JPH09110528A - Production of glass-like carbon material containing silicon - Google Patents

Production of glass-like carbon material containing silicon

Info

Publication number
JPH09110528A
JPH09110528A JP7293456A JP29345695A JPH09110528A JP H09110528 A JPH09110528 A JP H09110528A JP 7293456 A JP7293456 A JP 7293456A JP 29345695 A JP29345695 A JP 29345695A JP H09110528 A JPH09110528 A JP H09110528A
Authority
JP
Japan
Prior art keywords
carbon material
glassy carbon
thermosetting resin
mixed
aminosilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7293456A
Other languages
Japanese (ja)
Other versions
JP3396119B2 (en
Inventor
Mitsuo Enomoto
三男 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP29345695A priority Critical patent/JP3396119B2/en
Publication of JPH09110528A publication Critical patent/JPH09110528A/en
Application granted granted Critical
Publication of JP3396119B2 publication Critical patent/JP3396119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a glass-like carbon material containing silicon having a uniform and minute composite structure containing a silicon component as a continuous phase in an atomic level, and having an excellent oxidation resistant property. SOLUTION: This method for producing a glass-like carbon material containing silicon is to dilute an aminosilane compound containing a single Si atom in a molecule (preferably 3-aminopropyltriethoxysilane) by mixing with an organic solvent having a high residual ratio after a carbonization (preferably furfuryl alcohol, furfural or their mixture), drip the diluted solution into a thermosetting resin liquid while agitating and mixing, form and cure the obtained resin composition containing the aminosilane into a prescribed shape, and burn under a non oxidizing atmosphere at >=800 deg.C for carbonizing treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、Si成分を連続相
として含有する均質緻密な複合組織構造を備える改質さ
れたガラス状カーボン材、特に優れた耐酸化性を有する
Si含有ガラス状カーボン材の製造方法に関する。
TECHNICAL FIELD The present invention relates to a modified glassy carbon material having a homogeneous and dense composite structure structure containing a Si component as a continuous phase, and particularly a Si-containing glassy carbon material having excellent oxidation resistance. Manufacturing method.

【0002】ガラス状カーボン材は、熱硬化性樹脂の成
形体を焼成炭化して得られる巨視的にガラス質の緻密な
組織構造を有する異質な炭素材料で、一般のカーボン材
に比べてガス不透過性、耐摩耗性、耐蝕性、自己潤滑
性、表面の平滑性および堅牢性などに優れることから、
その特性を生かして多様の分野で各種工業部材に有用さ
れている。近年では、組織から微小な炭素粒子が離脱す
ることのない非汚染性の材質性状に着目して、シリコン
ウエハーのプラズマエッチング用電極やイオン注入装置
用部材など汚染を嫌う半導体分野での実用が図られてい
る。
[0002] A glassy carbon material is a heterogeneous carbon material having a macroscopically vitreous and dense structure obtained by firing and carbonizing a thermosetting resin compact, and is gas-free compared to general carbon materials. Because of its excellent permeability, abrasion resistance, corrosion resistance, self-lubricating property, surface smoothness and robustness,
Utilizing its characteristics, it is useful for various industrial members in various fields. In recent years, attention has been paid to non-contaminating material properties that do not allow minute carbon particles to be detached from tissue, and practical use in the semiconductor field where contamination is averse, such as electrodes for plasma etching of silicon wafers and members for ion implantation equipment. Have been.

【0003】[0003]

