JPH09118949A - Soft magnetic material and its production - Google Patents

Soft magnetic material and its production

Info

Publication number
JPH09118949A
JPH09118949A JP7297683A JP29768395A JPH09118949A JP H09118949 A JPH09118949 A JP H09118949A JP 7297683 A JP7297683 A JP 7297683A JP 29768395 A JP29768395 A JP 29768395A JP H09118949 A JPH09118949 A JP H09118949A
Authority
JP
Japan
Prior art keywords
magnetic material
soft magnetic
powder
alloy
sendust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7297683A
Other languages
Japanese (ja)
Inventor
Ichiro Takasu
一郎 高須
Akihiko Yanagiya
彰彦 柳谷
Hitoshi Matsuda
均 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP7297683A priority Critical patent/JPH09118949A/en
Publication of JPH09118949A publication Critical patent/JPH09118949A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a soft magnetic material small in the componental segregation of fine crystal grains, high in density and good in magnetic properties by subjecting the gas atomizing powder of a soft magnetic material coated with a low m.p. Ni base alloy by electroless plating to compacting and sintering. SOLUTION: A soft magnetic material such as sendust is formed into powder by a gas atomizing method. This gas atomizing powder is uniformly coated with a low m.p. Ni base alloy, preferably, with an Ni-P alloy. The obtd. composite powder is compacted into a desired shape, and sintering is executed. This sintering can be executed at a temp. lower than the m.p. of sendust or the like. Thus, the material of high quality composed of a dense sendust alloy 1 as a soft magnetic material small in segregation and an Ni-P alloy 2 as a low m.p. Ni base alloy can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】磁気ヘッド等の材料に使用す
るセンダスト等の軟質磁性材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soft magnetic material such as sendust used as a material for a magnetic head or the like.

【0002】[0002]

【従来の技術】センダストと呼ばれる9.6wt%Si
−5.4wt%Al−Fe合金は、磁気ヘッドのような
軟質磁性材料として使用される場合には高磁束密度、高
透磁率を含むいくつかの好ましい特性を有している。し
かしながら、この合金は、鋳造法により作られる場合に
は、その構造的特性や機械的特性に問題があり、特に成
分偏析、混粒が生じかつ延性や加工性が悪いという問題
点があり、その適用分野が限られている。現在のとこ
ろ、センダストは通常の粉末焼結法で複雑な形状のもの
はできるが、密度が低くかつ磁気特性が低くなる傾向が
ある。それと比較して鋳造法で成形したものは密度も高
く磁気特性も良好であるが、単純な形状のものしかでき
ない。一方、発明者らは、ホットプレス法や射出成形焼
結法を用いることにより、鋳造法に比べて、微細結晶粒
成分偏析が少なく、また密度も高く良好な磁気特性をも
ったセンダスト合金を得ている。
2. Description of the Related Art 9.6 wt% Si called sendust
The -5.4 wt% Al-Fe alloy has some preferable properties including high magnetic flux density and high magnetic permeability when used as a soft magnetic material such as a magnetic head. However, this alloy has a problem in its structural properties and mechanical properties when it is produced by a casting method, and in particular, there is a problem that segregation of components, mixed grains occur, and ductility and workability are poor. The field of application is limited. At present, sendust can be formed into a complicated shape by an ordinary powder sintering method, but it tends to have low density and low magnetic properties. Compared with this, the one formed by the casting method has a high density and good magnetic properties, but can only have a simple shape. On the other hand, the inventors have obtained a sendust alloy with less fine grain component segregation and higher density and good magnetic characteristics as compared with the casting method, by using the hot pressing method or the injection molding sintering method. ing.

