JPS6181552A - Exhaust gas cleaning device for car-mounted internal-combustion engine - Google Patents

Exhaust gas cleaning device for car-mounted internal-combustion engine

Info

Publication number
JPS6181552A
JPS6181552A JP59201176A JP20117684A JPS6181552A JP S6181552 A JPS6181552 A JP S6181552A JP 59201176 A JP59201176 A JP 59201176A JP 20117684 A JP20117684 A JP 20117684A JP S6181552 A JPS6181552 A JP S6181552A
Authority
JP
Japan
Prior art keywords
negative pressure
valve
exhaust gas
air
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59201176A
Other languages
Japanese (ja)
Inventor
Katsuhisa Amano
天野 勝久
Yasuo Arai
康夫 新井
Masahiko Asakura
正彦 朝倉
Noritaka Kushida
櫛田 孝隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP59201176A priority Critical patent/JPS6181552A/en
Publication of JPS6181552A publication Critical patent/JPS6181552A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/501Vehicle speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To prevent the deterioration of driving property, improve fuel consumption, and clean exhaust gas by providing a control circuit which detects engine load in three areas and sets air fuel ratio and the circulation rate of exhaust gas according to each loaded area. CONSTITUTION:When a car speed is above a defined speed and the negative pressure in an intake manifold is below a defined pressure, the output levels of an AND circuit 61 and an OR circuit 63 becomes high levels. And, the feed of fuel increases carrying out large reflux of exhaust. When the car speed is above the defined speed and the negative pressure in the intake manifold is above the defined pressure, the output level in the OR circuit 63 becomes a low level. Small exhaust recirculation is carried out by stopping the operation of a solenoid valve 38. Thereby, the deterioration of driving property can be prevented, and fuel consumption can be improved while cleaning exhaust gas.

Description

【発明の詳細な説明】 技術分野 本発明は車載内燃エンジンの排気浄化装置に関する。[Detailed description of the invention] Technical field The present invention relates to an exhaust gas purification device for a vehicle internal combustion engine.

背を技術 一般に、車載内燃エンジンの気化器には供給混合気の空
燃比を制御するためにエンジン負荷に応じてエンジンへ
の燃料供給量をUA整するパワーバルブが設けられてい
る。
2. Description of the Related Art In general, a carburetor of an on-vehicle internal combustion engine is provided with a power valve that adjusts the amount of fuel supplied to the engine according to the engine load in order to control the air-fuel ratio of the supplied air-fuel mixture.

一方、内燃エンジンの排ガス中の有害成分の1つである
NOx  (窒素酸化物)の発生を抑、1rllツるた
めにシリンダ内の燃焼温度の低下を図ることが必要であ
る。そこで、運転性能を損なわない程度に排ガスの一部
を吸気路に戻して再循環させることにより燃焼温度を低
下させる排気還流制(21I装置が設けられることがあ
る。
On the other hand, in order to suppress the generation of NOx (nitrogen oxides), which is one of the harmful components in the exhaust gas of an internal combustion engine, it is necessary to lower the combustion temperature within the cylinder. Therefore, an exhaust gas recirculation system (21I device) is sometimes provided, which lowers the combustion temperature by returning a portion of the exhaust gas to the intake passage and recirculating it to an extent that does not impair driving performance.

かかるパワーバルブ及び排気還流制(II装首丑を排気
浄化装置として備えた内燃エンジンにおいては、従来車
速が所定速度V+  (例えば、15km/h)以下又
は吸気マニホールド内の@汁か所定負圧P+  (例え
ば、150+++mHo)以下にある加速時の高負荷の
とぎには高出力を(qるためにパワーバルブが開弁作動
して空燃比がリッチ化され、例えば14.7付近の値と
なる。このとき、NOxの発生濃度が高くなるので排気
還流制御装置はエンジン負荷に比例した大けの排気還流
を行なう。
Conventionally, in an internal combustion engine equipped with such a power valve and an exhaust gas recirculation system (II neck system) as an exhaust purification device, the vehicle speed is lower than a predetermined speed V+ (for example, 15 km/h) or the @suction in the intake manifold is lower than a predetermined negative pressure P+. (for example, 150+++ mHo) or less during high load during acceleration, the power valve is opened to provide high output (q), and the air-fuel ratio is enriched, to a value around 14.7, for example. At this time, since the concentration of NOx generated increases, the exhaust gas recirculation control device performs a large amount of exhaust gas recirculation in proportion to the engine load.

また車速か所定速度71以上でかつ吸気マニホールド内
負圧が所定負圧以上にあるときには燃費の向上を図るた
めにパワーバルブが閉弁して空燃比がリーン化され、例
えば、16.5付近の値となる。このとぎ、排気還流制
御装置は運転性能を確保するためにエンジン負荷に比例
した小量の排気還流を行なう。
Furthermore, when the vehicle speed is above a predetermined speed of 71 and the negative pressure in the intake manifold is above a predetermined negative pressure, the power valve closes to make the air-fuel ratio leaner in order to improve fuel efficiency. value. At this point, the exhaust gas recirculation control device recirculates a small amount of exhaust gas in proportion to the engine load to ensure operational performance.

このように、エンジン低負荷時にパワーバルブの閉弁に
より空燃比をリーン化するとある程度燃費の向上を図る
ことができる。このときの燃費の向上を十分に図るため
には空燃比を更にリーン化することが必要である。しか
しながら、排気還流中はエンジンの吸入空気量に比例す
る故に空燃比のリーン化により排気還流量が燃料供給1
に対して大となり、運転性能の悪化を招くので燃費の向
上と排ガス浄化の両りを同時に図ることは難しいのであ
る。
In this way, by closing the power valve to lean the air-fuel ratio when the engine is under low load, it is possible to improve fuel efficiency to some extent. In order to sufficiently improve fuel efficiency at this time, it is necessary to make the air-fuel ratio even leaner. However, during exhaust recirculation, the amount of air intake into the engine is proportional to the intake air amount, so by making the air-fuel ratio leaner, the amount of exhaust recirculation increases to 1
This makes it difficult to improve fuel efficiency and purify exhaust gas at the same time, as this results in deterioration of driving performance.

R」し1見」L 本発明の目的はエンジン低負荷時に運転性能の悪化をI
G来することなく燃費の向上と排気浄化を図った排気浄
化装置を提供することである。
The purpose of the present invention is to reduce the deterioration of operating performance at low engine loads.
It is an object of the present invention to provide an exhaust purification device that improves fuel efficiency and purifies exhaust gas without causing excessive exhaust gas.