【従来の技術】ところが、ガラス状カーボン材は材質的
に脆弱であるうえ、一般のカーボン材と同様に高温酸化
雰囲気中では速やかに酸化が進行して物性を損ねる炭素
材固有の材質的欠点がある。このため、従来からガラス
状カーボン組織中にセラミックス成分を複合させて物性
の改善を図る試みがなされている。初期の段階では、原
料となる熱硬化性樹脂に乾式もしくは湿式法でSiCの
ようなセラミックス微粒子を混合し、これを硬化した成
形体を焼成炭化する方法が行われたが、この方法ではセ
ラミックス粒子を炭素組織に均一に分散させることがで
きず、またセラミックス粒子と炭素組織間に粒界が存在
するため、過酷な使用条件では材質破壊を起こしたり、
セラミックス粒子が離脱する現象が生じる問題があっ
た。
2. Description of the Related Art However, a glassy carbon material is fragile in its material and, like a general carbon material, has a material defect peculiar to a carbon material that is rapidly oxidized in a high temperature oxidizing atmosphere and deteriorates its physical properties. is there. For this reason, conventionally, attempts have been made to improve the physical properties by combining a ceramic component in a glassy carbon structure. In the initial stage, a method was used in which ceramic particles such as SiC were mixed with a thermosetting resin as a raw material by a dry method or a wet method, and a molded body obtained by curing this was carbonized by firing. Cannot be uniformly dispersed in the carbon structure, and because grain boundaries exist between the ceramic particles and the carbon structure, material destruction may occur under severe usage conditions,
There is a problem that the phenomenon that the ceramic particles come off occurs.

【0004】このため、熱硬化性樹脂に珪素含有化合物
を混合して原料系とすることにより均一組織のSi含有
ガラス状カーボン材を得る方法が提案されている。例え
ば特開昭61−6111号公報には、液状珪素化合物、
官能基を有し加熱により炭素化する液状有機化合物、お
よび重合または架橋用の触媒を溶化したSi、Oおよび
Cを含む前駆体物質を炭化して耐酸化性の炭素材料を製
造する方法が開示されている。この方法では、液状珪素
化合物として水ガラスの脱アルカリで得られた珪酸ポリ
マー、水酸基を含有する有機化合物と珪酸とのエステ
ル、エチルシリケートのようなSiエステル、四塩化珪
素とエタノールの反応生成物等が挙げられ、触媒として
硫酸、塩酸、有機過酸化物、有機スルホン酸類などの併
用を必須要件としている。
For this reason, there has been proposed a method of obtaining a Si-containing glassy carbon material having a uniform structure by mixing a silicon-containing compound with a thermosetting resin to prepare a raw material system. For example, JP-A-61-1111 discloses a liquid silicon compound,
Disclosed is a method for producing an oxidation resistant carbon material by carbonizing a liquid organic compound having a functional group and carbonized by heating, and a precursor substance containing Si, O and C in which a catalyst for polymerization or crosslinking is solubilized. Has been done. In this method, a silicic acid polymer obtained by dealkalization of water glass as a liquid silicon compound, an ester of a silicic acid with an organic compound having a hydroxyl group, a Si ester such as ethyl silicate, a reaction product of silicon tetrachloride and ethanol, etc. The use of sulfuric acid, hydrochloric acid, organic peroxides, organic sulfonic acids, etc. as a catalyst is an essential requirement.

【0005】しかし、上記の方法は比較的多量のSi成
分(C/Si原子比;0.5〜19)を含有する炭素材
料を製造目的としている関係で、原料系に混合する液状
珪素化合物の量が多いため、Si、OおよびCを含む前
駆体物質を形成する過程で珪素化合物が相互に結合して
微細な凝集体を形成し、これがそのまま炭化組織中にS
i粒状体となって分散する不均一な組織性状になり易
い。また、シロキサン結合(Si-0-Si) のような複数のS
i原子が連鎖する重合エステルを珪素源として用いた場
合にも、同様に凝集化に伴う不均質な組織になるため、
液状有機化合物に対する配合量を少なくしても、Siが
粒子状態で分散することのない連続相の炭素質組織を得
ることはできない。そのうえ、併用する触媒が硫酸や塩
酸等の強酸の場合にはゲル化反応を急激に進行させて組
織の均一性を損ね、ナトリウムエチラートや有機スルホ
ン酸類などの触媒を使用すると含有無機成分が残留不純
物となって純度を低下させる要因となる。
However, the above-mentioned method is intended to produce a carbon material containing a relatively large amount of Si component (C / Si atomic ratio: 0.5 to 19). Due to the large amount, the silicon compounds bond with each other in the process of forming the precursor material containing Si, O and C to form fine agglomerates, which are the same as S in the carbonized structure.
i It tends to have a non-uniform texture that is dispersed as a granular material. Also, multiple S such as siloxane bond (Si-0-Si)
Even when a polymerized ester in which i atoms are chained is used as a silicon source, a heterogeneous structure is likewise caused by agglomeration.
Even if the blending amount with respect to the liquid organic compound is reduced, it is not possible to obtain a continuous phase carbonaceous structure in which Si is not dispersed in a particle state. In addition, when the catalyst used in combination is a strong acid such as sulfuric acid or hydrochloric acid, the gelation reaction proceeds rapidly and the homogeneity of the structure is impaired, and when using a catalyst such as sodium ethylate or organic sulfonic acid, the contained inorganic components remain. It becomes an impurity and becomes a factor to reduce the purity.