【0003】しかし、粉末冶金法を用いてこの合金を製
作する場合、センダスト合金等の軟質磁性材料は融点が
高温であるため、その粉末を焼結することは困難であ
る。このため、これらの軟質磁性材料粉末の表面に金属
被覆を施して複合体として焼結する方法が期待されてい
る。ところで、軟質磁性材料粉末の表面に金属被覆を施
す方法は、真空蒸着に代表される物理的な方法が一般的
である。しかし、真空蒸着法では、均一にかつ比較的厚
い金属被覆層を有する軟質磁性材料粉末を得ることは困
難であった。
However, when this alloy is manufactured by the powder metallurgy method, it is difficult to sinter the powder because the soft magnetic material such as sendust alloy has a high melting point. Therefore, a method of applying a metal coating to the surface of these soft magnetic material powders and sintering the composite is expected. By the way, a physical method typified by vacuum deposition is generally used as a method for applying a metal coating to the surface of the soft magnetic material powder. However, it has been difficult to obtain a soft magnetic material powder having a uniform and relatively thick metal coating layer by the vacuum deposition method.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記のよう
に従来の真空蒸着法では得られなかった均一でかつ比較
的厚い被覆層を有する軟質磁性材料の複合粉末を得て、
該複合粉末を成形焼結して磁気ヘッド等に使用する微細
結晶粒成分偏析が少なくかつ密度も高く磁気特性の良好
な軟質磁性材料を提供することである。
DISCLOSURE OF THE INVENTION The present invention provides a composite powder of a soft magnetic material having a uniform and relatively thick coating layer which cannot be obtained by the conventional vacuum deposition method as described above.
It is an object of the present invention to provide a soft magnetic material having a small amount of segregation of fine crystal grain components used for a magnetic head and the like, which has a high density and good magnetic characteristics by compacting and sintering the composite powder.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本発明の手段は、請求項1の発明では、低融点Ni系
合金を無電解めっきにより被覆したガスアトマイズ軟質
磁性材料粉末を成形焼結して得たことを特徴とする軟質
磁性材料である。
Means for Solving the Problems According to the invention of claim 1, the means for solving the above problems comprises forming and sintering a gas atomized soft magnetic material powder obtained by coating a low melting point Ni-based alloy by electroless plating. It is a soft magnetic material characterized by being obtained by

【0006】請求項2の発明では、低融点Ni系合金が
Ni−P合金であることを特徴とする請求項1の手段に
おける軟質磁性材料である。
According to the invention of claim 2, the low melting point Ni-based alloy is a Ni-P alloy, and the soft magnetic material according to the means of claim 1 is characterized.

【0007】請求項3の発明では、軟質磁性材料のガス
アトマイズ粉末に無電解めっきにより低融点Ni系合金
を被覆して複合粉末を製造し、該複合粉末を成形焼結す
ることを特徴とする軟質磁性材料の製造方法である。
According to the third aspect of the present invention, the gas atomized powder of the soft magnetic material is coated with a low melting point Ni-based alloy by electroless plating to produce a composite powder, and the composite powder is compacted and sintered. It is a method of manufacturing a magnetic material.

【0008】請求項4の発明では、低融点Ni系合金が
Ni−P合金であることを特徴とする請求項3の手段に
おける軟質磁性材料の製造方法である。
According to a fourth aspect of the invention, there is provided the method for producing a soft magnetic material according to the third aspect, wherein the low melting point Ni-based alloy is a Ni-P alloy.

【0009】[0009]