本発明の排気浄化装置はエンジンの負荷状態を3つの負
荷領域に分けて検出して各負荷領域に対応して空燃比及
び排気還流率を設定したことを特徴としている。
The exhaust gas purification device of the present invention is characterized in that the load state of the engine is detected in three load regions, and the air-fuel ratio and exhaust gas recirculation rate are set corresponding to each load region.

1iJ飢 以下、本発明の実施例を図面を参照して説明する。1iJ starvation Embodiments of the present invention will be described below with reference to the drawings.

第1図に示した本発明による排気浄化装置において、吸
入空気が大気吸入口1からエアクリーナ2、気化器3を
介してエンジン4に供給される。
In the exhaust gas purification device according to the present invention shown in FIG. 1, intake air is supplied from an atmospheric air intake port 1 to an engine 4 via an air cleaner 2 and a carburetor 3.

気化器3には絞り弁5が設けられ、絞り弁5の上流には
ベンチュリ6が形成され、ベンチコリ6より更に上流に
はチョーク弁7が設けられている。
The carburetor 3 is provided with a throttle valve 5, a venturi 6 is formed upstream of the throttle valve 5, and a choke valve 7 is provided further upstream of the venturi 6.

絞り弁5近傍は負圧検出孔8が形成され、負圧検出孔8
は絞り弁5の閉弁時に絞り弁5の上流に位置し、絞り弁
5の開弁時に絞り弁5の下流に位置する。またベンチュ
リ6にも負圧検出孔9が形成されている。
A negative pressure detection hole 8 is formed near the throttle valve 5;
is located upstream of the throttle valve 5 when the throttle valve 5 is closed, and is located downstream of the throttle valve 5 when the throttle valve 5 is open. Further, a negative pressure detection hole 9 is formed in the venturi 6 as well.

ベンチュリ6には主燃料供給系のメインノズル11が開
口し、メインノズル11からフロート室12に至るメイ
ン燃料通路13のメインジェット14より下流にメイン
エアブリード15が連通し、またその補助エアブリード
16も連通している。
A main nozzle 11 of the main fuel supply system opens in the venturi 6, and a main air bleed 15 communicates downstream of the main jet 14 in a main fuel passage 13 extending from the main nozzle 11 to the float chamber 12, and its auxiliary air bleed 16 also communicates with the main nozzle 11 of the main fuel supply system. It's communicating.

一方、絞り弁5近傍の内壁面には低速用燃料供給系のス
ローポート17及びアイドルポート18が間口しスロー
ポート17及びアイドルポート18はスロー燃料通路1
つを介してメイン燃料通路13に連通している。またス
ロー燃料通路19にはスローエアブリード20及びその
補助エアブリード21が連通している。補助エアブリー
ド16゜21には電磁弁22.23が設けられ、電域1
弁22.23の駆動時に補助エアブリード16.21が
連通され、非駆動時に補助エアブリード16゜21が閉
塞される。
On the other hand, the slow port 17 and idle port 18 of the low-speed fuel supply system are opened on the inner wall surface near the throttle valve 5, and the slow port 17 and idle port 18 are connected to the slow fuel passage 1.
It communicates with the main fuel passage 13 through one. Further, a slow air bleed 20 and its auxiliary air bleed 21 communicate with the slow fuel passage 19. The auxiliary air bleed 16°21 is provided with a solenoid valve 22.23, and the electric area 1
When the valve 22.23 is activated, the auxiliary air bleed 16.21 is opened, and when the valve 22.23 is not activated, the auxiliary air bleed 16.21 is closed.

またフロート室12にはパワーバルブ24が設けられ、
フロート¥12の燃料がパワーバルブ24を介してメイ
ン燃料通路13のメインジェット14より下流に供給さ
れるようになされている。
Further, a power valve 24 is provided in the float chamber 12,
Float ¥12 of fuel is supplied to the main fuel passage 13 downstream from the main jet 14 via the power valve 24.

パワーバルブ24は受圧室24aを有し、受圧室24a
に作用する圧力に応じて開度を変化する。
The power valve 24 has a pressure receiving chamber 24a.
The opening degree changes depending on the pressure acting on the valve.

受圧室24a内の圧力が大気圧に丑しくなるとパワーバ
ルブ24の開度は全開となり、受圧室248内の圧力が
負圧になりその大きさが大になるほどその開度は減少す
る。受圧室24aは負圧供給通路25を介して絞り弁5
下流の吸気マニホールド26内に連通ずる。負圧供給通
路25には3方電Ff1弁27が設けられている。電磁
弁27は非駆動時に負圧供給通路25を連通せしめ、駆
動時に吸気マニホールド26側のΩ圧供給通路25を閉
塞し受圧室24a側の負圧供給通路25を大気に開放す
る。
When the pressure in the pressure receiving chamber 24a drops to atmospheric pressure, the opening degree of the power valve 24 becomes fully open, and as the pressure in the pressure receiving chamber 248 becomes negative pressure and its magnitude increases, the opening degree decreases. The pressure receiving chamber 24a is connected to the throttle valve 5 via the negative pressure supply passage 25.
It communicates with the intake manifold 26 downstream. A three-way electric Ff1 valve 27 is provided in the negative pressure supply passage 25. The solenoid valve 27 communicates with the negative pressure supply passage 25 when not driven, and when driven closes the Ω pressure supply passage 25 on the side of the intake manifold 26 and opens the negative pressure supply passage 25 on the side of the pressure receiving chamber 24a to the atmosphere.

