JPH09112732A - Valve device and accumulator fuel injection device using the valve device - Google Patents

Valve device and accumulator fuel injection device using the valve device

Info

Publication number
JPH09112732A
JPH09112732A JP27005495A JP27005495A JPH09112732A JP H09112732 A JPH09112732 A JP H09112732A JP 27005495 A JP27005495 A JP 27005495A JP 27005495 A JP27005495 A JP 27005495A JP H09112732 A JPH09112732 A JP H09112732A
Authority
JP
Japan
Prior art keywords
valve
passage
pressure
valve device
low pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27005495A
Other languages
Japanese (ja)
Other versions
JP3589323B2 (en
Inventor
Masafumi Murakami
雅史 邑上
Shuichi Matsumoto
修一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP27005495A priority Critical patent/JP3589323B2/en
Publication of JPH09112732A publication Critical patent/JPH09112732A/en
Application granted granted Critical
Publication of JP3589323B2 publication Critical patent/JP3589323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a valve device which can control a flow rate with high precision and a fuel injection device using the valve device. SOLUTION: A spherical member 43 which can shut off a high pressure introduction passage 52 and a valve seat chamber 25 is in contact with a conical recessed section 421 formed at an end on a high pressure side of a shaft member. The shaft member is opened for the conical recessed section 421 and is provided with a first communicating passage 422 which communicates with the low pressure side. The opening and the valve seat chamber 25 are shut off by a contact section between the spherical member 43 and the conical recessed section 421. When the spherical member 43 leaves a flat plate 51, high pressure fluid flows into the first communicating passage 422 through the valve seat chamber 25 and a second communicating passage 401 from the high pressure introduction passage 52. At this time, since pressure in the first communicating passage 422 is lower than pressure in the valve seat chamber 25, the spherical member 43 is sucked on a shaft member 44 side. Consequently, positional accuracy of the spherical member 43 is improved, and it is possible to control a flow rate with high precision because an area of opening between the flat plate 51 and the spherical member 43 is specified with high precision.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流体通路を遮断または
導通するバルブ装置およびこのバルブ装置を用いた蓄圧
式燃料噴射装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a valve device for shutting off or connecting a fluid passage and a pressure accumulating fuel injection device using this valve device.

【0002】[0002]

【従来の技術】従来より、流体通路の高圧側と低圧側と
を遮断または導通するバルブ装置が知られている。この
ようなバルブ装置の例として、流体通路の高圧側と低圧
側との間に配設され高圧導入通路を有し高圧側端面の前
記高圧導入路周囲に円錐座が形成されたシート部材と、
前記円錐座に着座することにより前記高圧導入通路を閉
塞する球状部材および前記球状部材に当接し前記球状部
材を前記円錐座側に駆動可能な棒状部材からなる弁部材
と、前記棒状部材を保持するシリンダと、前記棒状部材
を駆動するアクチュエータとから構成されるものがあ
る。前記アクチュエータの駆動力により前記棒状部材が
高圧側に移動すると前記球状部材が前記円錐座に着座
し、これにより前記高圧導入通路が閉塞されてバルブ装
置が閉状態となる。上記の構成を有するバルブ装置とし
て、例えば欧州特許出願第548916A1号明細書に
開示されたものがある。
2. Description of the Related Art Conventionally, there has been known a valve device which shuts off or connects a high pressure side and a low pressure side of a fluid passage. As an example of such a valve device, a seat member having a high pressure introduction passage disposed between the high pressure side and the low pressure side of the fluid passage, and a conical seat formed around the high pressure introduction passage on the high pressure side end surface,
A spherical member that closes the high-pressure introduction passage by sitting on the conical seat, and a valve member that is a bar-shaped member that abuts the spherical member and can drive the spherical member toward the conical seat, and retains the rod-shaped member. There is one that is composed of a cylinder and an actuator that drives the rod-shaped member. When the rod-shaped member is moved to the high pressure side by the driving force of the actuator, the spherical member is seated on the conical seat, whereby the high pressure introduction passage is closed and the valve device is closed. An example of the valve device having the above structure is disclosed in European Patent Application No. 548916A1.

【0003】一方、特開平5−133296号公報に
は、流体通路の高圧側と低圧側との間に配設され高圧導
入通路を有し低圧通路側端面の前記高圧導入通路周囲に
平面座が形成されたシート部材と、前記平面座に着座す
ることにより前記高圧導入通路を閉塞する板状部材およ
び高圧側に球状面が形成され前記球状面が前記板状部材
の低圧側に当接する棒状部材からなる弁部材とを有する
バルブ装置を備えた電磁式内燃機関用燃料噴射装置が開
示されている。このものでは、前記棒状部材および前記
球状部材をアクチュエータにより駆動して、前記平坦面
を前記平面弁座に密着させることにより前記流体通路を
遮断している。
On the other hand, in Japanese Unexamined Patent Publication No. 5-133296, a high pressure introduction passage is provided between the high pressure side and the low pressure side of the fluid passage, and a flat seat is provided around the high pressure introduction passage on the end face of the low pressure passage. A formed sheet member, a plate-like member that closes the high-pressure introduction passage by sitting on the plane seat, and a rod-shaped member that has a spherical surface formed on the high-pressure side and the spherical surface contacts the low-pressure side of the plate-shaped member There is disclosed a fuel injection device for an electromagnetic internal combustion engine, which is provided with a valve device having a valve member made of. In this structure, the rod-shaped member and the spherical member are driven by an actuator to bring the flat surface into close contact with the flat valve seat, thereby blocking the fluid passage.

【0004】[0004]

【発明が解決しようとする課題】しかし、欧州特許出願
第548916A1号明細書に開示されたバルブ装置に
よると、前記球状部材と前記円錐座とを密着させること
により前記流体通路を遮断しているので、前記球状部材
と前記円錐座との双方を高精度に加工する必要がある。
このため、バルブ装置の製造コストが高くなるという問
題がある。
However, according to the valve device disclosed in European Patent Application No. 548916A1, the fluid passage is blocked by bringing the spherical member and the conical seat into close contact with each other. It is necessary to process both the spherical member and the conical seat with high precision.
Therefore, there is a problem that the manufacturing cost of the valve device increases.

【0005】また、前記特開平5−133296号公報
に開示されたバルブ装置によると、前記平坦面には前記
高圧導入通路内の流体による圧力分布が存在するが、バ
ルブ装置が開状態のとき前記板状部材の重心に対してこ
の圧力分布が偏ると、前記板状部材に対して前記平面座
と非平行に前記板状部材を回転させようとする力が働
く。これにより前記板状部材が回転して前記平坦面が前
記平面座に対して傾くと、前記高圧導入通路から流入す
る流体の圧力により前記高圧導入通路の延びる方向に対
して垂直方向に前記板状部材が押されるため、前記板状
部材の位置が不安定となる。したがって、このバルブ装
置の開閉を連続して行う場合、前記バルブ装置が開状態
となったときの前記流体通路の開口面積がばらつくた
め、流量制御を高精度におこなうことができない。特
に、バルブ装置を高速に作動させる場合には、前記板状
部材に作用する動圧が大きいため前記板状部材の位置は
さらに不安定となり、微少流量を制御することは困難で
ある。
Further, according to the valve device disclosed in the above-mentioned JP-A-5-133296, there is a pressure distribution due to the fluid in the high-pressure introducing passage on the flat surface, but when the valve device is in the open state, When this pressure distribution is biased with respect to the center of gravity of the plate member, a force acts on the plate member to rotate the plate member non-parallel to the plane seat. As a result, when the plate member rotates and the flat surface tilts with respect to the flat seat, the plate shape is perpendicular to the extending direction of the high pressure introduction passage due to the pressure of the fluid flowing from the high pressure introduction passage. Since the member is pushed, the position of the plate member becomes unstable. Therefore, when the valve device is continuously opened and closed, the opening area of the fluid passage varies when the valve device is opened, so that the flow rate cannot be controlled with high accuracy. In particular, when the valve device is operated at a high speed, the position of the plate member becomes more unstable because the dynamic pressure acting on the plate member is large, and it is difficult to control the minute flow rate.

【0006】本発明の目的は、流量を高精度に制御可能
なバルブ装置を提供することにある。本発明の他の目的
は、前記バルブ装置を用いた蓄圧式燃料噴射装置を提供
することにある。
An object of the present invention is to provide a valve device capable of controlling the flow rate with high accuracy. Another object of the present invention is to provide a pressure accumulation type fuel injection device using the valve device.

【0007】[0007]

【課題を解決するための手段】請求項1記載のバルブ装
置は、前記支持部材には前記弁本体側に開口するととも
に前記流体通路の低圧側と連通する第1連通路が形成さ
れ、前記弁本体は前記弁本体周囲の低圧室と前記開口と
を遮断し、前記低圧室と前記第1連通路または低圧側と
は第2連通路により連通されることを特徴とする。前記
弁本体周囲の低圧室と前記開口とが遮断されていること
により、前記弁本体がシート部材から離れるバルブ装置
の開弁時、前記低圧室の圧力と比較して前記第1連通路
の圧力が低くなるので、前記弁本体は前記支持部材側に
吸引される。この吸引力により前記弁本体と前記支持部
材とが安定した接触状態を保つことができるため、前記
支持部材の移動量に対して前記シート部材と弁本体との
間の開口面積が高精度に規定されるので、流量を高精度
に制御することができる。また、前記支持部材が前記第
1連通路を有する中空形状であるため、前記弁部材の慣
性質量を低減することにより前記バルブ装置の応答性が
向上するとともに、前記支持部材の端部の加工が容易で
ある。
According to a first aspect of the present invention, there is provided a valve device according to claim 1, wherein the support member is formed with a first communication passage opening to the valve body side and communicating with a low pressure side of the fluid passage. The main body shuts off the low pressure chamber around the valve main body and the opening, and the low pressure chamber is communicated with the first communication passage or the low pressure side by a second communication passage. Since the low pressure chamber around the valve body is blocked from the opening, the pressure in the first communication passage is higher than the pressure in the low pressure chamber when the valve device is opened so that the valve body is separated from the seat member. Is lower, the valve body is sucked toward the support member. Since this suction force can maintain a stable contact state between the valve body and the support member, the opening area between the seat member and the valve body is accurately defined with respect to the movement amount of the support member. Therefore, the flow rate can be controlled with high accuracy. Further, since the support member is a hollow shape having the first communication passage, the responsiveness of the valve device is improved by reducing the inertial mass of the valve member, and the end portion of the support member can be machined. It's easy.