【作用】化学めっきである無電解めっきでは、Cu、N
i、Co以外では工業的に多量にめっきすることは困難
である。そして、軟質磁性材料粉末の表面にCu、N
i、Coを被覆した軟質磁性材料複合粉末のうち、Cu
を被覆した軟質磁性材料複合粉末は全体の電気抵抗を高
めることができない。ところで、軟質磁性材料を使用し
た磁気ヘッドなどの磁性体では電気抵抗が高い方がヒス
テリシス損が少ない。そこで電気抵抗の面および機械的
性質の面から見たときCuをめっきした軟質磁性材料は
適切でない。以上の理由から、軟質磁性材料粉末の表面
にNiまたはCoを無電解めっきするのがよい。また、
無電解めっき法は粉末表面に容易に一様にコーティング
できるので粉末に適したメッキ法として本発明で採用す
ることとする。一方、Ni−P合金はP含有率により融
点が変化する。Niの融点は1728Kであるが、Ni
−P合金の共晶点であるP含有率11wt%までNiに
Pを加えていくに連れて液相化温度は下がり、共晶点の
P含有率11wt%では液相化温度は1153Kにな
る。一方、センダスト合金の融点は1593Kであるか
ら、Ni−P合金の共晶点であるP含有率11wt%の
Ni−P皮膜の液相化温度はセンダスト合金の液相化温
度よりも低いことを意味する。従って、Ni−P合金を
被覆した複合粉末は複雑な形状に成形してセンダスト合
金の融点よりも低い温度で焼結できることとなる。
[Function] In electroless plating, which is chemical plating, Cu, N
Other than i and Co, it is difficult to industrially plate a large amount. Then, Cu, N is formed on the surface of the soft magnetic material powder.
Among the soft magnetic material composite powders coated with i and Co, Cu
The soft magnetic material composite powder coated with can not increase the overall electric resistance. By the way, in a magnetic body such as a magnetic head using a soft magnetic material, the higher the electric resistance, the less the hysteresis loss. Therefore, the Cu-plated soft magnetic material is not suitable in terms of electrical resistance and mechanical properties. For the above reasons, it is preferable to electrolessly plate Ni or Co on the surface of the soft magnetic material powder. Also,
Since the electroless plating method can easily and uniformly coat the powder surface, it is adopted in the present invention as a plating method suitable for powder. On the other hand, the melting point of Ni-P alloy changes depending on the P content. The melting point of Ni is 1728K, but Ni
-The liquidus temperature decreases as P is added to Ni to the P content of 11 wt% which is the eutectic point of the P alloy, and the liquidus temperature becomes 1153K when the P content of the eutectic point is 11 wt%. . On the other hand, since the melting point of Sendust alloy is 1593K, the liquidus temperature of the Ni-P coating having a P content of 11 wt%, which is the eutectic point of the Ni-P alloy, is lower than the liquidus temperature of the Sendust alloy. means. Therefore, the composite powder coated with the Ni-P alloy can be molded into a complicated shape and sintered at a temperature lower than the melting point of the sendust alloy.

【0010】以上の理由から、本発明においては軟質磁
性材料粉末の表面に無電解めっきによりNi−P合金皮
膜を形成する。Ni−P合金と同等の効果があると考え
られる他の合金は、Ni−Co−P、Ni−Bなどがあ
る。ところで、センダスト合金のような機能材料におい
て粉末にコーティング技術を適用した例はこれまで殆ど
見られない。
For the above reasons, in the present invention, the Ni-P alloy film is formed on the surface of the soft magnetic material powder by electroless plating. Other alloys considered to have the same effect as the Ni-P alloy include Ni-Co-P and Ni-B. By the way, heretofore, almost no example of applying a coating technique to powder in a functional material such as Sendust alloy has been found.

【0011】ところで、無電解めっき法においては粉末
を素地に用いると浴分解を起こし易くなる。めっき浴の
選定は皮膜性状を決める上で極めて重要である。そこで
種々検討した結果、DL−りんご酸(C6H5O4)、こはく
酸二ナトリウム(Na2C4H4O4)の混合錯体を用いた混合錯
体めっき浴が適していることを見いだした。また、無電
解めっきの析出挙動、特に析出速度およびその合金組成
については、めっき条件に依存している。
By the way, in the electroless plating method, if powder is used as the base material, bath decomposition easily occurs. Selection of the plating bath is extremely important in determining the film properties. As a result of various studies, it was found that a mixed complex plating bath using a mixed complex of DL-malic acid (C 6 H 5 O 4 ) and disodium succinate (Na 2 C 4 H 4 O 4 ) is suitable. It was Further, the deposition behavior of electroless plating, particularly the deposition rate and its alloy composition, depend on the plating conditions.

