遮断弁9の汚れ
を確実に防止することができる。
Therefore, under such operating conditions, the combustion chamber 7
Although the amount of combustion gas blown back from the engine increases, this blowback can be accurately prevented by the air from the bypass air passage 15, and thereby the isolation valve 9 can be reliably prevented from becoming contaminated.

尚、この運転状態では、機関の吸気量がある程
度大きくなるため、バイパス空気通路15からの
空気量を増加しても、燃焼室7にて所定のスワー
ルを維持できる。
Note that in this operating state, the intake air amount of the engine increases to a certain extent, so even if the amount of air from the bypass air passage 15 is increased, a predetermined swirl can be maintained in the combustion chamber 7.

ところで、電磁弁20の開閉条件として第5図
に示すように、車速Vと回転数Nと燃料供給量T
のいずれもが所定値よりも小さいときにのみ、電
磁弁20を閉じるようにしても良い。この場合に
は、例えば極低速域にあつてもある程度負荷が高
い状態であれば、バイパス空気通路15からの空
気量が増加されることから、遮断弁9の汚れ防止
により効果的となる。また、もちろん電磁弁20
の開閉を車速、回転数、吸気量のうち一つのパラ
メータにより制御することも可能である。
By the way, as shown in FIG. 5, the opening/closing conditions for the solenoid valve 20 are as follows: vehicle speed V, rotational speed N, and fuel supply amount T.
The solenoid valve 20 may be closed only when both of the values are smaller than a predetermined value. In this case, even in an extremely low speed range, if the load is high to some extent, the amount of air from the bypass air passage 15 is increased, making it more effective to prevent contamination of the shutoff valve 9. Also, of course, the solenoid valve 20
It is also possible to control the opening and closing of the engine using one of the following parameters: vehicle speed, rotational speed, and intake air amount.

尚、第6図に示すように、バイパス空気通路1
5の第1、第2の通路16,17に介装されるオ
リフイス18,19の口径を異なつたサイズに設
定しても良い。ただし、25は三方電磁弁で、制
御回路24からの信号により、通路16,17を
選択的に切り換えるものである。
In addition, as shown in FIG. 6, the bypass air passage 1
The diameters of the orifices 18 and 19 interposed in the first and second passages 16 and 17 may be set to different sizes. However, 25 is a three-way solenoid valve that selectively switches between the passages 16 and 17 in response to a signal from the control circuit 24.