吸気マニホールド26内と排気マニホールド31内とは
排気還流路32によって連通される。+iト気気流流路
32は排気還流制御弁33が設けられている。排気還流
制御弁33は負圧窄33aと、排気還流路32の一部を
なす弁室331)と、負圧133 aの一部を形成する
ダイアフラム33cと、口圧¥33a内に設けられた弁
ばね33(Iと、弁室33b内に設けられ排気還流路3
2を閉塞するように弁ぽね33dによってダイアフラム
33cを介して付勢されたテーバ状の弁体33eとから
なり、負圧空33aに作用する負圧の大きさに応じて排
気還流路32の流路断面積を変化せしめ、負圧の大きさ
が大になるに従って該流路断面積が大きくなる。
The inside of the intake manifold 26 and the inside of the exhaust manifold 31 are communicated through an exhaust gas recirculation path 32. The +i to air flow path 32 is provided with an exhaust gas recirculation control valve 33 . The exhaust gas recirculation control valve 33 includes a negative pressure constriction 33a, a valve chamber 331) forming a part of the exhaust gas recirculation path 32, a diaphragm 33c forming a part of the negative pressure 133a, and a mouth pressure 33a. The valve spring 33 (I) and the exhaust gas recirculation path 3 provided in the valve chamber 33b
A tapered valve body 33e is biased by a valve bone 33d through a diaphragm 33c so as to close the exhaust gas recirculation passage 32 according to the magnitude of the negative pressure acting on the negative pressure air 33a. The cross-sectional area of the passage is changed, and as the magnitude of the negative pressure increases, the cross-sectional area of the passage becomes larger.

一方、吸気マニホールド26には大気吸入口34から制
御吸気路35が連通するようになされている。制御吸気
路35には負圧応動型の調整弁36及び空気弁37が設
けられている。調整弁36及び空気弁37は負圧空36
a、37aと、弁室36b 、37b 、ダイアフラム
36C,370と、弁ばね36d、37dと、弁体36
e、37eとから各々なる。負圧空36aは制御吸気路
35に設けられ、負圧空36aより下流に弁室37bが
位置している。弁室37b内の弁体37cは制御吸気路
35を閉塞するように弁ばね37dによってダイアフラ
ム37cを介して付勢されている。
On the other hand, a control intake passage 35 communicates with the intake manifold 26 from an atmospheric air intake port 34 . The control intake passage 35 is provided with a negative pressure responsive regulating valve 36 and an air valve 37. The adjustment valve 36 and the air valve 37 are negative pressure air 36
a, 37a, valve chambers 36b, 37b, diaphragms 36C, 370, valve springs 36d, 37d, and valve body 36
e and 37e, respectively. The negative pressure air 36a is provided in the control intake passage 35, and a valve chamber 37b is located downstream of the negative pressure air 36a. The valve body 37c in the valve chamber 37b is biased via the diaphragm 37c by a valve spring 37d so as to close the control intake passage 35.

また1ill III吸気路35の負圧室36aより上
流には電磁弁38が設けられている。この電磁弁38を
迂回するように補助通路35aが形成されている。
Further, a solenoid valve 38 is provided upstream of the negative pressure chamber 36a of the 1ill III intake path 35. An auxiliary passage 35a is formed so as to bypass this solenoid valve 38.

補助通路35aには絞り49が設【)られ、電磁弁38
は非駆動時に制御吸気路35を閉塞し駆動時に制御吸気
路35を連通せしめる。空気弁37の負圧室37aは負
圧供給路39を介して9圧検出IL 8に連通する。負
圧供給通路39には3方電磁弁40B設けられ、電磁弁
40は非駆動時に負圧供給通路39を連通せしめ、駆動
時に負圧検出孔8側の負圧供給通路39を閉塞しかつ負
圧室37aの負圧供給通路39を大気吸入口41を介し
て大気に開放する。また電磁弁40より調整弁36側の
負圧供給通路39は負圧供給通路42を介して排気還流
制御弁33の負圧空33aに連通している。弁室36b
は負圧供給通路43を介しCΩ圧検出孔9に連通する。
A throttle 49 is provided in the auxiliary passage 35a, and a solenoid valve 38
closes the control intake passage 35 when not driven, and opens the control intake passage 35 when driven. The negative pressure chamber 37a of the air valve 37 communicates with the 9-pressure detection IL 8 via the negative pressure supply path 39. A three-way solenoid valve 40B is provided in the negative pressure supply passage 39, and the solenoid valve 40 connects the negative pressure supply passage 39 when not driven, and when driven, closes the negative pressure supply passage 39 on the negative pressure detection hole 8 side and The negative pressure supply passage 39 of the pressure chamber 37a is opened to the atmosphere via the atmosphere suction port 41. Further, the negative pressure supply passage 39 on the side of the regulating valve 36 from the electromagnetic valve 40 communicates with the negative pressure air 33a of the exhaust gas recirculation control valve 33 via the negative pressure supply passage 42. Valve chamber 36b
communicates with the CΩ pressure detection hole 9 via the negative pressure supply passage 43.

負圧供給通路43にも3方電磁弁44が設けられ、電磁
弁44は非駆動時に負圧供給通路43を連通せしめ、駆
動時に負圧検出孔9側の負圧供給通路43を閉塞しかつ
弁室36b側の負圧供給通路43を大気吸入口34を介
して大気に開放する。また弁室36bは負圧供給通路3
9と連通ずるようになされ、弁室36 b内の弁体36
eが弁’l 36 bから負圧供給通路3つへの通路を
閉塞するように弁ばね36(lがダイアフラム36cを
介して弁体36eを付勢している。なお、1−1陣吸気
路35の負圧m 36 aの上流側に絞り49より流路
断面積が大なる較り45が、下流側に絞り46が各々設
けられ、負圧供給通路39の′;I2隘弁40より負圧
検出孔8側に絞り47が設C)られ、また負圧供給通路
43にも絞り48が設けられている。
A three-way solenoid valve 44 is also provided in the negative pressure supply passage 43, and the solenoid valve 44 connects the negative pressure supply passage 43 when not driven, and closes the negative pressure supply passage 43 on the negative pressure detection hole 9 side when driven. The negative pressure supply passage 43 on the side of the valve chamber 36b is opened to the atmosphere via the atmosphere suction port 34. Further, the valve chamber 36b is connected to the negative pressure supply passage 3.
9, and the valve body 36 in the valve chamber 36b
The valve spring 36 (l biases the valve element 36e through the diaphragm 36c so as to close the passage from the valve 'l 36b to the three negative pressure supply passages. The negative pressure m 36 a of the passage 35 is provided with a passage 45 whose cross-sectional area is larger than that of the throttle 49 on the upstream side, and a throttle 46 on the downstream side of the negative pressure supply passage 39; A throttle 47 is provided on the side of the negative pressure detection hole 8 C), and a throttle 48 is also provided in the negative pressure supply passage 43 .

電磁弁22,23.27,38.40.44の各ソレノ
イドには制御回路51が接続されている。
A control circuit 51 is connected to each solenoid of the electromagnetic valves 22, 23.27, 38.40.44.