【0008】請求項2記載のバルブ装置は、前記支持部
材と前記弁本体との接触部が、円錐状凹面と球状凸面、
あるいは球状凹面と球状凸面との組合わせにより構成さ
れることを特徴とする。これにより、例えば平面同士の
組合せによる場合に比べて前記接触部に作用する面圧が
高く、また前記弁本体および前記支持部材のいずれかが
傾いた場合にも前記接触部による接触が保たれるため、
前記低圧室と前記第1連通路との間を常に良好に遮断す
ることができる。これにより、前記低圧室と前記第1連
通路との間に圧力差を発生させることができる。
According to another aspect of the valve device of the present invention, the contact portion between the support member and the valve body has a conical concave surface and a spherical convex surface.
Alternatively, it is characterized by being constituted by a combination of a spherical concave surface and a spherical convex surface. Thereby, for example, the surface pressure acting on the contact portion is higher than in the case where the flat surfaces are combined, and the contact by the contact portion is maintained even when either the valve body or the support member is inclined. For,
The low pressure chamber and the first communication passage can always be satisfactorily shut off. Thereby, a pressure difference can be generated between the low pressure chamber and the first communication passage.

【0009】請求項5記載のバルブ装置は、前記第1連
通路が前記支持部材の横断面において前記支持部材の軸
を中心とした同一円周上に等間隔に複数形成されている
ことを特徴とする。これにより、前記支持部材の軸に対
して前記弁本体に作用する吸引力を均等にすることがで
きる。請求項6または7記載のバルブ装置によると、前
記第2連通路に絞り手段を設けるなどの方法により前記
第2連通路の通路抵抗を前記第1連通路の通路抵抗より
も大きくしている。これにより、前記低圧室と前記第1
連通路との間の圧力差がより大きくなるため、前記弁本
体の前記支持部材への吸引力が増すので、前記弁本体の
位置精度がさらに向上するという効果がある。
According to a fifth aspect of the valve device of the present invention, a plurality of the first communication passages are formed at equal intervals on the same circumference centered on the axis of the support member in the cross section of the support member. And This makes it possible to equalize the suction force acting on the valve body with respect to the shaft of the support member. According to the valve device of the sixth or seventh aspect, the passage resistance of the second communication passage is made larger than the passage resistance of the first communication passage by a method such as providing a throttle means in the second communication passage. Thereby, the low pressure chamber and the first
Since the pressure difference between the communication passage and the communication passage becomes larger, the suction force of the valve body to the support member increases, so that the positional accuracy of the valve body is further improved.

【0010】請求項8記載の蓄圧式燃料噴射装置による
と、二方向弁装置として請求項1から7のいずれか一項
記載のバルブ装置を用いたことにより、ストローク毎の
前記圧力制御室の圧力変化および前記ニードル弁の動き
を高精度に制御することが可能となるので、前記噴射ノ
ズルからの燃料噴射量が安定する。
According to the pressure-accumulation fuel injection device of the eighth aspect, since the valve device according to any one of the first to seventh aspects is used as the two-way valve device, the pressure of the pressure control chamber for each stroke is increased. Since the change and the movement of the needle valve can be controlled with high accuracy, the fuel injection amount from the injection nozzle becomes stable.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1実施例)本発明の第1実施例によるバルブ装置を
図1および図2に示す。図1に示すバルブ装置1は、そ
の内部に図1において上側を低圧側、下側を高圧側とす
る流体通路を有し、この流体通路の高圧側と低圧側とを
遮断または導通するものである。
(First Embodiment) A valve device according to a first embodiment of the present invention is shown in FIGS. The valve device 1 shown in FIG. 1 has a fluid passage in which the upper side is the low pressure side and the lower side is the high pressure side in FIG. 1, and the high pressure side and the low pressure side of this fluid passage are blocked or conducted. is there.

【0012】ハウジング40の内部には、前記流体通路
の高圧側と低圧側との間に配設されたシート部材として
の平板プレート51と、前記平板プレート51に当接可
能な弁本体としての球状部材43および球状部材43を
支持する支持部材42とからなる弁部材41、弁部材4
1を軸方向に往復移動可能に支持するシリンダ21と、
弁部材41を開弁方向または閉弁方向に駆動するアクチ
ュエータ31とが収容されている。
Inside the housing 40, a flat plate 51 as a seat member arranged between the high pressure side and the low pressure side of the fluid passage, and a spherical shape as a valve main body capable of contacting the flat plate 51. A valve member 41 and a valve member 4 each including a member 43 and a support member 42 that supports the spherical member 43.
A cylinder 21 for supporting 1 to be capable of reciprocating in the axial direction;
The actuator 31 that drives the valve member 41 in the valve opening direction or the valve closing direction is accommodated.

【0013】平板プレート51は軸方向に貫通する高圧
導入通路52を有し、平板プレート51の高圧側端面5
4における高圧導入通路52の開口部周囲には円錐座5
41が形成されている。平板プレート51の高圧側には
封止部材56が螺合されている。封止部材56に螺合さ
れ軸方向に貫通する高圧通路2を有する高圧側コネクタ
57は、封止部材56を貫通してその先端が円錐座54
1に密着している。
The flat plate 51 has a high-pressure introducing passage 52 that penetrates in the axial direction, and the high-pressure side end surface 5 of the flat plate 51.
4 has a conical seat 5 around the opening of the high-pressure introduction passage 52.
41 are formed. A sealing member 56 is screwed onto the high pressure side of the flat plate 51. The high-voltage-side connector 57 having the high-pressure passage 2 that is screwed into the sealing member 56 and penetrates in the axial direction penetrates the sealing member 56 and has a tip thereof conical seat 54.
It adheres to 1.

【0014】シリンダ21は円筒部22とフランジ部2
3とからなり、フランジ部23が平板プレート51の低
圧側端面55に当接している。シリンダ21を軸方向に
貫通して、摺動孔および前記摺動孔の高圧側に続き前記
摺動孔よりも大径の弁座室25がシリンダ21と同軸に
形成されている。また、シリンダ21には、フランジ部
23を貫通し円筒部22の外壁に沿ってシリンダ21の
軸方向に延びる溝孔231が90°間隔で設けられてい
る。この溝孔231の内部および溝孔231とハウジン
グ40の内壁40aとの間に第2連通路401が形成さ
れている。フランジ部23の高圧側端面には、フランジ
部23が低圧側端面55に当接した状態において弁座室
25と連通孔231とを連通する連通孔232が形成さ
れている。また、円筒部22には、第2連通路401と
前記摺動孔とを連通する連通孔221が形成されてい
る。
The cylinder 21 has a cylindrical portion 22 and a flange portion 2.
3, the flange portion 23 is in contact with the low pressure side end surface 55 of the flat plate 51. A valve seat chamber 25, which has a diameter larger than that of the sliding hole, is formed coaxially with the sliding hole and the high pressure side of the sliding hole. Further, the cylinder 21 is provided with groove holes 231 penetrating the flange portion 23 and extending along the outer wall of the cylinder portion 22 in the axial direction of the cylinder 21 at 90 ° intervals. A second communication path 401 is formed inside the groove 231 and between the groove 231 and the inner wall 40 a of the housing 40. A communication hole 232 that communicates the valve seat chamber 25 with the communication hole 231 is formed in the high pressure side end surface of the flange portion 23 while the flange portion 23 is in contact with the low pressure side end surface 55. Further, the cylindrical portion 22 is formed with a communication hole 221 that communicates the second communication passage 401 with the sliding hole.

【0015】弁部材41の支持部材42は、前記摺動孔
を形成するシリンダ21の内壁により往復移動可能に支
持された支持部材本体としての軸部材44と、軸部材4
4の高圧側端部の外周に嵌合された略円筒状の連結部材
45とからなる。連結部材45の低圧側端部は縮径され
ており、この連結部材44に球状部材43を圧入するこ
とにより、連結部材45を介して球状部材43が軸部材
44に摺動自在に支持される。球状部材43および連結
部材45は、低圧室としての弁座室25内に位置してい
る。
The support member 42 of the valve member 41 includes a shaft member 44 as a support member main body which is reciprocally supported by the inner wall of the cylinder 21 forming the sliding hole, and the shaft member 4.
4 and a substantially cylindrical coupling member 45 fitted to the outer periphery of the high-pressure side end portion of No. 4. The low-pressure side end of the connecting member 45 has a reduced diameter, and by pressing the spherical member 43 into the connecting member 44, the spherical member 43 is slidably supported by the shaft member 44 via the connecting member 45. . The spherical member 43 and the connecting member 45 are located in the valve seat chamber 25 as a low pressure chamber.

【0016】軸部材44の軸中心には、軸方向に貫通す
る第1連通路422が形成されている。軸部材44の外
壁には連通孔221に対応した位置にポート425が設
けられており、このポート425に開口する連通孔42
4により第2連通路401と第1連通路422とは連通
されている。また、軸部材44の低圧側端部にはアーマ
チャ46が固定されている。
At the center of the shaft of the shaft member 44, a first communication passage 422 is formed penetrating in the axial direction. A port 425 is provided at a position corresponding to the communication hole 221 on the outer wall of the shaft member 44, and the communication hole 42 opened to the port 425.
4, the second communication passage 401 and the first communication passage 422 are communicated with each other. An armature 46 is fixed to the low pressure side end of the shaft member 44.