【0006】特開平5−43319号公報には、熱硬化
性樹脂と有機金属化合物を液状で均一に混合し、加熱
(焼成)して得られる超微細なセラミックスが高度に分
散した状態のガラス状炭素複合材料が開示されている。
この発明では、珪素源となる有機金属化合物として、S
iCを与えるポリカルボシランおよびポリシラン、Si
−Ti−C−Oを与えるTi含有ポリカルボシラン、S
x y 、Si−N−CあるいはSi2 4 −SiCを
与えるポリシラザン類が用いられている。しかしなが
ら、複数のシラン結合を有するポリカルボシランやポリ
シラン等のポリマーを熱硬化性樹脂と混合して原料系と
すると、セラミックス源が分子として分散する状態とな
るため、熱処理後に微細な金属炭化物粒子となって粒界
が生成することが避けられず、セラミックスと炭素が均
質な連続相を呈するガラス状カーボン組織を得ることが
できない。
JP-A-5-43319 discloses a glassy state in which ultrafine ceramics obtained by uniformly mixing a thermosetting resin and an organometallic compound in a liquid state and heating (calcining) are highly dispersed. A carbon composite material is disclosed.
In the present invention, as the organometallic compound serving as a silicon source, S
Polycarbosilanes and polysilanes that give iC, Si
A Ti-containing polycarbosilane which gives —Ti—C—O, S
Polysilazanes that give i x N y , Si—N—C or Si 2 N 4 —SiC have been used. However, when a polymer such as polycarbosilane or polysilane having a plurality of silane bonds is mixed with a thermosetting resin to form a raw material system, the ceramics source is in a state of being dispersed as a molecule, so that fine metal carbide particles and fine particles are formed after heat treatment. It is unavoidable that grain boundaries are generated, and a glassy carbon structure in which ceramics and carbon exhibit a homogeneous continuous phase cannot be obtained.

【0007】このほか、特開平5−339006号公報
には、液状のケイ素化合物と官能基を有し加熱により炭
素を生成する液状の有機化合物を原料とし、これを均一
に溶化する重合又は架橋触媒を加え、重合又は架橋反応
させ、得られた前駆体物質を非酸化性雰囲気中で加熱炭
化した中間体生成物を非酸化性雰囲気中で更に高温焼成
することからなるβ型炭化ケイ素−炭素混合粉末の製造
方法において、該原料および触媒が不純物元素を実質的
に含有しないものであり、中間体成形物の炭素/ケイ素
のモル比が2.5〜3.5であり、混合粉末中の炭化ケ
イ素と炭素が均質に混合され、その炭素量が3〜28重
量%であり、混合粉末中の各不純物元素の含有量が1pp
m 以下である高純度β型炭化ケイ素−炭素混合粉末の製
造方法が提案されている。しかし、この方法は焼結体用
のSiC−C系粉末を製造するものであって、主要成分
がガラス状カーボン組織からなるSi含有カーボン成形
体の製造技術ではない。
In addition, Japanese Patent Laid-Open No. 5-339006 discloses a polymerization or cross-linking catalyst which uses a liquid silicon compound and a liquid organic compound which has a functional group and produces carbon by heating as a raw material, and uniformly solubilizes it. A β-type silicon carbide-carbon mixture, which is obtained by subjecting the resulting precursor substance to heating or carbonization in a non-oxidizing atmosphere and further firing the resulting intermediate product at a higher temperature in a non-oxidizing atmosphere. In the method for producing a powder, the raw material and the catalyst do not substantially contain an impurity element, the intermediate molded product has a carbon / silicon molar ratio of 2.5 to 3.5, and the carbonization in the mixed powder is Silicon and carbon are homogeneously mixed, the amount of carbon is 3 to 28% by weight, and the content of each impurity element in the mixed powder is 1 pp.
A method for producing a high-purity β-type silicon carbide-carbon mixed powder having a size of m or less has been proposed. However, this method is for producing a SiC-C-based powder for a sintered body, and is not a production technique for a Si-containing carbon compact whose main component is a glassy carbon structure.