制ねp回路51には負圧スイッチ52.53、吸気温ス
イッチ54、冷却水温スイッチ55及び重速スイッチ5
6が1妾続されている。
The control p circuit 51 includes a negative pressure switch 52, 53, an intake temperature switch 54, a cooling water temperature switch 55, and a heavy speed switch 5.
6 is concubined by 1.

負圧スイッチ52は吸気マニホールド26内の負圧Pe
が第1所定圧力P+  (例えば、i5omm)」す)
以下のときオンとなり、負圧スイッチ53は吸気マニホ
ールド26内の負圧P8が第1所定圧力P1より大なる
第2所定圧力PZ(例えば、3001111118(1
)以上のときオンとなる。吸気温スイッチ54は吸気温
度TAが第1所定温反]−1(例えば、15℃)以下の
ときオンとなる。冷却水温スイッチ55は冷却水温TW
が第2所定温度T2  (例えば、40℃〉以下のとき
オンとなる。
The negative pressure switch 52 controls the negative pressure Pe in the intake manifold 26.
is the first predetermined pressure P+ (for example, i5omm)
The negative pressure switch 53 is turned on when the negative pressure P8 in the intake manifold 26 is at a second predetermined pressure PZ that is higher than the first predetermined pressure P1 (for example, 3001111118 (1
) or more, it turns on. The intake air temperature switch 54 is turned on when the intake air temperature TA is equal to or lower than a first predetermined temperature -1 (for example, 15° C.). The cooling water temperature switch 55 controls the cooling water temperature TW.
is turned on when the temperature is lower than the second predetermined temperature T2 (for example, 40° C.).

また車速スイッチ56は車速Vが所定速度V+(例えば
、15Km/h)以上のときオンとなる。
Further, the vehicle speed switch 56 is turned on when the vehicle speed V is equal to or higher than a predetermined speed V+ (for example, 15 km/h).

これらのスイッチ52ないし56はオン時に電圧VHの
高レベル信号を出力する。
These switches 52 to 56 output a high level signal of voltage VH when turned on.

制御回路51は第2図に示づように負圧スイッチ52及
び車速スイッチ56の各出力レベルの論理積を採るAN
D回路61と、車速スイッチ56の出力に接続されたイ
ンバータ62と、吸気温スイッチ54、AND回路61
及びインバータ62の各出力レベルの論理和を採る01
又回路63と、吸気温スイッチ54の出力に接続された
インバ−タロ4と、OR回路63の出力に接続されたイ
ンバー965と、負圧スイッチ53の出力に接続され、
高レベル信号が供給されてから所定時間(例えば、2s
ec>経過すると出力レベルを低レベルから窩レベルに
反転する遅延回路66と、インバータ64.65及び亙
延回路66の各出力レベルの論理積を採るAND回路6
7とを有している。
As shown in FIG. 2, the control circuit 51 is an AN circuit that takes the AND of the output levels of the negative pressure switch 52 and the vehicle speed switch 56.
D circuit 61 , inverter 62 connected to the output of vehicle speed switch 56 , intake temperature switch 54 , AND circuit 61
and 01, which takes the logical sum of each output level of the inverter 62.
Further, the circuit 63, the inverter 4 connected to the output of the intake temperature switch 54, the inverter 965 connected to the output of the OR circuit 63, and the output of the negative pressure switch 53,
A predetermined period of time (for example, 2s) after the high level signal is supplied.
A delay circuit 66 that inverts the output level from a low level to a low level when ec> elapses, and an AND circuit 6 that takes the logical product of each output level of the inverters 64, 65 and the extension circuit 66.
7.

OR回路63の出力には電磁弁27.38を駆動する駆
動回路68が接続され、AND回路67の出力には電磁
弁22.23.44を駆動する駆りJ回路69が接続さ
れている。また冷却水温スイッチ55゛の出力には゛電
磁弁40を駆動する駆動回路70が接続されている。
A drive circuit 68 for driving the electromagnetic valves 27, 38 is connected to the output of the OR circuit 63, and a drive J circuit 69 for driving the electromagnetic valves 22, 23, 44 is connected to the output of the AND circuit 67. Further, a drive circuit 70 for driving the solenoid valve 40 is connected to the output of the cooling water temperature switch 55.

かかる構成において、先ず、排気還流部分の動作につい
−C説明する。今、電磁弁38が駆動され、電磁弁40
.44が駆動されていないとする。そしてエンジン4の
運転により負圧検出孔8から負圧供給通路39及び電磁
弁40を介して負圧Pcが負圧室37 aに作用すると
、その負圧Pcが弁ばね37(Iによる付勢力より大の
とき弁体37eが開弁方向に移動する。空気弁37が開
弁すると大気が大気吸入口34から制御吸気路35を介
して吸気マニホールド26に流れ込む。大気が通過する
負圧室36aの負圧pa及び弁室37bの負圧pbは絞
り45.46の絞り比によって定まる。
In this configuration, first, the operation of the exhaust gas recirculation section will be explained. Now, the solenoid valve 38 is driven, and the solenoid valve 40
.. 44 is not driven. When the engine 4 is operated, negative pressure Pc acts on the negative pressure chamber 37a from the negative pressure detection hole 8 through the negative pressure supply passage 39 and the solenoid valve 40. When the air valve is larger, the valve body 37e moves in the valve opening direction.When the air valve 37 opens, the atmosphere flows from the atmosphere intake port 34 into the intake manifold 26 via the control intake path 35.The atmosphere passes through the negative pressure chamber 36a. The negative pressure pa in the valve chamber 37b and the negative pressure pb in the valve chamber 37b are determined by the throttle ratio of the throttle 45.46.

次に、負圧検出孔9から弁室36bに作用する負圧pv
と負圧paとの差圧が弁ばね36dによる付勢力より大
のとき弁体36eが開弁方向に移動する。調整弁36の
開弁により絞り47を通過した負圧Pcが負圧pvによ
って希釈されて負圧peとなる。
Next, the negative pressure pv acting on the valve chamber 36b from the negative pressure detection hole 9
When the pressure difference between the pressure and the negative pressure pa is greater than the biasing force exerted by the valve spring 36d, the valve body 36e moves in the valve opening direction. When the regulating valve 36 is opened, the negative pressure Pc that has passed through the throttle 47 is diluted by the negative pressure pv and becomes negative pressure pe.