(考案の効果) 以上のように本考案によれば、バイパス空気通
路から遮断弁下流の主吸気通路に供給する空気量
を運転状態に応じて増減するようにしたので、副
吸気通路からの流入吸気による燃焼室での良好な
吸気流動を確保しながら、燃焼ガスの吹返しによ
る遮断弁の汚れを的確に防止できるという効果が
ある。
(Effects of the invention) As described above, according to the invention, the amount of air supplied from the bypass air passage to the main intake passage downstream of the shutoff valve is increased or decreased depending on the operating condition, so that the amount of air flowing from the auxiliary intake passage This has the effect of accurately preventing fouling of the shutoff valve due to blowback of combustion gas while ensuring good flow of intake air in the combustion chamber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はクレーム対応図、第2図、第3図は本
考案の実施例を示す概略構成図とそのa−a線断
面図、第4図、第5図はその制御内容を示すフロ
ーチヤート、第6図は本考案の他の実施例を示す
概略構成図、第7図、第8図は従来例の概略構成
図とそのb−b線断面図である。 2……副吸気通路、3,4……主吸気通路、
5,6……吸気弁、7……燃焼室、8,9……遮
断弁、15……バイパス空気通路、16……第1
の通路、17……第2の通路、20……電磁弁、
21……車速センサ、22……回転センサ、23
……吸気量センサ、24……制御回路。
Fig. 1 is a diagram corresponding to claims, Figs. 2 and 3 are schematic configuration diagrams showing an embodiment of the present invention and a sectional view taken along line a-a, and Figs. 4 and 5 are flowcharts showing the control contents. , FIG. 6 is a schematic block diagram showing another embodiment of the present invention, and FIGS. 7 and 8 are a schematic block diagram of a conventional example and its sectional view taken along the line bb. 2... Sub-intake passage, 3, 4... Main intake passage,
5, 6... Intake valve, 7... Combustion chamber, 8, 9... Shutoff valve, 15... Bypass air passage, 16... First
passage, 17... second passage, 20... solenoid valve,
21... Vehicle speed sensor, 22... Rotation sensor, 23
...Intake air amount sensor, 24...Control circuit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 燃焼室にそれぞれ吸気弁を介して接続する副吸
気通路と、主吸気通路とを設け、主吸気通路に負
荷に応じて開閉する遮断弁を介装した内燃機関に
おいて、機関の運転状態を検出する手段と、前記
遮断弁の下流側に開口して主吸気通路へ空気を供
給するバイパス空気通路と、この供給空気量を制
御するバイパス空気量制御手段とを設け、前記運
転状態検出手段からの信号に基づき、前記遮断弁
閉時に吸入空気量が増大するほど前記供給空気量
を増加させるようにしたことを特徴とする内燃機
関の吸気装置。
Detects the operating state of the engine in an internal combustion engine in which a combustion chamber is provided with a sub-intake passage and a main intake passage, each connected to the combustion chamber via an intake valve, and the main intake passage is equipped with a cutoff valve that opens and closes depending on the load. means, a bypass air passage that opens downstream of the shutoff valve and supplies air to the main intake passage, and a bypass air amount control means that controls the amount of air supplied, and detects a signal from the operating state detection means. An intake device for an internal combustion engine based on the above, wherein the amount of supplied air is increased as the amount of intake air increases when the shutoff valve is closed.
JP1985121006U 1985-08-07 1985-08-07 Expired JPH0355789Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985121006U JPH0355789Y2 (en) 1985-08-07 1985-08-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985121006U JPH0355789Y2 (en) 1985-08-07 1985-08-07

Publications (2)

Publication Number Publication Date
JPS6229443U JPS6229443U (en) 1987-02-23
JPH0355789Y2 true JPH0355789Y2 (en) 1991-12-12

Family

ID=31009864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985121006U Expired JPH0355789Y2 (en) 1985-08-07 1985-08-07

Country Status (1)

Country Link
JP (1) JPH0355789Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060011A (en) * 1983-09-12 1985-04-06 Sumitomo Rubber Ind Ltd Low noise tire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060011A (en) * 1983-09-12 1985-04-06 Sumitomo Rubber Ind Ltd Low noise tire

Also Published As

Publication number Publication date
JPS6229443U (en) 1987-02-23

Similar Documents

Publication Publication Date Title
US4630581A (en) System for controlling vaporized fuel in an internal combustion engine
WO2001075287B1 (en) System and method for measuring recirculated exhaust gas flow in a compression-ignition engine
JPH02277919A (en) Suction device of multi-cylinder engine
JP2929845B2 (en) Intake control device for internal combustion engine
CA1146240A (en) Split type internal combustion engine
JPS61160539A (en) Suction passage controller for internal-combustion engine
JPH0355789Y2 (en)
JPS614823A (en) Intake devce for internal-combustion engine
JPH01100316A (en) Intake-air device of internal combustion engine
JPS60192869A (en) Exhaust recirculation controller for internal- combustion engine for car
JP2529692B2 (en) Multiple throttle device for internal combustion engine
JP2595237B2 (en) Failure diagnosis device for exhaust gas recirculation device
JPH0344216B2 (en)
JPS6350427Y2 (en)
JP3151736B2 (en) Engine exhaust system
JP2894028B2 (en) Intake control device for internal combustion engine
JPS63140835A (en) Intake controlling device of engine
JPS6161918A (en) Air intake device of internal-combustion engine
JPH0437236Y2 (en)
JPH0627799Y2 (en) Internal combustion engine intake system
JPH09119317A (en) Intake controller for internal combustion engine
JPH06101487A (en) Intake device for internal combustion engine
JPS6181552A (en) Exhaust gas cleaning device for car-mounted internal-combustion engine
JPH0726968A (en) Intake device of internal combustion engine
JPS63192946A (en) Exhaust gas recirculation apparatus in internal combustion engine