【0008】上記の実情に鑑み、本出願人は先に−O−
Si−O−で架橋された熱硬化性樹脂の成形体を焼成炭
化して得られ、原子レベルのSiがガラス状カーボン組
織中に0.1〜15重量%の範囲で均一な連続相として
分布する組織性状を備えるSiC含有ガラス状カーボン
材と、その製造技術として熱硬化性樹脂と1分子中に単
一のSi原子を有するSiアルコキシドの加水分解物を
有機溶媒中で撹拌混合し、架橋反応により得られるゲル
化物を硬化成形したのち、硬化成形体を非酸化性雰囲気
下で800℃以上の温度で焼成炭化処理する方法(特願
平7−155177号)を開発し、更にその改良発明として1
分子中に単一のSi原子を含むアミノシラン化合物を熱
硬化性樹脂液中に滴下して撹拌混合し、該混合溶液を成
形硬化したのち、硬化成形体を非酸化性雰囲気下で80
0℃以上の温度により焼成炭化処理することを特徴とす
るSi含有ガラス状カーボン材の製造方法を提案した
(特願平7−234696号)。
In view of the above situation, the present applicant has previously proposed -O-
Obtained by firing and carbonizing a molded body of a thermosetting resin crosslinked with Si-O-, and atomic level Si is distributed as a uniform continuous phase in the range of 0.1 to 15% by weight in the glassy carbon structure. The SiC-containing glassy carbon material having a texture property, a thermosetting resin, and a hydrolyzate of a Si alkoxide having a single Si atom in one molecule are stirred and mixed in an organic solvent to produce a crosslinking reaction. A method (Japanese Patent Application No. 7-155177) was developed, in which the gelled product obtained by (1) is cured and molded, and then the cured molded body is subjected to firing and carbonization treatment at a temperature of 800 ° C. or higher in a non-oxidizing atmosphere. 1
An aminosilane compound containing a single Si atom in the molecule is dropped into a thermosetting resin solution and mixed by stirring to mold and cure the mixed solution, and then the cured molded article is heated in a non-oxidizing atmosphere at 80
We proposed a method for producing a Si-containing glassy carbon material, which is characterized by performing a firing carbonization treatment at a temperature of 0 ° C. or higher (Japanese Patent Application No. 7-234696).

【0009】[0009]

【発明が解決しようとする課題】特願平7−23469
6号の発明に係る方法によれば、Si源としてアミノ基
を有し、かつ1分子中に単一のSi原子を含むシラン化
合物を選択し、これを直接に熱硬化性樹脂液と均一混合
させて緩徐に重合反応させることにより、大型成形体と
した場合でも亀裂、ポアおよび寸法変形のなく、かつS
iが原子レベルで組織中に均質分散した複合組織のSi
含有ガラス状カーボン材を製造することが可能となる。
[Problems to be Solved by the Invention] Japanese Patent Application No. 7-23469
According to the method of the invention of No. 6, a silane compound having an amino group as a Si source and containing a single Si atom in one molecule is selected and directly mixed with a thermosetting resin liquid. Even if it is made into a large-sized molded body, it is free from cracks, pores and dimensional deformation, and S
Si of composite structure in which i is homogeneously dispersed in the structure at the atomic level
It becomes possible to manufacture a glassy carbon material containing.