次いで、負圧供給通路39における負圧Pcの低下、す
なわち負圧peの低下により空気弁37の開度が減少し
て制御吸気路35を流れる空気■ら減少する。この空気
量の減少により負圧W36aの負圧paが低下して調整
弁36は閉弁状態となる。そして、負圧pcが再び上昇
して上記の動作が繰り返され、この繰り返し動作が高速
で行なわれるため負圧pvとPeとの圧力比が負圧1)
 dとpbとの圧力比に等しくなるのである。
Next, due to a decrease in the negative pressure Pc in the negative pressure supply passage 39, that is, a decrease in the negative pressure pe, the opening degree of the air valve 37 decreases, and the air flowing through the control intake passage 35 decreases. Due to this decrease in the amount of air, the negative pressure pa of the negative pressure W36a decreases, and the regulating valve 36 enters a closed state. Then, the negative pressure pc rises again and the above operation is repeated, and because this repetitive operation is performed at high speed, the pressure ratio between the negative pressure pv and Pe becomes negative pressure 1)
It becomes equal to the pressure ratio of d and pb.

よって、エンジン4の主吸気量が少ないときには負圧p
aが負圧Pvより大であるので調整弁36の開度は大き
くなり負圧peは低くなり、主吸気量が大なるに従って
負圧pvが大きくなるため調整弁36の開度が小さくな
り負圧peは高くなる。負圧Peは負圧室37aと共に
電磁弁40の不作動時に負圧室33aに作用して空気弁
37及び排気還流制御弁33を開弁せしめるため制御吸
気路35を流れる空気ωと電磁弁40の不作動時に排気
還流路32を流れる排気還流用とは比例し、また制i2
[l吸気路35を流れる空気量はエンジン4への主吸気
量に比例するので主吸気ωと排気還流mとが比例する。
Therefore, when the main intake air amount of the engine 4 is small, the negative pressure p
Since a is larger than the negative pressure Pv, the opening degree of the regulating valve 36 increases and the negative pressure pe decreases.As the main intake air amount increases, the negative pressure pv increases, so the opening degree of the regulating valve 36 decreases and the negative pressure pe decreases. Pressure pe becomes high. The negative pressure Pe acts on the negative pressure chamber 33a together with the negative pressure chamber 37a when the solenoid valve 40 is not activated, and opens the air valve 37 and the exhaust recirculation control valve 33. The exhaust gas recirculation flow through the exhaust gas recirculation path 32 when the
[l Since the amount of air flowing through the intake passage 35 is proportional to the amount of main intake air to the engine 4, the main intake air ω and the exhaust gas recirculation m are proportional.

故に、負圧peは主吸気量に比例した大きさの負圧とな
り、排気還流においては常に所定排気還流率をなすこと
ができ、その排気還流率はβ圧Pvとpcとの圧力比、
寸なわら絞り/15.46の絞り比により決定される。
Therefore, the negative pressure pe becomes a negative pressure proportional to the main intake air amount, and a predetermined exhaust gas recirculation rate can always be achieved in exhaust gas recirculation, and the exhaust gas recirculation rate is the pressure ratio of β pressure Pv and pc,
It is determined by the aperture ratio of 15.46/15.46.

次に、制御回路51においては、車速が所定速度v1以
下のとき車速スイッチ56がオフどなり、インバータ6
2の入力レベルが低レベルとなるつ故に、インバータ6
2から高レベル信号がOR回路63に供給されるのでO
R回路63の出力レベルが高レベルになる。吸気温が所
定温度T1以下のとぎ吸気温スイッチ54がオンとなり
、吸気温スイッチ54から高レベル信号がOR回路63
に供給されるのでOR回路63の出力レベルが高レベル
になる。また車速が所定速度71以上になりかつ吸気マ
ニホールド26内の負圧P8が第1所定圧力P1以下の
ときAND回路61の各入力レベルが高レベルとなり、
AND回路61から高レベル信号がOR回路63に供給
されるのでOR回路63の出力レベルが高レベルとなる
Next, in the control circuit 51, when the vehicle speed is lower than the predetermined speed v1, the vehicle speed switch 56 is turned off, and the inverter 6 is turned off.
Since the input level of inverter 2 is low, the input level of inverter 6 is low.
Since a high level signal is supplied from 2 to the OR circuit 63, O
The output level of the R circuit 63 becomes high level. When the intake temperature is below the predetermined temperature T1, the intake temperature switch 54 is turned on, and a high level signal is sent from the intake temperature switch 54 to the OR circuit 63.
Since the signal is supplied to the OR circuit 63, the output level of the OR circuit 63 becomes high. Further, when the vehicle speed is higher than the predetermined speed 71 and the negative pressure P8 in the intake manifold 26 is lower than the first predetermined pressure P1, each input level of the AND circuit 61 becomes a high level,
Since the high level signal is supplied from the AND circuit 61 to the OR circuit 63, the output level of the OR circuit 63 becomes high level.

このようにOR回路63が高レベル信号を出力すると、
その高レベル信号が駆動信号として駆動回路68に供給
されるので駆動回路68が電磁弁27.38を駆動する
。電磁弁27の駆動時には電磁弁27によって負圧供給
通路25の吸気マニホールド側が閉塞されかつパワーバ
ルブ24側の負圧供給通路25が大気に開放される。故
に、パワーバルブ24の負圧室24 aには大気圧が作
用するのでパワーバルブ24は閉弁し、フロート室12
からの燃料はメインジェット14と共にパワーバルブ2
4を介してメインノズル11から吸出されるため燃料供
給量が増加する。一方、電磁弁の38の駆動により1i
ll 御吸気路35が連通する。
When the OR circuit 63 outputs a high level signal in this way,
The high level signal is supplied as a drive signal to the drive circuit 68, so that the drive circuit 68 drives the solenoid valves 27 and 38. When the solenoid valve 27 is driven, the solenoid valve 27 closes the intake manifold side of the negative pressure supply passage 25 and opens the negative pressure supply passage 25 on the power valve 24 side to the atmosphere. Therefore, since atmospheric pressure acts on the negative pressure chamber 24a of the power valve 24, the power valve 24 is closed and the float chamber 12a is closed.
The fuel from the main jet 14 and the power valve 2
4, the amount of fuel supplied increases. On the other hand, 1i is driven by the solenoid valve 38.
ll The intake passage 35 is in communication.