【0017】球状部材43には、低圧側端面55と対向
する部分を平面で切断することにより円形の平坦面43
1が形成されている。低圧側端面55における高圧導入
路52の周辺には平面弁座である弁座部551が形成さ
れ、球状部材43がこの弁座部551に着座すると、高
圧導入通路52が平坦面431により閉塞されることに
より高圧導入通路52と弁座室25との連通が遮断され
てバルブ装置1は閉状態となる。また、球状部材43と
円錐凹面421との間には円錐凹面421の軸に垂直な
平面内にこの軸を中心とした円周状の接触部432が形
成される。接触部432の低圧側に位置する円錐凹面4
21と球状部材43との間には、第1連通路422と連
通し弁座室25とは遮断された空洞部423が形成され
る。
The spherical member 43 has a circular flat surface 43 by cutting a portion facing the low pressure side end surface 55 with a flat surface.
1 is formed. A valve seat portion 551 which is a flat valve seat is formed around the high pressure introduction passage 52 on the low pressure side end surface 55, and when the spherical member 43 is seated on this valve seat portion 551, the high pressure introduction passage 52 is closed by the flat surface 431. As a result, the communication between the high pressure introduction passage 52 and the valve seat chamber 25 is cut off, and the valve device 1 is closed. Further, between the spherical member 43 and the conical concave surface 421, a circumferential contact portion 432 centering on this axis is formed in a plane perpendicular to the axis of the conical concave surface 421. The conical concave surface 4 located on the low pressure side of the contact portion 432.
A cavity portion 423, which communicates with the first communication passage 422 and is disconnected from the valve seat chamber 25, is formed between the valve member 21 and the spherical member 43.

【0018】アーマチャ46の低圧側に収容されたアク
チュエータ31は、電磁コイル33が巻装されたコア3
2からなる。コア32の低圧側にはコアストッパ36を
介して低圧側コネクタ61が設けられている。低圧側コ
ネクタ61には、低圧側に設けられた低圧通路3および
一端が高圧側に開口し他端が低圧通路3に連通するスプ
リング室62が形成されている。スプリング室62内に
は、貫通孔641を有するスプリングストッパ64に一
端が係止されたスプリング63が収容されている。
The actuator 31 housed on the low pressure side of the armature 46 has a core 3 around which an electromagnetic coil 33 is wound.
Consists of two. A low voltage side connector 61 is provided on the low voltage side of the core 32 via a core stopper 36. The low voltage side connector 61 is formed with a low pressure passage 3 provided on the low pressure side and a spring chamber 62 having one end opened to the high pressure side and the other end communicating with the low pressure passage 3. In the spring chamber 62, a spring 63 whose one end is locked by a spring stopper 64 having a through hole 641 is accommodated.

【0019】コア31の内部には軸方向に貫通する摺動
孔311が形成されており、この摺動孔311に伝達部
材35が往復移動可能に挿入されている。伝達部材35
の一端は軸部材44の低圧側端部に当接し、低圧側端部
には鍔部351が形成されておりコアストッパ36を貫
通してスプリング室62内に挿入されている。鍔部35
1にはスプリング63の他端が係止されており、これに
より伝達部材35はスプリング63の弾性力により弁部
材41を高圧側に付勢している。伝達部材35の軸中心
には、軸方向に貫通しスプリング室62および第1連通
路422に連通する連通孔352が形成されている。
A sliding hole 311 penetrating in the axial direction is formed inside the core 31, and a transmission member 35 is reciprocally inserted into the sliding hole 311. Transmission member 35
Has one end abutting on the low pressure side end of the shaft member 44, and a flange 351 is formed on the low pressure side end, which penetrates the core stopper 36 and is inserted into the spring chamber 62. Tsuba 35
The other end of the spring 63 is locked to 1 so that the transmission member 35 urges the valve member 41 to the high pressure side by the elastic force of the spring 63. A communication hole 352 is formed at the axial center of the transmission member 35 and penetrates in the axial direction to communicate with the spring chamber 62 and the first communication passage 422.

【0020】バルブ装置1が開状態のとき、高圧流体は
高圧通路2から流入し、高圧導入通路52、弁座室2
5、連通孔232、第2連通路401、連通孔221、
連通孔424、第1連通路422、連通孔352、スプ
リング室62、貫通孔641、低圧通路3からなる流体
通路を経由して低圧側へと流出する。このバルブ装置1
は、次のようにして組立てられる。
When the valve device 1 is in the open state, the high pressure fluid flows from the high pressure passage 2 into the high pressure introduction passage 52 and the valve seat chamber 2.
5, communication hole 232, second communication path 401, communication hole 221,
It flows out to the low pressure side via the fluid passage formed by the communication hole 424, the first communication passage 422, the communication hole 352, the spring chamber 62, the through hole 641, and the low pressure passage 3. This valve device 1
Is assembled as follows.

【0021】ハウジング40の高圧側開口部から、シリ
ンダ21、平板プレート51および封止部材56をこの
順序で組付ける。シリンダ21、平板プレート51、封
止部材56が互いに接触する部分は鏡面仕上されてい
る。封止部材56の低圧側外周にはネジ部56aが設け
られており、このネジ部56aをハウジング40の高圧
側端部内周に設けられたネジ部40bに螺合することに
より、シリンダ21、平板プレート51、封止部材56
の前記鏡面仕上された部分が互いに液密または気密に接
触する。封止部材56の内径にもネジ部56bが設けら
れており、このネジ部56bに高圧側コネクタ57の外
周のネジ部57bを螺合することにより、先端部57a
が円錐座541に密着するように高圧側コネクタ57が
封止部材56に取付けられる。ここで、封止部材56の
外周に装着されたOリング561により、高圧通路2か
ら流入する流体がバルブ装置1の外部に漏れることを防
止している。
From the high pressure side opening of the housing 40, the cylinder 21, the flat plate 51 and the sealing member 56 are assembled in this order. The part where the cylinder 21, the flat plate 51, and the sealing member 56 contact each other is mirror-finished. A screw portion 56a is provided on the outer periphery of the sealing member 56 on the low pressure side, and the screw portion 56a is screwed into a screw portion 40b provided on the inner periphery of the end portion of the high pressure side of the housing 40, whereby the cylinder 21, the flat plate Plate 51, sealing member 56
The mirror-finished parts of the two come into liquid-tight or air-tight contact with each other. A threaded portion 56b is also provided on the inner diameter of the sealing member 56. By screwing the threaded portion 57b on the outer periphery of the high-voltage side connector 57 into the threaded portion 56b, the tip portion 57a is formed.
The high-voltage-side connector 57 is attached to the sealing member 56 so that the seal contacts the conical seat 541. Here, the O-ring 561 mounted on the outer periphery of the sealing member 56 prevents the fluid flowing from the high pressure passage 2 from leaking to the outside of the valve device 1.

【0022】また、ハウジング40の低圧側開口部か
ら、弁部材41、スペーサ37、アクチュエータ31お
よび低圧側コネクタ61をこの順序で組付けた後、ハウ
ジング40の低圧側端部をかしめる。円筒状のスペーサ
37の軸長を変更することにより、アーマチャ46と電
磁コイル32との間の距離を設定して弁部材41のリフ
ト量を調整することができる。また、低圧側コネクタ6
1の外周に装着されたOリング611により、流体がバ
ルブ装置1の外部に漏れることを防止している。
After assembling the valve member 41, the spacer 37, the actuator 31 and the low voltage side connector 61 in this order from the low pressure side opening of the housing 40, the low pressure side end of the housing 40 is caulked. By changing the axial length of the cylindrical spacer 37, the distance between the armature 46 and the electromagnetic coil 32 can be set and the lift amount of the valve member 41 can be adjusted. Also, the low voltage side connector 6
The O-ring 611 mounted on the outer periphery of the valve 1 prevents the fluid from leaking to the outside of the valve device 1.

【0023】バルブ装置1の各部の寸法は以下の通りで
ある。高圧導入通路52の径=0.5mm、平坦面43
1の径=1.6mm、球状部材43の径=2.5mm、
弁部材41のストローク=0.2mm、第1連通路42
2の径=1.2mm、第2連通路401の径=1.5m
m、軸部材44の外径=4.0mmである。
The dimensions of each part of the valve device 1 are as follows. Diameter of high pressure introduction passage 52 = 0.5 mm, flat surface 43
1 diameter = 1.6 mm, spherical member 43 diameter = 2.5 mm,
Stroke of valve member 41 = 0.2 mm, first communication passage 42
2 diameter = 1.2 mm, 2nd communication path 401 diameter = 1.5 m
m, the outer diameter of the shaft member 44 = 4.0 mm.

【0024】次に、バルブ装置1の作動を説明する。平
板プレート51に弁部材41を付勢する付勢手段として
のスプリング63の荷重が約50Nに設定されており、
高圧導入通路52から流入する高圧流体の圧力が150
MPaであるとき、高圧導入通路52から流入する流体
の静圧により球状部材43の平坦面431に作用する開
弁力は41.6Nである。電磁コイル33への非通電時
には、高圧流体による開弁力よりもスプリング63の付
勢力の方が大きいため、バルブ装置1は球状部材43が
弁座部551に着座した閉弁状態となっており前記流体
通路は遮断されている。
Next, the operation of the valve device 1 will be described. The load of the spring 63 as the biasing means for biasing the valve member 41 to the flat plate 51 is set to about 50N,
The pressure of the high pressure fluid flowing from the high pressure introduction passage 52 is 150
When the pressure is MPa, the valve opening force that acts on the flat surface 431 of the spherical member 43 due to the static pressure of the fluid flowing from the high pressure introduction passage 52 is 41.6N. When the electromagnetic coil 33 is not energized, the urging force of the spring 63 is larger than the valve opening force of the high-pressure fluid, so the valve device 1 is in the valve closed state in which the spherical member 43 is seated on the valve seat portion 551. The fluid passage is blocked.