【0012】そこで、めっき浴のコーティング速度及び
皮膜のP含有率に及ぼすめっき浴のpHの影響について
調査し、その結果を図2に示す。コーティング速度とは
図2における析出速度に相当するものである。析出速度
はpH4.0から6.0の範囲ではpHが高くなるに連
れて増加した。めっきはpH4.0未満では始動せず、
pH6.0より高くなると、浴分解を起こした。銅板上
にめっきを施して調査した結果、析出速度はpHが高く
なるに連れて2.9mass%/20min から17.4mass
%/20min に増加した。この速度の増加は還元剤(次
亜りん酸ナトリウム)の駆動力の増加によるものと考え
られる。皮膜中のP含有率はpHの増加に伴い減少し、
12.8mass%から9.2mass%まで減少した。以上の
理由からめっき浴のpHは4.0ないし6.0とする。
Therefore, the effect of the pH of the plating bath on the coating speed of the plating bath and the P content of the film was investigated, and the results are shown in FIG. The coating rate corresponds to the deposition rate in FIG. The precipitation rate increased as the pH increased in the range of pH 4.0 to 6.0. Plating will not start below pH 4.0,
Bath decomposition occurred above pH 6.0. As a result of investigating by plating on a copper plate, the deposition rate was 2.9 mass% / 20 min to 17.4 mass with increasing pH.
% / 20min. It is considered that this increase in speed is due to an increase in driving force of the reducing agent (sodium hypophosphite). The P content in the film decreases with increasing pH,
It decreased from 12.8 mass% to 9.2 mass%. For the above reasons, the pH of the plating bath is set to 4.0 to 6.0.

【0013】次いで、焼結密度に及ぼすNi−P皮膜の
P含有量と焼結温度の影響について調査するため、Ni
−P合金でめっきされた粉末を1323Kないし156
3Kで焼結し、結果を図3に示す。同図からNi−Pめ
っきによって焼結性は向上することが分かる。Ni−P
めっきした粉末は、めっきしていない粉末に比べて、1
00K〜200K低い温度で焼結できることが分かる。
焼結過程でNi−P皮膜は物理的に変化する。すなわ
ち、室温では微細結晶であり、Pは微細に散乱している
が、620K以上ではNi3 Pが析出し、1168K以
上では液相が発生する。
Next, in order to investigate the effects of the P content of the Ni-P coating and the sintering temperature on the sintered density, Ni was investigated.
-P alloy plated powder 1323K to 156
Sintered at 3K, the results are shown in FIG. From the figure, it can be seen that the Ni—P plating improves the sinterability. Ni-P
The plated powder is 1 compared to the unplated powder
It can be seen that the sintering can be performed at a low temperature of 00K to 200K.
The Ni-P coating physically changes during the sintering process. That is, at room temperature, it is a fine crystal and P is finely scattered, but Ni 3 P precipitates at 620 K or higher, and a liquid phase occurs at 1168 K or higher.

【0014】センダスト合金粉末の焼結においては、ガ
スアトマイズままの粉末を焼結したものよりめっきを施
した粉末を焼結したものの方が結晶粒が小さい。Ni−
Pめっきによる焼結密度の増加は粉末表面のNi−Pの
低融点のためと考えられる。Ni−Pめっきされた粉末
の焼結性の向上は複合粉末の再編成、溶解、析出を通じ
てなされたものと考えられる。
In the sintering of Sendust alloy powder, the crystal grains are smaller in the sintered powder powder than in the gas atomized powder powder. Ni-
It is considered that the increase in sintered density due to P plating is due to the low melting point of Ni-P on the powder surface. It is considered that the improvement of the sinterability of the Ni-P plated powder was made through the reorganization, melting and precipitation of the composite powder.

【0015】[0015]

【発明の実施の形態】Fe85.0Si9.6 Al5.4 成分の
センダスト合金の球状の粉末をガスアトマイズ法により
作製する。この球状粉末の粒径38μm 以下のものを用
いて、表1に示すめっき浴組成及びめっき条件で無電解
めっき法によりNi−P皮膜を施す。めっきにおいて
は、試薬1級および蒸留水を用いる。めっきの際には前
処理を行わずにめっきを行う。
BEST MODE FOR CARRYING OUT THE INVENTION Spherical powder of a sendust alloy having a composition of Fe 85.0 Si 9.6 Al 5.4 is produced by a gas atomizing method. Using this spherical powder having a particle size of 38 μm or less, a Ni—P coating is applied by electroless plating under the plating bath composition and plating conditions shown in Table 1. In plating, first-grade reagent and distilled water are used. When plating, plating is performed without pretreatment.