空気弁37が閉弁じていると、大気吸入口34からの大
気は補助通路35aの絞り49を介さず制御吸気路35
を流れる。調整弁36の負圧室36aに大気は絞り45
のみを介して流入する。この場合、絞り45.46の絞
り比によって負圧pvとPeとの圧力比が定ま、す、負
圧室36aの負圧paが制御吸気路35の閉塞時に絞り
49を大気が通過した場合に比べて低下するので負圧p
vによる負圧Pcの希釈型が低下する。よって、負圧P
eが高くなりかつエンジン4への主吸気量に比例するの
で排気還流制御弁33の開度が大きくなり、排気還流率
が増加して負荷比例の大なる排気還流が行なわれる。
When the air valve 37 is closed, the atmosphere from the atmosphere intake port 34 flows through the control intake passage 35 without passing through the throttle 49 of the auxiliary passage 35a.
flows. Atmospheric air enters the negative pressure chamber 36a of the regulating valve 36 through a throttle 45.
Inflow only through. In this case, the pressure ratio between the negative pressure pv and Pe is determined by the throttle ratio of the throttles 45 and 46. When the negative pressure pa in the negative pressure chamber 36a is increased when the control intake passage 35 is closed, air passes through the throttle 49. Since the negative pressure p decreases compared to
The dilution type of negative pressure Pc due to v decreases. Therefore, negative pressure P
Since e increases and is proportional to the main intake air amount to the engine 4, the opening degree of the exhaust gas recirculation control valve 33 increases, the exhaust gas recirculation rate increases, and exhaust gas recirculation is performed with a large load proportionality.

すなわち、車速が所定速度v1以下のとき、吸気温が第
1所定温度TI以下のとき、或いは車速が所定速度V+
以上でも吸気マニホールド26内の負圧Psが第1所定
圧力P1以下のときにはパワーバルブ24によるエンジ
ン4への燃料供給量の増加により空燃比がリッチ化され
て例えば、14.7に制御され、負荷比例で大なる排気
還流が行なわれる。
That is, when the vehicle speed is below the predetermined speed v1, when the intake temperature is below the first predetermined temperature TI, or when the vehicle speed is below the predetermined speed V+
Even with the above, when the negative pressure Ps in the intake manifold 26 is lower than the first predetermined pressure P1, the air-fuel ratio is enriched by increasing the amount of fuel supplied to the engine 4 by the power valve 24, and is controlled to, for example, 14.7, and the load A proportionally large exhaust gas recirculation takes place.

車速が所定速度71以上で吸気マニホールド26内の負
圧Paが第1所定圧力P1以上にあり、また吸気温が第
1所定温度T+以上にあるときにはOR回路63の各入
力レベルが低レベルとなるのでOR回路63の出力レベ
ルが低レベルとなる。
When the vehicle speed is above the predetermined speed 71, the negative pressure Pa in the intake manifold 26 is above the first predetermined pressure P1, and the intake temperature is above the first predetermined temperature T+, each input level of the OR circuit 63 becomes a low level. Therefore, the output level of the OR circuit 63 becomes low level.

このとき、駆動回路68は電磁弁27−、38の駆動を
停止する。電磁弁27の駆動停止時には負圧供給通路2
5が連通し、吸気マニホールド26内の負圧P8が負圧
供給通路25を介してパワーバルブ24の負圧室25a
に供給されるのでパワーバルブ24が閉弁する。故に、
−フロート室12からの燃料はメインジェット14のみ
を介してメインノズル11から吸出され、通常の燃料供
給が行なわれるので空燃比はリーン化され気化器J3の
ベース空燃比(例えば、16.5>となる。また電磁弁
38の駆動停止時には電磁弁38によって制御吸気路3
5が閉塞されるので大気は補助通路35aを通過し絞り
4つによって負荷比例で小なる排気還流がiテなわれる
At this time, the drive circuit 68 stops driving the solenoid valves 27-, 38. When the solenoid valve 27 stops driving, the negative pressure supply passage 2
5 communicate with each other, and the negative pressure P8 in the intake manifold 26 flows through the negative pressure supply passage 25 to the negative pressure chamber 25a of the power valve 24.
The power valve 24 is closed. Therefore,
- The fuel from the float chamber 12 is sucked out from the main nozzle 11 via the main jet 14 only, and normal fuel supply is performed, so the air-fuel ratio is made lean and the base air-fuel ratio of the carburetor J3 (for example, 16.5> Also, when the solenoid valve 38 stops driving, the solenoid valve 38 controls the intake passage 3.
5 is closed, the atmosphere passes through the auxiliary passage 35a, and the four throttles cause a small amount of exhaust gas recirculation in proportion to the load.

次いで、車速が所定速度V+以上で吸気マニホールド2
6内の負圧P8が第2所定圧力P2以上に高くなると、
負圧スイッチ53がオンとなり、負圧スイッチ53から
遅延回2866に高ベル信号が供給される。遅延回路6
6bは負圧スイッチ53の出力信号に対してヒステリシ
スを持たせるために工々けられ高レベル信号が所定時間
以上供給され続けると高レベル信号をAND回路67に
供給する。このとき、吸気温が所定温度T1以上になる
と吸気温スイッチ54がオフとなりインバークロ4の入
力レベルが低レベルとなるのでインバータ64からもn
レベル信号がAND回路67に供給される。また、イン
バータ65からち昌レベル信号がAND回路67に供給
されるのでAND回路67の出力レベルが高レベルにな
る。故に、駆動回路69は電磁弁22,23.44を駆
動する。
Next, when the vehicle speed is equal to or higher than the predetermined speed V+, the intake manifold 2
When the negative pressure P8 in 6 becomes higher than the second predetermined pressure P2,
The negative pressure switch 53 is turned on, and a high bell signal is supplied from the negative pressure switch 53 to the delay circuit 2866. Delay circuit 6
6b is designed to provide hysteresis to the output signal of the negative pressure switch 53, and supplies a high level signal to the AND circuit 67 when the high level signal continues to be supplied for a predetermined period of time or more. At this time, when the intake temperature becomes equal to or higher than the predetermined temperature T1, the intake temperature switch 54 is turned off, and the input level of the inverter clock 4 becomes a low level.
The level signal is supplied to an AND circuit 67. Further, the output level of the AND circuit 67 becomes high since the inverter 65 supplies the high level signal to the AND circuit 67. Therefore, the drive circuit 69 drives the solenoid valves 22, 23, 44.