【0010】上記の方法においては、Si原子を含むア
ミノシラン化合物を熱硬化性樹脂液に滴下する段階でア
ミノ基がアルコキシ基に優先して熱硬化性樹脂と結合
し、脱水縮合反応が進行するが、この脱水縮合は発熱反
応であるため反応系内の温度が急激に上昇する。このた
め、このままの状態を放置すると熱硬化性樹脂の硬化が
促進されて粘度が上昇し、均一な成分混合系を得ること
が困難となる。特にガラス状カーボン材中に占めるSi
含有率を高くするためにアミノシラン化合物の滴下量を
多くする場合に発熱が著しくなり、ガラス状カーボンの
前駆体である成形体組織にボイドやSi成分の偏析等を
発生し易くなる。
In the above method, the amino group preferentially bonds with the thermosetting resin in preference to the alkoxy group in the step of dropping the aminosilane compound containing Si atom into the thermosetting resin solution, and the dehydration condensation reaction proceeds. Since this dehydration condensation is an exothermic reaction, the temperature in the reaction system rises rapidly. Therefore, if the thermosetting resin is left as it is, the curing of the thermosetting resin is promoted to increase the viscosity, and it becomes difficult to obtain a uniform component mixture system. Especially Si in glassy carbon material
When the dropping amount of the aminosilane compound is increased in order to increase the content, heat generation becomes remarkable, and voids and segregation of Si components are likely to occur in the structure of the molded body that is the precursor of the glassy carbon.

【0011】このような現象を避けるため、特願平7−
234696号の発明では熱硬化性樹脂液とアミノシラ
ン化合物の混合溶液を冷却保存して発熱による硬化反応
を抑制し、その後に緩徐な流動を与えて混合状態の均質
性を高める手段を講じているが、この方法のみではガラ
ス状カーボン材に占めるSi含有量が5重量%を越える
ような配合条件において十分な発熱抑制効果を得られ
ず、常に均質な成分混合系を形成することが難しい。
In order to avoid such a phenomenon, Japanese Patent Application No. 7-
In the invention of No. 234696, although a mixed solution of a thermosetting resin liquid and an aminosilane compound is cooled and stored, a curing reaction due to heat generation is suppressed, and then a means for giving a slow flow to enhance the homogeneity of the mixed state is taken. However, this method alone cannot obtain a sufficient heat generation suppressing effect under the compounding conditions such that the Si content in the glassy carbon material exceeds 5% by weight, and it is difficult to always form a homogeneous component mixture system.

【0012】本発明者は、かかる課題を解決するため引
き続き改良研究を重ねた結果、特願平7−234696
号の方法において、1分子中に単一のSi原子を含むア
ミノシラン化合物を予め炭化残留率の高い有機溶媒で混
合希釈したのち熱硬化性樹脂液中に滴下するとアミノ基
と樹脂間の反応進行が緩和され、Si源が高配合比率の
条件下においても効果的に発熱を抑制した状態で均一な
成分混合ができることを見出した。
[0012] The inventor of the present invention, as a result of continuous improvement research in order to solve the above problems, results in Japanese Patent Application No. 7-234696.
In the method of No. 3, when an aminosilane compound containing a single Si atom in one molecule is mixed and diluted in advance with an organic solvent having a high carbonization residual ratio and then dropped into a thermosetting resin liquid, the reaction between the amino group and the resin proceeds. It has been found that even if the Si source is relaxed and the Si source is in a high mixing ratio, the components can be uniformly mixed while effectively suppressing heat generation.

【0013】本発明は前記の知見に基づいて開発された
もので、その目的とする解決課題は、Siが連続相とし
て分布する均一緻密な複合組織構造を備える高耐酸化性
のSi含有ガラス状カーボン材を、材質欠陥のない状態
で工業的に得るための製造方法を提供することにある。
The present invention has been developed on the basis of the above-mentioned findings, and its object to be solved is to provide a high oxidation resistance Si-containing glass-like glass having a uniform and dense composite structure structure in which Si is distributed as a continuous phase. It is an object of the present invention to provide a manufacturing method for industrially obtaining a carbon material without material defects.