【0025】電磁コイル33への通電オン時、電磁コイ
ル33に発生する磁力によりアーマチャ46が電磁コイ
ル33に約50Nの電磁力で吸引される。このため、ス
プリング63の付勢力に打ち勝って軸部材44が図1の
上方にリフトすることにより球状部材43が弁座部55
1から離座してバルブ装置1が開弁状態となり、前記流
体通路が連通される。
When the electromagnetic coil 33 is energized, the magnetic force generated in the electromagnetic coil 33 attracts the armature 46 to the electromagnetic coil 33 with an electromagnetic force of about 50N. For this reason, the shaft member 44 lifts upward in FIG. 1 by overcoming the urging force of the spring 63, so that the spherical member 43 moves toward the valve seat portion 55.
When the valve device 1 is separated from the valve device 1, the valve device 1 is opened, and the fluid passage is communicated.

【0026】所定の開弁終了時期に電磁コイル33への
通電をオフすると、アーマチャ46を吸引するための電
磁力約50Nが0になるため、弁部材41を閉弁方向に
付勢するスプリング63の付勢力によりバルブ装置1は
閉弁する。バルブ装置1の開弁時に球状部材43に作用
する静圧の模式的な圧力分布を図3に示す。また、比較
例として、軸部材に第1連通路422が形成しない場合
の圧力分布を図4に示す。図4において、第1実施例と
同一の符号は実質的に同一の部材を示す。
When the energization of the electromagnetic coil 33 is turned off at the predetermined valve opening end timing, the electromagnetic force of about 50 N for attracting the armature 46 becomes 0, so that the spring 63 for urging the valve member 41 in the valve closing direction. The valve device 1 is closed by the urging force of. FIG. 3 shows a schematic pressure distribution of the static pressure acting on the spherical member 43 when the valve device 1 is opened. As a comparative example, FIG. 4 shows the pressure distribution when the first communication passage 422 is not formed in the shaft member. 4, the same reference numerals as those in the first embodiment denote substantially the same members.

【0027】バルブ装置1の開弁状態において、高圧導
入通路52から流入する流体の圧力は、高圧導入通路5
2内における圧力P1から弁座室25内で圧力P2まで
低下する。図3に示す第1実施例では、弁座室25内の
流体は連通孔232、第2連通路401および連通孔2
21を通って第1連通路422へと流入するが、この間
の流路抵抗により第1連通路422内の流体の圧力は圧
力P3まで更に低下する。これらの圧力の間には、P1
>P2>P3の関係がある。
When the valve device 1 is opened, the pressure of the fluid flowing from the high pressure introducing passage 52 is the same as that of the high pressure introducing passage 5.
In the valve seat chamber 25, the pressure decreases from P1 to P2. In the first embodiment shown in FIG. 3, the fluid in the valve seat chamber 25 has a communication hole 232, a second communication passage 401, and a communication hole 2.
Although it flows through 21 into the first communication passage 422, the pressure of the fluid in the first communication passage 422 further decreases to the pressure P3 due to the flow passage resistance therebetween. Between these pressures, P1
>P2> P3.

【0028】第1実施例によると、弁座室内の圧力P2
による球状部材43の側方からの力は球面に作用するた
め打消し合う。これに対して、高圧導入通路52に面し
た平坦面431には、高圧導入通路52の直上に位置す
る平坦面431の中心から周辺部に向かって圧力P1か
ら圧力P2に低下する圧力分布が形成される。一方、第
1連通路422と連通した空洞部423内の流体の圧力
はほぼ圧力P3に等しいか、あるいは、バルブ装置1の
開弁時、図2に示す連通孔232から図2で上方向に第
1連通路422内を流れる流体の勢いにより連通孔23
2の弁本体43側に位置する第1連通路422内の流体
が吸出されることにより、空洞部423内の流体の圧力
は圧力P3より小さくなる。このため、空洞部423に
面した球状部材43の表面には圧力P3またはこれより
やや小さい圧力が作用している。したがって、空洞部4
23に面した球状部材43の表面と平坦面431との間
の圧力差により、球状部材43には軸部材44側への吸
引力が働く。
According to the first embodiment, the pressure P2 in the valve seat chamber is
The forces from the sides of the spherical member 43 due to act on the spherical surface and cancel each other out. On the other hand, on the flat surface 431 facing the high-pressure introduction passage 52, a pressure distribution is formed that decreases from the pressure P1 to the pressure P2 from the center of the flat surface 431 located immediately above the high-pressure introduction passage 52 toward the peripheral portion. To be done. On the other hand, the pressure of the fluid in the cavity portion 423 communicating with the first communication passage 422 is substantially equal to the pressure P3, or when the valve device 1 is opened, the communication hole 232 shown in FIG. The communication hole 23 is formed by the force of the fluid flowing in the first communication passage 422.
The fluid in the first communication passage 422 located on the valve body 43 side of No. 2 is sucked out, so that the pressure of the fluid in the cavity 423 becomes smaller than the pressure P3. Therefore, the pressure P3 or a pressure slightly lower than this is applied to the surface of the spherical member 43 facing the cavity 423. Therefore, the cavity 4
Due to the pressure difference between the surface of the spherical member 43 facing 23 and the flat surface 431, a suction force acts on the spherical member 43 toward the shaft member 44.

【0029】一方、第1低圧通路422をもたず、空洞
部123と弁座室25とが接触部132によって遮断さ
れていない図4に示す比較例の場合には、空洞部123
の圧力と弁座室25の圧力とはともに圧力P2となるの
で、球状部材43を軸部材144側に吸引する力は働い
ていない。球状部材43には、上記で考慮した静圧の他
に、高圧導入通路52から流入する流体が平坦面431
に対して垂直方向に衝突することにより、平坦面431
の中心で最も大きな動圧分布を有するので、平坦面43
1の中心が最も圧力の作用が大きい箇所となる。この圧
力分布が球状部材43の中心に対して偏ると、図5に示
すように球状部材43に対して回転力Aが作用する。球
状部材43を軸部材144側に吸引する力が働かない比
較例では、この回転力Aにより平坦面431が傾き易
く、この傾きにより球状部材43に高圧導入通路52の
延びる方向に対して垂直方向の力Bが働くため、球状部
材43の位置が不安定となる。
On the other hand, in the case of the comparative example shown in FIG. 4 which does not have the first low pressure passage 422 and the cavity portion 123 and the valve seat chamber 25 are not blocked by the contact portion 132, the cavity portion 123.
And the pressure in the valve seat chamber 25 both become the pressure P2, so that the force for sucking the spherical member 43 toward the shaft member 144 does not work. In addition to the static pressure considered above, the spherical member 43 has a flat surface 431 to which the fluid flowing from the high-pressure introduction passage 52 flows.
By colliding in a direction perpendicular to the flat surface 431
Since it has the largest dynamic pressure distribution at the center of
The center of 1 is the place where the action of pressure is the largest. When this pressure distribution is biased with respect to the center of the spherical member 43, the rotational force A acts on the spherical member 43 as shown in FIG. In the comparative example in which the force for attracting the spherical member 43 to the shaft member 144 side does not work, the flat surface 431 is likely to be inclined due to this rotational force A, and due to this inclination, the flat surface 431 is perpendicular to the direction in which the high pressure introduction passage 52 extends in the spherical member 43. The force B acts on the spherical member 43, which makes the position of the spherical member 43 unstable.

【0030】これに対して、第1実施例によると、球状
部材43には軸部材44側への吸引力が働いているた
め、前記回転力Aが働いた場合にもこの吸引力により平
坦面431の傾きを抑制することができる。したがっ
て、球状部材43の位置精度が向上し、球状部材43と
軸部材44とが安定した接触状態を保つことができる。
このように、本発明の第1実施例によると、球状部材4
3の位置精度が向上して球状部材43と軸部材44とが
安定した接触状態を保つことができるため、軸部材44
の移動量に対して平板プレート51と球状部材43との
間の開口面積が高精度に規定されるので、バルブ装置1
が連続作動する場合にストローク毎の開口面積のばらつ
きが小さくなり、流量を高精度に制御することができ
る。特に、バルブ装置1を高速で作動させる場合に微少
流量を高精度に制御することができるという効果があ
る。
On the other hand, according to the first embodiment, since the spherical member 43 is attracted to the shaft member 44 side, even when the rotational force A is exerted, the spherical member 43 has a flat surface. The inclination of 431 can be suppressed. Therefore, the positional accuracy of the spherical member 43 is improved, and the spherical member 43 and the shaft member 44 can be maintained in a stable contact state.
Thus, according to the first embodiment of the present invention, the spherical member 4
Since the positional accuracy of 3 is improved and the spherical member 43 and the shaft member 44 can maintain a stable contact state, the shaft member 44
The opening area between the flat plate 51 and the spherical member 43 is defined with high accuracy with respect to the moving amount of the valve device 1.
In case of continuous operation, the variation of the opening area for each stroke becomes small, and the flow rate can be controlled with high accuracy. In particular, there is an effect that the minute flow rate can be controlled with high accuracy when the valve device 1 is operated at high speed.