電磁弁22.23の駆動により補助エアブリード16.
21が各々連通し大気がメインエアブリード15及びス
ローエアブリード20と共に?+li助エアブリード1
6.21に流入する。よって、主燃料供給系及び低速燃
料供給系両方とも供給混合気の空気の割合が増加し空燃
比がよりリーン化され例えば、18に制御される。また
電磁弁44の駆動により負圧検出孔9側の負圧供給通路
43が閉塞されかつ弁室36b側の負圧供給通路43が
大気吸入口34を介して大気に開放される。そうすると
、負圧検出孔9からの負圧pvの弁v3611への作用
が停止し大気圧が負圧供給通路43を介して弁室36b
に作用するので調整弁36はUn弁し負圧Pcが大気圧
によって希釈されるので負圧POの大きさが更に低下し
、はぼ一定となる。よって、排気還流制御弁33の開度
は非常に小さくなり少量の排気還流となる。
Auxiliary air bleed 16.
21 respectively communicate with the atmosphere together with the main air bleed 15 and the slow air bleed 20? +li assistant air bleed 1
It flows into 6.21. Therefore, the proportion of air in the supplied air-fuel mixture increases in both the main fuel supply system and the low-speed fuel supply system, and the air-fuel ratio is controlled to be leaner, for example, 18. Further, by driving the electromagnetic valve 44, the negative pressure supply passage 43 on the side of the negative pressure detection hole 9 is closed, and the negative pressure supply passage 43 on the side of the valve chamber 36b is opened to the atmosphere via the atmosphere suction port 34. Then, the negative pressure pv from the negative pressure detection hole 9 stops acting on the valve v3611, and the atmospheric pressure is supplied to the valve chamber 36b via the negative pressure supply passage 43.
Therefore, the regulating valve 36 becomes the Un valve, and the negative pressure Pc is diluted by the atmospheric pressure, so the magnitude of the negative pressure PO further decreases and becomes almost constant. Therefore, the opening degree of the exhaust gas recirculation control valve 33 becomes very small, resulting in a small amount of exhaust gas recirculation.

従って、以上の動作を図に表わすと、大気温が常温なら
ば第3図に示すように車速か所定速度V1以下のとき、
又は車速が所定速度11以上でも吸気マニホールド内負
圧P8が第1所定圧力P1以下のときにはエンジン負荷
は高負荷であり、空燃比は気化器のベース空燃比よりリ
ッチ化され、排気還流は負荷比例の大EGR(排気還流
)となる。車速が所定速度V1以上でかつ吸気マニホー
ルド内負圧Psが第1所定圧力P1以上で第2所定圧力
P2以下のときには中負荷であり、空燃比はベース空燃
比、すなわち理論空燃比より僅かにリーンにされ、排気
還流は負荷比例の小E G Rとなる。また車速が所定
速度11以上でかつ吸気マニホールド内負圧Paが第2
所定圧力P2以上のときにはエンジン負荷は低負荷であ
る。
Therefore, if the above operation is represented in a diagram, if the atmospheric temperature is normal temperature, as shown in Figure 3, when the vehicle speed is below the predetermined speed V1,
Or, even if the vehicle speed is higher than the predetermined speed 11, when the negative pressure P8 in the intake manifold is lower than the first predetermined pressure P1, the engine load is high, the air-fuel ratio is richer than the base air-fuel ratio of the carburetor, and the exhaust gas recirculation is proportional to the load. This results in a large EGR (exhaust gas recirculation). When the vehicle speed is above the predetermined speed V1 and the negative pressure Ps in the intake manifold is above the first predetermined pressure P1 and below the second predetermined pressure P2, the load is medium, and the air-fuel ratio is slightly leaner than the base air-fuel ratio, that is, the stoichiometric air-fuel ratio. Therefore, the exhaust gas recirculation becomes a small EGR proportional to the load. Also, when the vehicle speed is equal to or higher than the predetermined speed 11 and the intake manifold internal negative pressure Pa is at the second level.
When the pressure is equal to or higher than the predetermined pressure P2, the engine load is low.

一方、冷却水温が第2所定温度T2以下のときには冷却
水温スイッチ55がオンとなり、冷部水温スイッチ55
から高レベル信号が駆動回路70に供給されるので駆動
回路70が電磁弁4oを駆動する。電磁弁40の駆動に
より負圧検出孔8側の負圧供給通路39が閉塞されかつ
負圧室37a及び負圧供給通路42側の負圧供給通路3
9が大気に開放される。そうすると、負圧検出孔8から
の負圧Pcの供給が停止され大気圧が負圧供給通路39
.42を介して排気還流制御弁33の負圧室33aに作
用するので排気還流制御弁33が閉弁し排気還流路32
を閉塞せしめる。よって、排気還流が停止する。
On the other hand, when the cooling water temperature is lower than the second predetermined temperature T2, the cooling water temperature switch 55 is turned on, and the cold section water temperature switch 55 is turned on.
Since a high level signal is supplied to the drive circuit 70, the drive circuit 70 drives the solenoid valve 4o. By driving the solenoid valve 40, the negative pressure supply passage 39 on the side of the negative pressure detection hole 8 is closed, and the negative pressure supply passage 3 on the side of the negative pressure chamber 37a and the negative pressure supply passage 42 is closed.
9 is opened to the atmosphere. Then, the supply of negative pressure Pc from the negative pressure detection hole 8 is stopped, and the atmospheric pressure changes to the negative pressure supply passage 39.
.. 42 to the negative pressure chamber 33a of the exhaust gas recirculation control valve 33, the exhaust gas recirculation control valve 33 closes and the exhaust gas recirculation path 32
occlusion. Therefore, exhaust gas recirculation is stopped.