【0014】[0014]

【課題を解決するための手段】上記の課題を解決するた
めの本発明によるSi含有ガラス状カーボン材の製造方
法は、1分子中に単一のSi原子を含むアミノシラン化
合物を炭化残留率の高い有機溶媒で混合希釈し、該希釈
溶液を熱硬化性樹脂液中に滴下して撹拌混合し、得られ
たアミノシラン含有樹脂組成物を所定形状に成形硬化し
たのち、成形体を非酸化性雰囲気下で800℃以上の温
度により焼成炭化処理することを構成上の特徴とする。
A method for producing a Si-containing glassy carbon material according to the present invention for solving the above problems has a high carbonization residual ratio of an aminosilane compound containing a single Si atom in one molecule. After mixing and diluting with an organic solvent, the diluted solution is dropped into a thermosetting resin liquid and stirred and mixed, and the obtained aminosilane-containing resin composition is molded and cured into a predetermined shape, and then the molded body is subjected to a non-oxidizing atmosphere. The constitutional feature is that the carbonization treatment is performed at a temperature of 800 ° C. or higher.

【0015】[0015]

【発明の実施の形態】本発明において、アミノシラン化
合物はガラス状カーボン組織にSiを原子レベルで分散
複合させるSi源となる原料成分で、1分子中に単一の
Si原子を含むアミノシラン化合物が選択的に使用され
る。1分子中に2個以上のSi原子が結合したポリシラ
ンでは熱硬化性樹脂液との混合段階で凝集現象が発生し
易く、またアミノ基以外の有機官能基、例えばメチル
基、ビニル基等の有するシラン化合物では熱硬化性樹脂
と直接反応しないため、混合時に分離したり、会合、多
量化(高分子化)が生じて原子レベルでのSi分散化が
不可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, an aminosilane compound is a raw material component serving as a Si source for dispersing and compounding Si in a glassy carbon structure at the atomic level, and an aminosilane compound containing a single Si atom in one molecule is selected. Is used for. A polysilane in which two or more Si atoms are bonded in one molecule is likely to cause an aggregation phenomenon in the mixing step with the thermosetting resin liquid, and has an organic functional group other than an amino group, such as a methyl group or a vinyl group. Since the silane compound does not directly react with the thermosetting resin, it is separated during the mixing, and the association and the multimerization (polymerization) occur to make it impossible to disperse Si at the atomic level.

【0016】1分子中に単一のSi原子を含むアミノシ
ラン化合物は、下記の一般式(化1)で表され、通常、
アミン系シランカップリング剤として市販されている。
The aminosilane compound containing a single Si atom in one molecule is represented by the following general formula (Formula 1), and is usually
It is commercially available as an amine-based silane coupling agent.

【0017】[0017]