【0031】バルブ装置1に形成された流体通路は、球
状部材43の平坦面431が平板プレート51の平面状
の弁座551に着座することにより遮断される。このよ
うに、平坦面同士が密着することにより高圧導入通路5
2を閉塞しているため、例えば球状凸部をなす弁体を円
錐凹面をなす弁座に密着させることにより高圧導入通路
を閉塞する場合に比べて接触部の加工が容易である。ま
た、軸部材に形成された円錐凹面421と球状部材43
との接触部432は、これらの部材が完全に密着してい
なくても空洞部423と第1連通路との間に圧力差を生
じさせることができるので、球状凸部をなす弁体を円錐
凹面をなす弁座に密着させることにより高圧導入通路を
閉塞する場合ほど厳しい加工精度を必要としないため加
工が容易である。
The fluid passage formed in the valve device 1 is blocked by the flat surface 431 of the spherical member 43 seating on the flat valve seat 551 of the flat plate 51. In this way, the flat surfaces are in close contact with each other, so that the high-pressure introducing passage 5
Since 2 is closed, it is easier to process the contact portion than when the high pressure introducing passage is closed by, for example, closely adhering the valve body having a spherical convex portion to the valve seat having a conical concave surface. In addition, the conical concave surface 421 and the spherical member 43 formed on the shaft member
The contact portion 432 with the can generate a pressure difference between the hollow portion 423 and the first communication passage even if these members are not completely in close contact with each other, so that the valve element forming the spherical convex portion is conical. It is easier to process because it does not require the same strict machining accuracy as when closing the high-pressure introduction passage by closely contacting with the concave valve seat.

【0032】球状部材43は、軸部材44の高圧側端面
に設けられた円錐凹面421と球状部材43の球状凸面
との間に接触部432を形成することにより弁座室25
と空洞部423とを遮断している。このように、円錐凹
面と球状凸面との組合わせにより円周状の接触部432
を構成するので、例えば平面同士の組合せによる場合に
比べて接触部に作用する面圧が高く、また球状部材43
および軸部材44のいずれかが傾いた場合にもこの円周
状の接触部による接触が保たれるため、空洞部423と
弁座室25との間を常に良好に遮断することができる。
これにより、空洞部423と弁座室25との間に圧力差
を発生させることができる。
The spherical member 43 forms a contact portion 432 between the conical concave surface 421 provided on the end surface of the shaft member 44 on the high pressure side and the spherical convex surface of the spherical member 43, thereby forming the valve seat chamber 25.
And the cavity 423 are blocked. In this way, the circumferential contact portion 432 is formed by combining the conical concave surface and the spherical convex surface.
Therefore, the surface pressure acting on the contact portion is higher than that in the case of combining the flat surfaces with each other, and the spherical member 43
Even when either of the shaft member 44 and the shaft member 44 is tilted, the contact by the circumferential contact portion is maintained, so that the hollow portion 423 and the valve seat chamber 25 can be always shut off satisfactorily.
Thereby, a pressure difference can be generated between the hollow portion 423 and the valve seat chamber 25.

【0033】さらに、軸部材44が第1連通路422を
有する中空形状であるため、弁部材41の慣性質量を低
減することによりバルブ装置1の応答性が向上するとと
もに、軸部材44の高圧側端部に円錐凹部421を加工
する際の加工性が良好である。 (第2実施例)本発明の第2実施例によるバルブ装置を
図6〜図10に示す。この第2実施例は、弁座室25か
ら第1連通路422に到る流体通路に絞り手段を設けた
例である。第1実施例と同一の符号は実質的に同一の部
材を示す。
Further, since the shaft member 44 has a hollow shape having the first communication passage 422, the responsiveness of the valve device 1 is improved by reducing the inertial mass of the valve member 41, and the shaft member 44 has a high pressure side. The workability when processing the conical recess 421 on the end is good. (Second Embodiment) FIGS. 6 to 10 show a valve device according to a second embodiment of the present invention. The second embodiment is an example in which throttling means is provided in the fluid passage extending from the valve seat chamber 25 to the first communication passage 422. The same reference numerals as those in the first embodiment indicate substantially the same members.

【0034】図6は、前記絞り手段の一例として、第1
実施例の連通路221に比べて連通路821の開口面積
を小さくした実施例である。この他の部分の構成は、第
1実施例と実質的に同様である。図7は、前記絞り手段
の他の例として、第1実施例の連通路232に比べて連
通路832の開口面積を小さくした実施例である。この
他の部分の構成は、第1実施例と実質的に同様である。
FIG. 6 shows a first example of the diaphragm means.
This is an embodiment in which the opening area of the communication passage 821 is smaller than that of the communication passage 221 of the embodiment. The configuration of the other parts is substantially the same as that of the first embodiment. FIG. 7 shows another example of the throttle means in which the opening area of the communication passage 832 is smaller than that of the communication passage 232 of the first embodiment. The configuration of the other parts is substantially the same as that of the first embodiment.

【0035】図8は、前記絞り手段のさらに他の例とし
て、フランジ部23内に形成された第2連通路801に
絞り部811を設けた実施例である。この他の部分の構
成は、第1実施例と実質的に同様である。図9は、前記
絞り手段のさらに他の例として、連通路824の第1連
通路422側に絞り部825を設けた実施例である。こ
の他の部分の構成は、第1実施例と実質的に同様であ
る。
FIG. 8 shows, as still another example of the throttle means, an embodiment in which a throttle portion 811 is provided in the second communication passage 801 formed in the flange portion 23. The configuration of the other parts is substantially the same as that of the first embodiment. FIG. 9 shows an embodiment in which a throttle portion 825 is provided on the first communication passage 422 side of the communication passage 824 as still another example of the throttle means. The configuration of the other parts is substantially the same as that of the first embodiment.

【0036】上記図6〜図9に示す実施例によると、絞
り手段を設けたことにより弁座室25から第1連通路4
22に到る流体通路部分の通路抵抗が大きくなるため、
弁座室25と空洞部423との間の圧力差が大きくな
る。これにより、球状部材43の軸部材44への吸引力
が増すため、球状部材43の位置精度がさらに向上して
球状部材43と軸部材44とが安定した接触状態を保つ
ことができるという効果がある。
According to the embodiment shown in FIGS. 6 to 9, since the throttling means is provided, the valve seat chamber 25 to the first communication passage 4
Since the passage resistance of the fluid passage portion reaching 22 increases,
The pressure difference between the valve seat chamber 25 and the cavity 423 becomes large. As a result, the suction force of the spherical member 43 to the shaft member 44 increases, so that the positional accuracy of the spherical member 43 is further improved, and the spherical member 43 and the shaft member 44 can maintain a stable contact state. is there.

【0037】また、図10は、前記絞り手段のさらに他
の例として、第1実施例の第2連通路401に比べて第
2連通路802の開口面積を小さくした実施例である。
この他の部分の構成は、第1実施例と実質的に同様であ
る。図10に示す実施例によると、図6〜図9に示す実
施例と同様に弁座室25と空洞部423との間の圧力差
が大きくなるとともに、円錐凹部421と球状部材43
との間の接触部432において弁座室25と空洞部42
3との遮断が完全ではなく弁座室25から空洞部423
への流れが生じた場合にも、第1連通路422および空
洞部423を低圧に保つことができるという効果があ
る。
FIG. 10 shows another embodiment of the throttle means in which the opening area of the second communication passage 802 is smaller than that of the second communication passage 401 of the first embodiment.
The configuration of the other parts is substantially the same as that of the first embodiment. According to the embodiment shown in FIG. 10, the pressure difference between the valve seat chamber 25 and the cavity portion 423 is increased as in the embodiment shown in FIGS. 6 to 9, and the conical recess 421 and the spherical member 43 are used.
At the contact portion 432 between the valve seat chamber 25 and the cavity portion 42.
3 is not completely shut off from the valve seat chamber 25 to the cavity 423.
Even if the flow to the first side is generated, there is an effect that the first communication passage 422 and the cavity portion 423 can be maintained at a low pressure.

【0038】(第3実施例)本発明の第3実施例による
バルブ装置を図11に示す。この第3実施例は、球状部
材43を連結部材45に圧入することにより連結部材4
5を介して軸部材44に球状部材43を連結した第1実
施例に対して、球状部材43の支持部材への連結方法が
異なる例である。
(Third Embodiment) FIG. 11 shows a valve device according to a third embodiment of the present invention. In this third embodiment, the spherical member 43 is press-fitted into the connecting member 45, so that the connecting member 4
This is an example in which the method of connecting the spherical member 43 to the support member is different from the first embodiment in which the spherical member 43 is connected to the shaft member 44 via 5.

【0039】図11に示すように、支持部材842は連
結部材を用いることなく軸部材844からなり、球状部
材43は軸部材844の高圧側端部をかしめることによ
り支持部材842に支持されている。この他の部分の構
成は、第1実施例と実質的に同様である。この方法によ
ると、連結部材を使用しないため部品点数が少なくな
り、バルブ装置の製造コストを削減することができる。
As shown in FIG. 11, the supporting member 842 is composed of a shaft member 844 without using a connecting member, and the spherical member 43 is supported by the supporting member 842 by caulking the high pressure side end of the shaft member 844. There is. The configuration of the other parts is substantially the same as that of the first embodiment. According to this method, since the connecting member is not used, the number of parts is reduced, and the manufacturing cost of the valve device can be reduced.

【0040】なお、軸部材の先端にあらかじめ高圧側端
部が縮径された円筒部を一体に設け、この円筒部に球状
部材を圧入することにより球状部材を支持部材に支持す
ることも可能である。 (第4実施例)本発明の第4実施例によるバルブ装置を
図12および図13に示す。この第4実施例は、円錐凹
面と球状凸面との組合わせにより円周状の接触部432
を構成した第1実施例に対して接触部の構成方法が異な
る例である。
It is also possible to support the spherical member on the support member by integrally providing a cylindrical portion with the high pressure side end portion having a reduced diameter in advance at the tip of the shaft member and press-fitting the spherical member into this cylindrical portion. is there. (Fourth Embodiment) FIGS. 12 and 13 show a valve device according to a fourth embodiment of the present invention. In the fourth embodiment, a circular contact portion 432 is formed by combining a conical concave surface and a spherical convex surface.
This is an example in which the method of configuring the contact portion is different from that of the first embodiment configured as described above.