【0016】[0016]

【表1】 [Table 1]

【0017】すなわち、不活性ガスアトマイズ法により
作製したセンダスト合金粉末を表1に示すめっき浴組成
及びめっき条件で、撹拌しためっき浴中に、1リットル
当たり5gの割合で浸漬し、処理時間20分で無電解め
っきを施す。センダスト合金粉末の表面に得られためっ
き皮膜は光学顕微鏡で観察すると一様に1μm厚さで被
覆されている。
That is, the sendust alloy powder produced by the inert gas atomizing method was immersed in a stirred plating bath at a rate of 5 g per liter under the plating bath composition and plating conditions shown in Table 1, and the treatment time was 20 minutes. Apply electroless plating. The plating film obtained on the surface of the Sendust alloy powder is uniformly coated with a thickness of 1 μm when observed with an optical microscope.

【0018】この無電解めっきを施したセンダスト合金
粉末の複合粉末に対してバインダーとしてαカンファ
(しょうのうC10H16O )を混入し、圧粉成形してグリー
ン成型体とする。次に、このグリーン成型体を真空中で
473Kに保持してαカンファを昇華させた後、所定の
1323Kないし1563Kまで昇温保持して焼結し、
その後1073Kまで炉冷して保持した後、室温まで炉
冷してセンダストの焼結軟質磁性体を得る。
Α-camphor (camellia C 10 H 16 O) is mixed as a binder with the composite powder of the Sendust alloy powder that has been subjected to electroless plating, and the powder is compacted into a green compact. Next, after holding this green molded body at 473K in vacuum to sublimate α-camphor, the temperature was maintained at a predetermined temperature of 1323K to 1563K and sintered,
After that, the furnace is cooled to 1073K and held, and then cooled to room temperature to obtain a sintered soft magnetic substance of Sendust.

【0019】Niを被覆層とするこれらの複合粉末から製
作した磁気ヘッド等の磁性体は、ヒステリシス損失が少
なく、高周波磁気特性は同等又はそれ以上の良好な電気
的特性および機械的特性を有する優れた軟質磁性体であ
る。
A magnetic material such as a magnetic head manufactured from these composite powders having Ni as a coating layer has a small hysteresis loss and excellent high-frequency magnetic characteristics equivalent to or better than those of excellent electrical and mechanical characteristics. It is a soft magnetic material.

【0020】このめっき析出皮膜の合金成分については
ICP分光分析法を用いて測定し、析出速度は1時間め
っき後の粉末の重量増より算出する。
The alloy components of this plating deposit are measured by ICP spectroscopy, and the deposition rate is calculated from the weight increase of the powder after plating for 1 hour.

【0021】[0021]

【実施例】めっき浴としてC4H6O5(DL−りんご酸)お
よびNa2C4H4O4 (こはく酸二ナトリウム)の混合錯体を
用い、その浴組成およびめっき条件は上記表1に示す。
ガスアトマイズ法により作製したセンダスト合金の球状
粉末の38μm 以下の粉末を撹拌しためっき浴中に1リ
ットル当たり5gの割合で浸漬し、処理時間20分で無
電解めっきを施した。
Example A mixed complex of C 4 H 6 O 5 (DL-malic acid) and Na 2 C 4 H 4 O 4 (disodium succinate) was used as a plating bath, and the bath composition and plating conditions are shown in Table 1 above. Shown in.
A powder of 38 μm or less of a spherical powder of Sendust alloy produced by the gas atomization method was immersed in a stirred plating bath at a rate of 5 g per liter, and electroless plating was performed for a treatment time of 20 minutes.

【0022】光学顕微鏡観察により、この実施例で作製
しためっき皮膜は粉末の表面に一様に1μm の厚さで被
覆されていることが分かった。
Observation with an optical microscope revealed that the plating film produced in this example was uniformly coated on the surface of the powder to a thickness of 1 μm.