発明の効果 このように、本発明の排気浄化装置においては、エンジ
ン負荷を第1負荷領域、第1餉荷領域より高負荷の第2
負荷領域、第1負荷領域より低負荷の第3負荷領域の3
領域に分けて検出し各負荷領域に応じて空燃比及び排気
還流率を設定するように構成されているのでエンジン低
負荷時に運転性の悪化を招来することなく燃費の向上及
び刊気浄化を図ることができるのである。
Effects of the Invention As described above, in the exhaust gas purification device of the present invention, the engine load is controlled in the first load region and in the second load region, which is higher in load than the first load region.
Load area, 3 of the 3rd load area with lower load than the 1st load area
Since the system is configured to detect each region and set the air-fuel ratio and exhaust recirculation rate according to each load region, it improves fuel efficiency and purifies air without causing deterioration of drivability when the engine is under low load. It is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す概略層成図、第2図は第
1図の装置中の制御回路の具体的構成を示すブロック図
、第3図は各負荷領域における制御状態を示す図である
。 主要部分の符号の説明 3・・・・・・気化器    5・・・・・・絞り弁6
・・・・・・ベンチュリ  7・・・・・・チョーク弁
11・・・・・・メインノズル 12・・・・・・フロート室 13・・・・・・メイン燃料通路 15・・・・・・メインエアブリード 16.21・・・・・・補助エアブリード19・・・・
・・スロー燃料通路 20・・・・・・スローエアブリード 22.23,27.38.40.44 ・・・・・・電磁弁 24・・・・・・パワーバルブ 26・・・・・・吸気マニホールド 31・・・・・・排気マニホールド 32・・・・・・排気還流路 33・・・・・・排気還流制御弁 35・・・・・・制御吸気路 36・・・・・・調整弁 37・・・・・・空気弁
Fig. 1 is a schematic layer diagram showing an embodiment of the present invention, Fig. 2 is a block diagram showing the specific configuration of the control circuit in the device shown in Fig. 1, and Fig. 3 shows the control state in each load range. It is a diagram. Explanation of symbols of main parts 3... Carburizer 5... Throttle valve 6
...Venturi 7 ...Choke valve 11 ...Main nozzle 12 ...Float chamber 13 ...Main fuel passage 15 ...・Main air bleed 16.21...Auxiliary air bleed 19...
... Slow fuel passage 20 ... Slow air bleed 22.23, 27.38.40.44 ... Solenoid valve 24 ... Power valve 26 ... Intake manifold 31... Exhaust manifold 32... Exhaust recirculation path 33... Exhaust recirculation control valve 35... Control intake path 36... Adjustment Valve 37...Air valve

Claims (1)

【特許請求の範囲】[Claims] 車両の複数の運転パラメータを検出し該検出結果に基づ
いてエンジン負荷を判別しエンジン負荷が第1負荷領域
に属するとき空燃比を基準値を目標値として制御しかつ
排気還流を所定還流率でなしエンジン負荷が第1負荷領
域より高負荷の第2負荷領域に属するとき空燃比を前記
基準値より小なる値を目標値として制御しかつ排気還流
を所定還流率より大なる還流率でなしエンジン負荷が前
記第1負荷領域より低負荷の第3頁負荷領域に属すると
き空燃比を前記基準値より大なる値を目標値として制御
かつ排気還流を前記所定還流率より小なる還流率でなす
ことを特徴とする排気浄化装置。
Detects a plurality of operating parameters of the vehicle, determines the engine load based on the detection results, and when the engine load belongs to a first load region, controls the air-fuel ratio using the reference value as the target value, and performs exhaust recirculation at a predetermined recirculation rate. When the engine load belongs to a second load region that is higher than the first load region, the air-fuel ratio is controlled to a value smaller than the reference value as the target value, and the exhaust gas recirculation is controlled at a recirculation rate higher than the predetermined recirculation rate.The engine load belongs to the third page load region with a lower load than the first load region, the air-fuel ratio is controlled with a target value larger than the reference value, and the exhaust gas recirculation is performed at a recirculation rate smaller than the predetermined recirculation rate. Characteristic exhaust purification device.
JP59201176A 1984-09-26 1984-09-26 Exhaust gas cleaning device for car-mounted internal-combustion engine Pending JPS6181552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59201176A JPS6181552A (en) 1984-09-26 1984-09-26 Exhaust gas cleaning device for car-mounted internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59201176A JPS6181552A (en) 1984-09-26 1984-09-26 Exhaust gas cleaning device for car-mounted internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6181552A true JPS6181552A (en) 1986-04-25

Family

ID=16436614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59201176A Pending JPS6181552A (en) 1984-09-26 1984-09-26 Exhaust gas cleaning device for car-mounted internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6181552A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63109276A (en) * 1986-10-27 1988-05-13 Honda Motor Co Ltd Exhaust gas feedback control device of internal combustion engine for car
JPS63248937A (en) * 1987-04-02 1988-10-17 Mazda Motor Corp Air-fuel ratio controller for engine with supercharger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63109276A (en) * 1986-10-27 1988-05-13 Honda Motor Co Ltd Exhaust gas feedback control device of internal combustion engine for car
JPS63248937A (en) * 1987-04-02 1988-10-17 Mazda Motor Corp Air-fuel ratio controller for engine with supercharger

Similar Documents

Publication Publication Date Title
US4483308A (en) Air intake side secondary air supply system for an internal combustion engine equipped with exhaust gas recirculation control system
JPS6181534A (en) Exhaust emission control device for mount internal-combustion engine
JPS6181552A (en) Exhaust gas cleaning device for car-mounted internal-combustion engine
US4617900A (en) Air-fuel ratio control system for an internal combustion engine having a control characteristic varying with the engine load
US4125099A (en) Carburetor with fuel compensation device
JPS6053653A (en) Supply device of secondary intake air internal- combustion engine
US4579099A (en) Air intake side secondary air supply system for an internal combustion engine
US4681078A (en) Air-fuel ratio control system for an internal combustion engine
US4584979A (en) Air-fuel ratio control system for an internal combustion engine with a three way catalytic converter
JPH0113790Y2 (en)
JPS58155260A (en) Electronic control type fuel control device for auto-bicycle
JPS6111480Y2 (en)
JPS6053654A (en) Supply device of secondary intake air in internal- combustion engine
JPS60243356A (en) Apparatus for supplying secondary intake air in internal-combustion engine
JPH02185653A (en) Method for controlling recirculation of exhaust gas of engine
JPS6128714A (en) Intake device of internal-combustion engine
JPS59229044A (en) Exhaust gas return control device for internal- combustion engine
JPS61149556A (en) Fuel supply device of internal combustion engine
JPS60150466A (en) Intake secondary air feeder for internal-combustion engine
JPS63192946A (en) Exhaust gas recirculation apparatus in internal combustion engine
JPS5974359A (en) Air-fuel ratio controller for carburetor
JPS639669A (en) Exhaust gas recirculation controller in complex intake equipment for internal combustion engine
JPS61215445A (en) Suction air controller for internal-combustion engine
JPS60249655A (en) Air-fuel ratio compensator
JPS58119949A (en) Air fuel ratio control unit in internal-combustion engine