【化1】 Embedded image

【0018】アルコキシ基を含有するアミン系シランカ
ップリング剤としては、3−アミノプロピルトリエトキ
シシラン(SiC9H23NO3)、N−(2−アミノエチル)−3
−アミノプロピルトリメトキシシラン(SiC8H22N2O3) 、
N−(2−アミノエチル)−3−アミノプロピルメチル
ジメトキシシラン(SiC8H22N2O2) 、p−〔N−(2−ア
ミノエチル)アミノメチル〕フェネチルトリメトキシシ
ラン(SiC14H2 6N2O3)、4−アミノブチルジメチルメトキ
シシラン(SiC7H19NO) 、4−アミノブチルトリエトキシ
シラン(SiC10H2 5NO3) 、N−(2−アミノエチル)−3
−アミノプロピルトリス(2−エチルヘキシソ)シラン
(SiC29H6 4N2O3)、p−アミノフェニルトリメトキシシラ
ン(SiC9H15NO3)、p−アミノフェニルトリエトキシシラ
ン(SiC9H15NO3)、3−(1−アミノプロポキシ)3,3
−ジメチル−1−プロペニルトリメトキシシラン(SiC11
H2 5NO4) 、3−アミノプロピルトリス(メトキシエトキ
シエトキシ)シラン(SiC18H4 1NO9) 、3−アミノプロピ
ルジメチルエトキシシラン(SiC7H19NO) 、3−アミノプ
ロピルメチルジエトキシシラン(SiC8H21NO2)、3−アミ
ノプロピルトリメトキシシラン(SiC9H23NO3)、ω−アミ
ノウンデシルトリメトキシシラン(SiC14H3 3NO3) 、1−
トリメトキシシリル−2−(p,m−アミノメチル)フ
ェニルエタン(SiC12H2 1NO3) 、6−(アミノヘキシルア
ミノプロピル)トリメトキシシラン(SiC12H3 0N2O3)、N
−(トリエトキシシリルプロピル)尿素(SiC10H1 4N
2O4)、トリメトキシシリルプロピルジエチレントリアミ
ン(SiC10H2 7N3O3)などが例示される。
As the amine-based silane coupling agent containing an alkoxy group, 3-aminopropyltriethoxysilane (SiC 9 H 23 NO 3 ), N- (2-aminoethyl) -3 is used.
-Aminopropyltrimethoxysilane (SiC 8 H 22 N 2 O 3 ),
N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane (SiC 8 H 22 N 2 O 2 ), p- [N- (2-aminoethyl) aminomethyl] phenethyltrimethoxysilane (SiC 14 H 2 6 N 2 O 3), 4- aminobutyl dimethylmethoxysilane (SiC 7 H 19 NO), 4- aminobutyl triethoxysilane (SiC 10 H 2 5 NO 3 ), N- (2- aminoethyl) -3
-Aminopropyltris (2-ethylhexiso) silane
(SiC 29 H 6 4 N 2 O 3 ), p-aminophenyltrimethoxysilane (SiC 9 H 15 NO 3 ), p-aminophenyltriethoxysilane (SiC 9 H 15 NO 3 ), 3- (1-amino Propoxy) 3,3
-Dimethyl-1-propenyltrimethoxysilane (SiC 11
H 2 5 NO 4), 3- aminopropyl tris (methoxyethoxy) silane (SiC 18 H 4 1 NO 9 ), 3- aminopropyldimethylethoxysilane (SiC 7 H 19 NO), 3- aminopropyl methyl diethoxy Silane (SiC 8 H 21 NO 2 ), 3-aminopropyltrimethoxysilane (SiC 9 H 23 NO 3 ), ω-aminoundecyltrimethoxysilane (SiC 14 H 3 3 NO 3 ), 1-
Trimethoxysilyl-2- (p, m-aminomethyl) phenylethane (SiC 12 H 2 1 NO 3 ), 6- (aminohexylaminopropyl) trimethoxysilane (SiC 12 H 3 0 N 2 O 3 ), N
- (triethoxysilylpropyl) urea (SiC 10 H 1 4 N
2 O 4), trimethoxysilylpropyl diethylene triamine (SiC 10 H 2 7 N 3 O 3) , etc. are exemplified.

【0019】また、アルコキシ基を含有しないアミン系
シランカップリング剤としては、3−アミノプロピルト
リメチルシラン(SiC6H17N)、3−アミノプロピルジエチ
ルメチルシラン(SiC8H21N)などが挙げられる。
Examples of the amine-based silane coupling agent containing no alkoxy group include 3-aminopropyltrimethylsilane (SiC 6 H 17 N) and 3-aminopropyldiethylmethylsilane (SiC 8 H 21 N). To be

【0020】これらのアミノシラン化合物は、炭化する
際にSi以外の有機成分が熱分解して揮散するため可及
的に低分子量のものを用いることが好ましい。したがっ
て、本発明に最も好適なアミノ基含有シラン化合物は3
−アミノプロピルトリエトキシシランである。
It is preferable to use these aminosilane compounds having a molecular weight as low as possible because organic components other than Si are thermally decomposed and volatilized during carbonization. Therefore, the most suitable amino group-containing silane compound for the present invention is 3
-Aminopropyltriethoxysilane.