【0041】図12は、軸部材344の高圧側端面に球
状凹面321を設けた実施例である。この場合、球状部
材43と球状凹面321との間には、第1連通路422
を構成する軸部材344の周囲に円周状の接触部332
が形成される。球状部材43は、弁座室25と第1連通
路422の圧力差により軸部材344側に吸引される。
この他の部分の構成は、第1実施例と実質的に同様であ
る。
FIG. 12 shows an embodiment in which a spherical concave surface 321 is provided on the high pressure side end surface of the shaft member 344. In this case, the first communication passage 422 is provided between the spherical member 43 and the spherical concave surface 321.
Around the shaft member 344 forming the
Is formed. The spherical member 43 is sucked toward the shaft member 344 by the pressure difference between the valve seat chamber 25 and the first communication passage 422.
The configuration of the other parts is substantially the same as that of the first embodiment.

【0042】図13は、軸部材544の高圧側端面に平
面521を設けるとともに、第1連通路522の高圧側
端部を複数の分岐連通路522aに分岐させた実施例で
ある。球状部材43は平面521の中心の一点で軸部材
544に当接している。この場合、弁座室25と第1連
通路522との間の圧力差は、連結部材545の内壁と
球状部材43との間に形成される円周状の接触部532
において弁座室25と空洞部523との間がほぼ遮断さ
れることにより発生する。この他の部分の構成は、第1
実施例と実質的に同様である。
FIG. 13 shows an embodiment in which a flat surface 521 is provided on the high pressure side end surface of the shaft member 544 and the high pressure side end portion of the first communication passage 522 is branched into a plurality of branch communication passages 522a. The spherical member 43 is in contact with the shaft member 544 at one point in the center of the flat surface 521. In this case, the pressure difference between the valve seat chamber 25 and the first communication passage 522 is the circumferential contact portion 532 formed between the inner wall of the connecting member 545 and the spherical member 43.
Occurs when the valve seat chamber 25 and the hollow portion 523 are substantially cut off from each other. The configuration of the other parts is the first
This is substantially the same as the embodiment.

【0043】図12および図13に示す実施例では、平
面同士の組合せによる場合に比べて接触部に作用する面
圧が高く、また球状部材43および支持部材442、5
42のいずれかが傾いた場合にもこの円周状の接触部に
よる接触が保たれるため、第1連通路と弁座室25との
間を常に良好に遮断することができる。したがって、空
洞部423と弁座室25との間に圧力差を発生させるこ
とができる。
In the embodiment shown in FIGS. 12 and 13, the surface pressure acting on the contact portion is higher than in the case where the flat surfaces are combined with each other, and the spherical member 43 and the supporting members 442, 5 are used.
Even if any of the 42 is tilted, the contact by the circumferential contact portion is maintained, so that the first communication passage and the valve seat chamber 25 can always be favorably blocked. Therefore, a pressure difference can be generated between the hollow portion 423 and the valve seat chamber 25.

【0044】なお、図13に示す実施例では、第1連通
路522の高圧側端部を複数の分岐連通路522aに分
岐させている。この分岐連通路522aは、支持部材5
42の横断面において支持部材542の軸を中心とした
同一円周上に等間隔に配置されている。これにより、支
持部材542の軸に対して空洞部523内の圧力分布を
均等にすることができる。
In the embodiment shown in FIG. 13, the high pressure side end of the first communication passage 522 is branched into a plurality of branch communication passages 522a. The branch communication passage 522a is provided in the support member 5
In the cross section of 42, they are arranged at equal intervals on the same circumference centered on the axis of the support member 542. This makes it possible to make the pressure distribution in the cavity 523 uniform with respect to the axis of the support member 542.

【0045】(第5実施例)本発明の第5実施例を図1
4に示す。この第5実施例は、第1実施例によるバルブ
装置を蓄圧式燃料噴射装置の二方向弁装置として用いた
例である。図14に示す蓄圧式燃料噴射装置135は、
図示しないコモンレールで蓄圧された高圧燃料を図示し
ないディーゼル内燃機関の各気筒毎に設けられたインジ
ェクタに供給し、このインジェクタの噴射ノズルから各
気筒の燃焼室内へ燃料を噴射するものである。
(Fifth Embodiment) FIG. 1 shows a fifth embodiment of the present invention.
It is shown in FIG. The fifth embodiment is an example in which the valve device according to the first embodiment is used as a two-way valve device of a pressure accumulation type fuel injection device. The pressure accumulation type fuel injection device 135 shown in FIG.
High-pressure fuel accumulated in a common rail (not shown) is supplied to an injector provided for each cylinder of a diesel internal combustion engine (not shown), and fuel is injected from an injection nozzle of this injector into the combustion chamber of each cylinder.

【0046】燃料噴射装置135は、噴射ノズル136
の噴孔137を開閉するためのノズルニードル弁138
と、ニードル弁138の反噴孔側に接触あるいは連結さ
れておりニードル弁138を閉弁方向に付勢するスプリ
ング139内に貫挿されたプレッシャピン140と、プ
レッシャピン140の反噴孔側に接触あるいは連結され
ておりインジェクタボディ141に摺動自在な制御ピス
トン142と、高圧燃料導入通路143および低圧通路
103に連通しており油圧力によってニードル弁138
を閉弁方向に付勢するための燃料が蓄えられる制御室1
46と、ニードル弁138の開弁時に噴孔137から噴
射される高圧燃料を噴射ノズル136の噴孔137に導
く噴射燃料導入通路147とを備える。
The fuel injection device 135 includes an injection nozzle 136.
Needle valve 138 for opening and closing the injection hole 137 of the
A pressure pin 140 inserted into a spring 139 that contacts or is connected to the side opposite to the injection hole of the needle valve 138 and biases the needle valve 138 in the valve closing direction; The control piston 142, which is in contact with or connected to the injector body 141 and is slidable in the injector body 141, is in communication with the high-pressure fuel introduction passage 143 and the low-pressure passage 103.
Control chamber 1 for storing fuel for urging the valve in the valve closing direction
46, and an injection fuel introduction passage 147 that guides high-pressure fuel injected from the injection hole 137 to the injection hole 137 of the injection nozzle 136 when the needle valve 138 is opened.

【0047】高圧燃料導入通路143と制御室146と
の間には、制御室146に流入する燃料を制限するため
の第1の絞り孔148が配設され、制御室146と低圧
通路103との間には第1の絞り孔148よりも通路抵
抗の小さい第2の絞り孔149が配設されている。第2
の絞り孔149と低圧通路103との間には、制御室1
46と低圧側とを断続する二方向弁装置として、第1実
施例によるバルブ装置1が設けられている。
A first throttle hole 148 for restricting the fuel flowing into the control chamber 146 is provided between the high pressure fuel introduction passage 143 and the control chamber 146, and the control chamber 146 and the low pressure passage 103 are connected to each other. A second throttle hole 149 having a passage resistance smaller than that of the first throttle hole 148 is provided between them. Second
Between the throttle hole 149 and the low-pressure passage 103 of the control chamber 1
The valve device 1 according to the first embodiment is provided as a two-way valve device that connects and disconnects 46 and the low pressure side.

【0048】また、図12において、150はフィル
タ、151はノズルパッキンチップ、152はノズルリ
テーニングナット、153はバルブ装置1のコネクタ、
154はバルブ装置1のリテーニングナット、155は
リーク燃料回収用のコネクタである。さらに、通路15
6は制御ピストン142とニードル弁138との摺動ク
リアランスからのリーク燃料を回収するための低圧通路
であり、この通路156は低圧通路103に接続される
バルブ装置1の第2連通路401に連通している。この
蓄圧式燃料噴射装置135では、図1に示すバルブ装置
1の高圧導入通路52に第1の絞り孔148が配設さ
れ、また低圧側コネクタ61に代えてリーク燃料回収用
のコネクタ155が組付けられている。
Further, in FIG. 12, 150 is a filter, 151 is a nozzle packing tip, 152 is a nozzle retaining nut, 153 is a connector of the valve device 1,
Reference numeral 154 is a retaining nut of the valve device 1, and 155 is a connector for collecting leaked fuel. Furthermore, passage 15
Reference numeral 6 is a low pressure passage for collecting leaked fuel from the sliding clearance between the control piston 142 and the needle valve 138, and this passage 156 communicates with the second communication passage 401 of the valve device 1 connected to the low pressure passage 103. doing. In this pressure accumulating fuel injection device 135, a first throttle hole 148 is arranged in the high pressure introducing passage 52 of the valve device 1 shown in FIG. 1, and a connector 155 for collecting leak fuel is assembled in place of the low pressure side connector 61. It is attached.

【0049】この蓄圧式燃料噴射装置135の作動につ
いて説明する。コモンレール内で蓄圧された高圧燃料
は、図示しない燃料配管を通って蓄圧式燃料噴射装置1
35の高圧燃料導入通路143に流入し、第1の絞り孔
148および噴射燃料導入通路147に分岐して導入さ
れる。このとき、ニードル弁138はスプリング139
によりプレッシャピン140を介して閉弁方向に付勢さ
れているので噴射は行われない。また、バルブ装置1
も、スプリング62の付勢力により閉弁状態となってい
る。
The operation of the pressure accumulating fuel injection device 135 will be described. The high-pressure fuel accumulated in the common rail passes through a fuel pipe (not shown) to accumulate pressure.
The high pressure fuel introduction passage 143 of 35 flows into the first throttle hole 148 and the injected fuel introduction passage 147 in a branched manner. At this time, the needle valve 138 moves the spring 139.
Therefore, the injection is not performed because it is urged in the valve closing direction via the pressure pin 140. Also, the valve device 1
Is closed by the biasing force of the spring 62.