【0023】この無電解めっきを施したセンダスト合金
粉末の複合粉末に対してバインダーとしてαカンファ
(しょうのうC10H16O )を1mass%混入し、室温で、2
94MPaで圧粉成形してグリーン成型体を得た。得ら
れたグリーン成型体を真空中で473Kに1時間保持し
てαカンファを昇華させた後、速度20K/minで所
定の1323Kないし1563Kまで昇温して2時間保
持して焼結し、その後1073Kまで炉冷して1時間保
持し、その後室温まで炉冷してセンダストの焼結軟質磁
性体を得た。得られた焼結軟質磁性体のミクロ組織の模
式図を図1に示す。同図において1はセンダスト合金、
2はNi−P合金である。
1 mass% of α-camphor (Shoujo C 10 H 16 O) was mixed as a binder to the composite powder of the Sendust alloy powder subjected to the electroless plating, and the mixture was kept at room temperature for 2 minutes.
A green compact was obtained by compacting at 94 MPa. The obtained green molded body was held at 473K in vacuum for 1 hour to sublimate α-camphor, and then the temperature was raised to a predetermined value of 1323K to 1563K at a speed of 20K / min and held for 2 hours for sintering. The furnace was cooled to 1073K and held for 1 hour, and then cooled to room temperature to obtain a sendust sintered soft magnetic material. A schematic diagram of the microstructure of the obtained sintered soft magnetic material is shown in FIG. In the figure, 1 is a sendust alloy,
2 is a Ni-P alloy.

【0024】得られた焼結体は加工して0.2mmの厚さ
に研磨し、機械加工中に導入された内部応力を取り除く
ことも兼ねて、真空中10-4torrで1073Kで1時間
熱処理し、その後、冷却速度60K/hrで室温まで冷
却した。得られた試料のミクロ構造については光学顕微
鏡および高解度SEMを用いて行った。
The obtained sintered body is processed and polished to a thickness of 0.2 mm, and also for removing the internal stress introduced during machining, in vacuum at 10 -4 torr at 1073 K for 1 hour. It heat-processed and cooled to room temperature after that at a cooling rate of 60 K / hr. The microstructure of the obtained sample was examined using an optical microscope and a high resolution SEM.

【0025】図4に軟質磁性材料焼結体の硬さに及ぼす
Ni−Pめっき皮膜のP含有量の影響について示す。硬
さ測定についてはマイクロビッカース硬度計を用い、荷
重200gf(1.96N)、時間30秒の条件で測定
した。Ni−Pめっきを施したセンダスト合金焼結材
は、めっきを施してないものに比べて若干硬度が高い。
これは、Ni3 Pの析出によるものと考えられる。ま
た、Ni−Pめっきを施したセンダスト合金焼結体の最
高硬さに達する焼結温度は、メッキを施していないもの
に比べて100〜200K低くなっていた。これは、セ
ンダスト合金粉末表面に施したNi−Pめっき皮膜の低
融点のためと考えられる。
FIG. 4 shows the effect of the P content of the Ni-P plating film on the hardness of the soft magnetic material sintered body. For the hardness measurement, a micro Vickers hardness meter was used under the conditions of a load of 200 gf (1.96 N) and a time of 30 seconds. The Ni-P plated Sendust alloy sintered material has a slightly higher hardness than the non-plated Sendust alloy sintered material.
This is considered to be due to the precipitation of Ni 3 P. Further, the sintering temperature at which the Ni-P plated Sendust alloy sintered body reaches the maximum hardness was 100 to 200 K lower than that of the non-plated Sendust alloy sintered body. This is considered to be due to the low melting point of the Ni-P plating film applied to the surface of the Sendust alloy powder.