【0050】高圧燃料導入通路143内の圧力が次第に
上昇すると、スプリング139の付勢力に加え、制御室
146内の高圧燃料の圧力によって制御ピストン142
がニードル弁138を閉弁方向に付勢する。この圧力上
昇速度は、内燃機関の始動直後では約25〜30MPa
/sec程度である。ここで、制御ピストン142の受
圧面積はニードル弁138の受圧面積に比べて大きいた
め、バルブ装置1の非開弁時には噴射ノズル136から
燃料が噴射されることはない。この第5実施例では、制
御ピストン142の直径=5.0mm、ニードル弁13
8の直径==4.0mm、ニードル弁138のシート径
=2.25mmであるため、制御ピストン142の受圧
面積とニードル弁138の受圧面積との差は約11mm
2 に設定されている。
When the pressure in the high pressure fuel introduction passage 143 gradually rises, the control piston 142 is driven by the pressure of the high pressure fuel in the control chamber 146 in addition to the urging force of the spring 139.
Urges the needle valve 138 in the valve closing direction. This pressure increase rate is about 25 to 30 MPa immediately after starting the internal combustion engine.
/ Sec. Here, since the pressure receiving area of the control piston 142 is larger than the pressure receiving area of the needle valve 138, fuel is not injected from the injection nozzle 136 when the valve device 1 is not opened. In the fifth embodiment, the diameter of the control piston 142 = 5.0 mm, the needle valve 13
Since the diameter of 8 == 4.0 mm and the seat diameter of the needle valve 138 = 2.25 mm, the difference between the pressure receiving area of the control piston 142 and the pressure receiving area of the needle valve 138 is about 11 mm.
Set to 2 .

【0051】また、バルブ装置1のスプリング63のセ
ット荷重は約50Nであり、例えば制御室146の圧力
が150MPaの場合にはバルブ装置1の開弁方向に働
く圧力は41.6Nであるため、制御室146の圧力に
よりバルブ装置1が開弁することはない。この状態で、
電磁コイル33に通電すると、第1実施例で述べたよう
にバルブ装置1が開弁する。これにより、制御室146
の燃料は、第2の絞り孔149から弁座室25、第2連
通路401、第1連通路422および低圧通路103を
介して図示しないリーク燃料回収用の配管へと流出す
る。
Further, the set load of the spring 63 of the valve device 1 is about 50 N, and for example, when the pressure of the control chamber 146 is 150 MPa, the pressure acting in the valve opening direction of the valve device 1 is 41.6 N. The valve device 1 does not open due to the pressure in the control chamber 146. In this state,
When the electromagnetic coil 33 is energized, the valve device 1 opens as described in the first embodiment. As a result, the control room 146
Fuel flows out from the second throttle hole 149 through the valve seat chamber 25, the second communication passage 401, the first communication passage 422 and the low pressure passage 103 to a leak fuel recovery pipe (not shown).

【0052】制御室146内の高圧燃料の流出が始まり
しばらくすると、制御室146内の圧力は、高圧燃料導
入通路143および噴射燃料導入通路147の圧力に比
べて相対的に低くなる。これは、制御室146に導入さ
れる燃料を規制するための第1の絞り孔148の通路面
積に比較し、制御室146からの流出燃料を規制するた
めの第2の絞り孔149の通路面積が大きく構成されて
いるためである。この第5実施例では、第1の絞り孔1
48の直径=0.3mm、第2の絞り孔149の直径=
0.5mmである。さらに制御室146の圧力が低下す
ると、ニードル弁138に開弁方向に働く油圧荷重、制
御ピストン142に閉弁方向に働く油圧荷重およびスプ
リング139のセット荷重との力関係が逆転し、ノズル
開弁方向への力が勝ってニードル弁138がリフトする
ので噴孔137から燃料が開始される。
When the outflow of high-pressure fuel into the control chamber 146 starts for a while, the pressure in the control chamber 146 becomes relatively lower than the pressures in the high-pressure fuel introduction passage 143 and the injected fuel introduction passage 147. This is compared with the passage area of the first throttle hole 148 for regulating the fuel introduced into the control chamber 146, and the passage area of the second throttle hole 149 for regulating the fuel flowing out from the control chamber 146. Because it is configured large. In this fifth embodiment, the first throttle hole 1
Diameter of 48 = 0.3 mm, diameter of second throttle hole 149 =
0.5 mm. When the pressure in the control chamber 146 further decreases, the force relationship between the hydraulic load acting on the needle valve 138 in the valve opening direction, the hydraulic load acting on the control piston 142 in the valve closing direction, and the set load of the spring 139 is reversed, and the nozzle opening valve is opened. The force in the direction prevails and the needle valve 138 lifts, so that fuel is started from the injection hole 137.

【0053】所定の噴射終了時期に電磁コイル33への
通電をオフすると、アーマチャ46を吸引するための電
磁力50Nが0になるため、スプリング63の付勢力に
よりバルブ装置1が閉弁する。すると、高圧燃料導入通
路143を介して制御室146に高圧燃料が導入され、
制御室146の圧力がバルブ装置1の開弁前の状態まで
徐々に復帰してくる。この制御室146の昇圧過程の途
中、ニードル弁138に働く油圧荷重の和とスプリング
139のセット荷重との力関係がニードル弁138の閉
弁方向に逆転すると、ニードル弁138が噴孔137を
遮断するので噴射ノズル136が閉弁し噴射が終了す
る。
When the energization of the electromagnetic coil 33 is turned off at the predetermined injection end timing, the electromagnetic force 50N for attracting the armature 46 becomes 0, so that the valve device 1 is closed by the urging force of the spring 63. Then, high-pressure fuel is introduced into the control chamber 146 through the high-pressure fuel introduction passage 143,
The pressure in the control chamber 146 gradually returns to the state before opening the valve device 1. When the force relationship between the sum of the hydraulic loads acting on the needle valve 138 and the set load of the spring 139 reverses in the valve closing direction of the needle valve 138 during the process of increasing the pressure in the control chamber 146, the needle valve 138 blocks the injection hole 137. Therefore, the injection nozzle 136 closes and the injection ends.

【0054】第5実施例の蓄圧式燃料噴射装置による
と、二方向弁装置として第1実施例のバルブ装置1を用
いたことにより、常時、軸部材44の動きを球状部材4
3へと精度良く伝えることができる。これにより、球状
部材43と平板プレート51との間の開口面積を安定さ
せることができるので、バルブ装置1が連続作動する場
合にストローク毎の開口面積のばらつきが小さくなり、
流量を高精度に制御することができる。したがって、噴
射ノズル136からの燃料噴射量が安定する。特に、蓄
圧式燃料噴射装置135を高速で作動させる場合に微少
燃料噴射量を高精度に制御することができるという効果
がある。
According to the pressure-accumulation type fuel injection device of the fifth embodiment, since the valve device 1 of the first embodiment is used as the two-way valve device, the movement of the shaft member 44 is always made spherical.
Can be accurately transmitted to 3. As a result, the opening area between the spherical member 43 and the flat plate 51 can be stabilized, so that when the valve device 1 is continuously operated, the variation in the opening area for each stroke is reduced.
The flow rate can be controlled with high accuracy. Therefore, the fuel injection amount from the injection nozzle 136 becomes stable. In particular, there is an effect that the minute fuel injection amount can be controlled with high accuracy when the pressure accumulation type fuel injection device 135 is operated at high speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例によるバルブ装置を示す断
面図である。
FIG. 1 is a sectional view showing a valve device according to a first embodiment of the present invention.

【図2】図1の要部を示す拡大断面図である。FIG. 2 is an enlarged sectional view showing a main part of FIG.

【図3】本発明の第1実施例において、球状部材に作用
する圧力を模式的に示す断面図である。
FIG. 3 is a cross-sectional view schematically showing the pressure acting on the spherical member in the first embodiment of the present invention.

【図4】第1連通路を設けない場合に球状部材に作用す
る圧力を模式的に示す断面図である。
FIG. 4 is a cross-sectional view schematically showing the pressure acting on the spherical member when the first communication passage is not provided.

【図5】第1連通路を設けない場合に球状部材に作用す
る圧力を模式的に示す断面図である。
FIG. 5 is a cross-sectional view schematically showing the pressure acting on the spherical member when the first communication passage is not provided.

【図6】本発明の第2実施例によるバルブ装置の一例を
示す要部拡大断面図である。
FIG. 6 is an enlarged sectional view of an essential part showing an example of a valve device according to a second embodiment of the present invention.

【図7】本発明の第2実施例によるバルブ装置の他の例
を示す要部拡大断面図である。
FIG. 7 is an enlarged sectional view of an essential part showing another example of the valve device according to the second embodiment of the present invention.

【図8】本発明の第2実施例によるバルブ装置のさらに
他の例を示す要部拡大断面図である。
FIG. 8 is an enlarged sectional view of an essential part showing still another example of the valve device according to the second embodiment of the present invention.

【図9】本発明の第2実施例によるバルブ装置のさらに
他の例を示す要部拡大断面図である。
FIG. 9 is an enlarged sectional view of an essential part showing still another example of the valve device according to the second embodiment of the present invention.

【図10】本発明の第2実施例によるバルブ装置のさら
に他の例を示す要部拡大断面図である。
FIG. 10 is an enlarged sectional view of an essential part showing still another example of the valve device according to the second embodiment of the present invention.

【図11】本発明の第3実施例によるバルブ装置の一例
を示す要部拡大断面図である。
FIG. 11 is an enlarged sectional view of an essential part showing an example of a valve device according to a third embodiment of the present invention.

【図12】本発明の第4実施例によるバルブ装置の一例
を示す要部拡大断面図である。
FIG. 12 is an enlarged sectional view of an essential part showing an example of a valve device according to a fourth embodiment of the present invention.

【図13】本発明の第4実施例によるバルブ装置の他の
例を示す要部拡大断面図である。
FIG. 13 is an enlarged sectional view of an essential part showing another example of the valve device according to the fourth embodiment of the present invention.