【0026】図5に、センダスト合金およびNi−Pめ
っきを施したセンダスト合金について、実効透磁率の周
波数特性を示す。磁気特性についてはインピーダンス法
を用いて測定した。粉末表面に施したNi−Pめっき皮
膜は合金の磁束密度には特に影響を及ぼさないが、保磁
力についてはかなり増大した。これは、Ni、Pの混入
によるものと思われる。また、高周波特性については、
Ni−Pめっきを施したものは5kHzまではめっきを
施していないものに比べて若干低い透磁率を示した。こ
れは、Ni−Pめっき部分が磁壁移動のインピーダンス
(抵抗)になったことによるものと思われる。又、焼結
温度が1273K〜1523Kの範囲では、とくに磁気
特性に影響を及ぼさなかった。
FIG. 5 shows the frequency characteristics of the effective magnetic permeability of the Sendust alloy and the Ni-P plated Sendust alloy. The magnetic characteristics were measured using the impedance method. The Ni-P plating film applied to the powder surface did not particularly affect the magnetic flux density of the alloy, but the coercive force was considerably increased. This is probably due to the mixing of Ni and P. For high frequency characteristics,
The Ni-P plated one showed a slightly lower magnetic permeability up to 5 kHz than the non-plated one. It is considered that this is because the Ni-P plated portion became the impedance (resistance) of the domain wall movement. Further, when the sintering temperature was in the range of 1273K to 1523K, the magnetic properties were not particularly affected.

【0027】[0027]

【発明の効果】以上説明したように、本発明は、組成が
均一でかつ比較的厚い金属被覆層が軟質磁性材料粉末の
表面に生成されるので、軟質磁性材料粉末の表面にこれ
らの金属被膜を有する複合粉末は、焼結時に焼結温度を
100ないし200度低くできると共に、磁性体の全体
の電気抵抗を高めてヒステリシス損失を低減し、高周波
での磁気特性を向上させ、また、機械的特性を良好とす
る等の優れた効果を有する軟質磁性材料が得られる。
As described above, according to the present invention, since a metal coating layer having a uniform composition and a relatively large thickness is formed on the surface of the soft magnetic material powder, the surface of the soft magnetic material powder is coated with these metal coatings. The composite powder having the composition can reduce the sintering temperature at the time of sintering by 100 to 200 degrees, increase the electric resistance of the entire magnetic body to reduce the hysteresis loss, improve the magnetic characteristics at high frequency, and mechanically. A soft magnetic material having excellent effects such as favorable characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】軟質磁性材料焼結体のミクロ組織を模式的に示
す図である。
FIG. 1 is a diagram schematically showing a microstructure of a soft magnetic material sintered body.

【図2】めっき浴の析出速度及び皮膜のP含有率に及ぼ
すめっき浴のpHの影響について示すグラフである。
FIG. 2 is a graph showing the influence of the pH of the plating bath on the deposition rate of the plating bath and the P content of the coating.

【図3】軟質磁性材料焼結体の焼結密度に及ぼすNi−
P合金めっきのP含有率及び焼結温度の影響について示
すグラフである。
FIG. 3 shows the effect of Ni- on the sintered density of the soft magnetic material sintered body.
It is a graph which shows the P content rate of P alloy plating, and the influence of sintering temperature.

【図4】軟質磁性材料焼結体の硬さに及ぼすNi−P合
金めっきのP含有率の影響について示すグラフである。
FIG. 4 is a graph showing the effect of the P content of Ni—P alloy plating on the hardness of a soft magnetic material sintered body.

【図5】軟質磁性材料焼結体およびNi−Pめっきを施
した粉末の軟質磁性材料焼結体における実効透磁率の周
波数特性を示すグラフである。
FIG. 5 is a graph showing frequency characteristics of effective magnetic permeability in a soft magnetic material sintered body and a Ni—P plated powder soft magnetic material sintered body.