【図14】本発明の第5実施例による蓄圧式燃料噴射装
置を示す断面図である。
FIG. 14 is a sectional view showing a pressure accumulation type fuel injection device according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 バルブ装置 2 高圧通路 3 低圧通路 21 シリンダ 25 弁座室(低圧室) 31 アクチュエータ 33 電磁コイル 40 ハウジング 41 弁部材 42 支持部材 43 球状部材(弁本体) 44 軸部材(支持部材本体) 45 連結部材 46 アーマチャ 51 平板プレート(シート部材) 52 高圧導入通路 135 蓄圧式燃料噴射装置 137 噴孔 138 ニードル弁 142 制御ピストン 146 制御室(圧力制御室) 221、232、352、424 連通路 401 第2連通路 421 円錐凹部 423 空洞部 431 平坦面 432 接触部 1 Valve Device 2 High Pressure Passage 3 Low Pressure Passage 21 Cylinder 25 Valve Seat Chamber (Low Pressure Chamber) 31 Actuator 33 Electromagnetic Coil 40 Housing 41 Valve Member 42 Support Member 43 Spherical Member (Valve Main Body) 44 Shaft Member (Supporting Member Main Body) 45 Connecting Member 46 Armature 51 Flat plate (sheet member) 52 High-pressure introduction passage 135 Accumulation type fuel injection device 137 Injection hole 138 Needle valve 142 Control piston 146 Control chamber (pressure control chamber) 221, 232, 352, 424 Communication passage 401 Second communication passage 421 conical concave part 423 hollow part 431 flat surface 432 contact part

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 流体通路の高圧側と低圧側とを遮断また
は導通するバルブ装置であって、 前記流体通路の高圧側と低圧側との間に配設され高圧導
入通路を有するシート部材と、 前記シート部材に当接することにより前記高圧導入通路
を閉塞する弁本体、および、前記弁本体と高圧側端部で
当接する支持部材とを有する弁部材と、 前記弁部材を軸方向に往復移動可能に支持するシリンダ
と、 前記弁部材を開弁方向または閉弁方向に駆動するアクチ
ュエータとからなり、 前記支持部材には前記弁本体側に開口するとともに前記
流体通路の低圧側と連通する第1連通路が形成され、前
記弁本体は前記弁本体周囲の低圧室と前記開口とを遮断
し、前記低圧室と前記第1連通路または低圧側とは第2
連通路により連通されることを特徴とするバルブ装置。
1. A valve device for disconnecting or connecting a high pressure side and a low pressure side of a fluid passage, the sheet member having a high pressure introduction passage arranged between the high pressure side and the low pressure side of the fluid passage, A valve member having a valve body that closes the high-pressure introduction passage by abutting the seat member, and a support member that abuts the valve body at a high-pressure side end, and the valve member can reciprocate in the axial direction. A first supporting cylinder that is open to the valve body side and that communicates with the low pressure side of the fluid passageway, and a cylinder that supports the valve member and an actuator that drives the valve member in a valve opening direction or a valve closing direction. A passage is formed, the valve body blocks the low pressure chamber around the valve body from the opening, and the low pressure chamber and the first communication passage or the low pressure side are provided with a second passage.
A valve device characterized by being communicated by a communication passage.
【請求項2】 前記支持部材と前記弁本体との接触部
は、円錐状凹面と球状凸面、あるいは球状凹面と球状凸
面との組合わせにより構成されることを特徴とする請求
項1記載のバルブ装置。
2. The valve according to claim 1, wherein a contact portion between the support member and the valve body is constituted by a conical concave surface and a spherical convex surface, or a combination of a spherical concave surface and a spherical convex surface. apparatus.
【請求項3】 前記支持部材は支持部材本体と円筒状の
連結部材とからなり、前記弁本体は前記連結部材をかし
めるか、あるいは前記連結部材に圧入されることにより
前記支持部材に支持されていることを特徴とする請求項
1または2記載のバルブ装置。
3. The supporting member comprises a supporting member main body and a cylindrical connecting member, and the valve main body is supported by the supporting member by caulking the connecting member or press-fitting into the connecting member. The valve device according to claim 1 or 2, characterized in that:
【請求項4】 前記第1連通路は前記支持部材の軸方向
に延びていることを特徴とする請求項1から3のいずれ
か一項記載のバルブ装置。
4. The valve device according to claim 1, wherein the first communication passage extends in the axial direction of the support member.
【請求項5】 前記第1連通路は、前記支持部材の横断
面において前記支持部材の軸を中心とした同一円周上に
等間隔に複数形成されていることを特徴とする請求項4
記載のバルブ装置。
5. The plurality of the first communication passages are formed at equal intervals on the same circumference centered on the axis of the support member in a cross section of the support member.
The valve device described.
【請求項6】 前記第2連通路には絞り手段が設けられ
ていることを特徴とする請求項1から5のいずれか一項
記載のバルブ装置。
6. The valve device according to claim 1, wherein throttling means is provided in the second communication passage.
【請求項7】 前記第2連通路の通路抵抗は前記第1連
通路の通路抵抗よりも大きいことを特徴とする請求項1
から6のいずれか一項記載のバルブ装置。
7. The passage resistance of the second communication passage is larger than the passage resistance of the first communication passage.
7. The valve device according to any one of 1 to 6.
【請求項8】 コモンレールで蓄圧された高圧燃料をデ
ィーゼル内燃機関の各気筒毎に設けられたインジェクタ
に供給し、このインジェクタの噴射ノズルから各気筒の
燃焼室内へ燃料を噴射する蓄圧式燃料噴射装置であっ
て、 噴射ノズルの噴孔に高圧燃料を供給可能な高圧燃料通路
と前記噴孔とを断続するニードル弁と、 前記ニードル弁の反噴孔側に前記ニードル弁とともに往
復移動可能に設けられた制御ピストンと、 前記制御ピストンの反噴孔側に設けられ前記高圧燃料通
路から供給される燃料圧力により前記制御ピストンを前
記噴孔遮断方向に付勢する圧力制御室と低圧燃料通路ま
たは低圧燃料室とを断続する二方向弁装置とを備え、 前記二方向弁装置として請求項1から7のいずれか一項
記載のバルブ装置を用いたことを特徴とする蓄圧式燃料
噴射装置。
8. A pressure-accumulation fuel injection device for supplying high-pressure fuel accumulated in a common rail to an injector provided for each cylinder of a diesel internal combustion engine, and injecting fuel from an injection nozzle of the injector into a combustion chamber of each cylinder. A high-pressure fuel passage capable of supplying high-pressure fuel to the injection hole of the injection nozzle, and a needle valve for connecting and disconnecting the injection hole; and a needle valve provided on the side opposite to the injection hole of the needle valve so as to reciprocate together with the needle valve. Control piston, a pressure control chamber for urging the control piston in the injection hole blocking direction by a fuel pressure provided on the side opposite to the injection hole of the control piston and supplied from the high pressure fuel passage, and a low pressure fuel passage or low pressure fuel. A two-way valve device that connects and disconnects with the chamber, wherein the valve device according to any one of claims 1 to 7 is used as the two-way valve device. Pressure fuel injection system.
JP27005495A 1995-10-18 1995-10-18 Accumulation type fuel injection device Expired - Fee Related JP3589323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27005495A JP3589323B2 (en) 1995-10-18 1995-10-18 Accumulation type fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27005495A JP3589323B2 (en) 1995-10-18 1995-10-18 Accumulation type fuel injection device

Publications (2)

Publication Number Publication Date
JPH09112732A true JPH09112732A (en) 1997-05-02
JP3589323B2 JP3589323B2 (en) 2004-11-17

Family

ID=17480885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27005495A Expired - Fee Related JP3589323B2 (en) 1995-10-18 1995-10-18 Accumulation type fuel injection device

Country Status (1)

Country Link
JP (1) JP3589323B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10393764B4 (en) * 2002-11-20 2007-05-10 Mitsubishi Heavy Industries, Ltd. Leakage fuel collection device for an internal combustion engine
JP2023097639A (en) * 2021-12-28 2023-07-10 株式会社不二工機 Electric driving valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10393764B4 (en) * 2002-11-20 2007-05-10 Mitsubishi Heavy Industries, Ltd. Leakage fuel collection device for an internal combustion engine
JP2023097639A (en) * 2021-12-28 2023-07-10 株式会社不二工機 Electric driving valve

Also Published As

Publication number Publication date
JP3589323B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
US10655585B2 (en) High-pressure fuel supply pump having electromagnetically-driven intake valve
EP1950411B1 (en) High pressure fuel supply pump for internal combustion engine
US5803369A (en) Accumulator fuel injection device
US20120093670A1 (en) High-Pressure Fuel Supply Pump Having Electromagnetically-Driven Intake Valve
JPH01113570A (en) Solenoid valve
JP2006161568A (en) Control valve and fuel injection valve having the same
JP2010174849A (en) Solenoid valve and fuel injection valve
US6092737A (en) Direct acting fuel injector
JP4380739B2 (en) High pressure fuel pump
JP2002139168A (en) Solenoid valve device and fuel injection device using the valve device
JPH10153155A (en) Accumulator type fuel injection device
JPH09112732A (en) Valve device and accumulator fuel injection device using the valve device
JPH10153154A (en) Accumulator type fuel injection device
JP2000018119A (en) Fuel injection system
JP4099738B2 (en) Fuel injection device
JP3586136B2 (en) Flow control valve and manufacturing method thereof
US10808661B2 (en) Fuel injection device
JP2007016741A (en) Fuel injection valve
JPH09170513A (en) Fuel injection device
JPH0932681A (en) Fuel injection device of internal combustion engine
JP2000002356A (en) Solenoid valve and fuel injection valve using it
JP4149582B2 (en) Flow control valve
JP2003269286A (en) Fuel injection system
WO2021229862A1 (en) Valve mechanism, and high-pressure fuel supply pump provided with same
JPH11190259A (en) Fuel injection system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040513

A521 Written amendment

Effective date: 20040628

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040729

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040811

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100827

LAPS Cancellation because of no payment of annual fees