【符号の説明】[Explanation of symbols]

1 センダスト合金 2 Ni−P合金 1 Sendust alloy 2 Ni-P alloy

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 低融点Ni系合金を無電解めっきにより
被覆した軟質磁性材料のガスアトマイズ粉末を成形焼結
して得たことを特徴とする軟質磁性材料。
1. A soft magnetic material obtained by compacting and sintering a gas atomized powder of a soft magnetic material obtained by coating a low melting point Ni-based alloy by electroless plating.
【請求項2】 低融点Ni系合金がNi−P合金である
ことを特徴とする請求項1記載の軟質磁性材料。
2. The soft magnetic material according to claim 1, wherein the low melting point Ni-based alloy is a Ni-P alloy.
【請求項3】 軟質磁性材料のガスアトマイズ粉末に無
電解めっきにより低融点Ni系合金を被覆して複合粉末
を製造し、該複合粉末を成形焼結することを特徴とする
軟質磁性材料の製造方法。
3. A method for producing a soft magnetic material, characterized in that a gas atomized powder of a soft magnetic material is coated with a low melting point Ni-based alloy by electroless plating to produce a composite powder, and the composite powder is compacted and sintered. .
【請求項4】 低融点Ni系合金がNi−P合金である
ことを特徴とする請求項3記載の軟質磁性材料の製造方
法。
4. The method for producing a soft magnetic material according to claim 3, wherein the low melting point Ni-based alloy is a Ni—P alloy.
JP7297683A 1995-10-21 1995-10-21 Soft magnetic material and its production Pending JPH09118949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7297683A JPH09118949A (en) 1995-10-21 1995-10-21 Soft magnetic material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7297683A JPH09118949A (en) 1995-10-21 1995-10-21 Soft magnetic material and its production

Publications (1)

Publication Number Publication Date
JPH09118949A true JPH09118949A (en) 1997-05-06

Family

ID=17849801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7297683A Pending JPH09118949A (en) 1995-10-21 1995-10-21 Soft magnetic material and its production

Country Status (1)

Country Link
JP (1) JPH09118949A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214664A (en) * 2007-02-28 2008-09-18 Seiko Epson Corp Method for manufacturing sintered body, and sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214664A (en) * 2007-02-28 2008-09-18 Seiko Epson Corp Method for manufacturing sintered body, and sintered body

Similar Documents

Publication Publication Date Title
KR0180769B1 (en) Diamond sintered body having strength and high wear-resistance and manufacturing method thereof
KR100812943B1 (en) Sputtering target and method for production thereof
TW200831686A (en) Co-Fe-Zr based alloy sputtering target material and process for production thereof
Moustafa et al. Synthesis of WC hard materials using coated powders
JP4095629B2 (en) Method for producing amorphous metal powder coated with metal (Methodfor Manufacturing Metal-Coated Amorphous Metal Powder)
Wang et al. High-quality TbF3 coating prepared by suspension plasma spraying technique for improving the grain boundary diffusion efficiency of sintered Nd-Fe-B magnets
US5466311A (en) Method of manufacturing a Ni-Al intermetallic compound matrix composite
Chai et al. Preparation and properties of high strength Fe–Ni–P ternary alloys
JPH09118949A (en) Soft magnetic material and its production
LU501996B1 (en) Method for Preparing Cu@ZrC Core-shell Multiphase Granular Material by Electroless Plating
JPS60145345A (en) High performance bearing material and manufacture
Singh et al. Effect of rare earth on microstructure and wear behaviour of Ni based microwave clad
JPS63286537A (en) Manufacture of grain dispersion-type composite material
KR100547618B1 (en) Copper / amorphous composite material using copper-plated amorphous composite powder and its manufacturing method
CN112218967B (en) Composite material based on quasi-crystals of aluminium-copper-iron system and method for producing same
JP3327080B2 (en) High strength and high wear resistance diamond sintered body and method for producing the same
Takasu et al. Improvement of the sintering process in a Sendust alloy powder used as a magnetic recording head material
JP3337558B2 (en) Corrosion resistant magnetic alloy
JPH08232073A (en) Electroless composite plating film and its production
JPS63232304A (en) Permanent magnet excellent in oxidation resistance and manufacture thereof
JP2721120B2 (en) Method for producing Ni-Al intermetallic compound matrix composite material
CN112846168B (en) Non-magnetic high-strength stainless steel material and metal injection molding preparation method thereof
JPS59205464A (en) Whisker for metal composite material
JPH06240381A (en) Production of ti alloy sintered compact by injection-molding of metal powder
JPH01149902A (en) Fine granular complex powder