【0021】上記の1分子中に単一のSi原子を含むア
ミノシラン化合物(以下、単に「アミノシラン化合物」
という)は、炭化残留率の高い有機溶媒に混合して希釈
化する。炭化残留率の高い有機溶媒とは、揮発成分が少
なく、固形物を焼成処理した際に炭化物として残留する
比率が高い性質を有する有機溶媒を指す。この種の有機
溶媒としては、例えばフルフリルアルコール、フルフラ
ール、フェノール、フラン、テトラヒドロフラン等が挙
げられるが、特に滴下する熱硬化樹脂液との親和性がよ
く、かつ焼成処理によるガラス状カーボンに転化するフ
ルフリルアルコール、フルフラールまたはこれらの混合
物が好ましく用いられる。これに対し、揮発性のあるア
セトンやアルコール等の有機溶媒を用いると、滴下混合
した熱硬化樹脂液を成形硬化する段階で著しい体積収縮
を伴う関係で破損が生じ易く、また残留した溶媒成分は
硬化時に揮散して組織内部にポアが生成する。
The above-mentioned aminosilane compound containing a single Si atom in one molecule (hereinafter, simply referred to as "aminosilane compound")
Is mixed with an organic solvent having a high carbonization residual ratio to dilute. The organic solvent having a high carbonization residue rate refers to an organic solvent having a small amount of volatile components and having a high ratio of remaining as a carbide when a solid material is subjected to a baking treatment. Examples of this type of organic solvent include furfuryl alcohol, furfural, phenol, furan, tetrahydrofuran, etc., which have a particularly good affinity with the thermosetting resin liquid to be dripped and are converted into glassy carbon by a firing treatment. Furfuryl alcohol, furfural or a mixture thereof is preferably used. On the other hand, when a volatile organic solvent such as acetone or alcohol is used, breakage is likely to occur due to significant volume shrinkage at the stage of molding and curing the thermosetting resin liquid that has been dropped and mixed, and the residual solvent component is It volatilizes during curing and pores are generated inside the tissue.

【0022】炭化残留率の高い有機溶媒は、アミノシラ
ン化合物と混合する過程で僅かに反応するが均一混合を
阻害するほどの増粘現象を伴うことはない。該有機溶媒
によるアミノシラン化合物の希釈度合には特に制約はな
いが、概ね希釈倍率が0.5〜3倍程度になるように調
整することが好ましい。
The organic solvent having a high carbonization residual ratio slightly reacts in the process of mixing with the aminosilane compound, but does not cause a thickening phenomenon which hinders uniform mixing. The degree of dilution of the aminosilane compound with the organic solvent is not particularly limited, but it is preferable to adjust the dilution ratio to about 0.5 to 3 times.

【0023】アミノシラン化合物を炭化残留率の高い有
機溶媒で混合希釈した希釈溶液は、ついで熱硬化性樹脂
液に滴下する。熱硬化性樹脂液は焼成炭化処理によりガ
ラス状カーボンに転化する炭素源となるもので、例えば
液状のフェノール系樹脂、フラン系樹脂、ポリイミド系
樹脂、ポリカルボジイミド系樹脂、ポリアクリロニトリ
ル系樹脂、ピレン−フェナントレン系樹脂、ポリ塩化ビ
ニル系樹脂、エポキシ系樹脂あるいはこれらの混合樹脂
等を用いることができる。特に樹脂を非酸化性雰囲気下
で800℃の温度により焼成したときに残留する残炭率
が高く、かつ珪素源成分と混合した際にシラン化合物中
のアミノ基が作用して緩徐に脱水縮合反応を生じるフェ
ノール系樹脂またはフラン系樹脂の初期縮合物もしくは
これらの混合樹脂液が好適に使用される。
The diluted solution prepared by mixing and diluting the aminosilane compound with the organic solvent having a high carbonization residual ratio is then added dropwise to the thermosetting resin liquid. The thermosetting resin liquid serves as a carbon source that is converted into glassy carbon by firing and carbonizing treatment, and for example, liquid phenol resin, furan resin, polyimide resin, polycarbodiimide resin, polyacrylonitrile resin, pyrene- A phenanthrene-based resin, a polyvinyl chloride-based resin, an epoxy-based resin, a mixed resin thereof, or the like can be used. In particular, when the resin is fired at a temperature of 800 ° C. in a non-oxidizing atmosphere, the residual carbon content is high, and when mixed with the silicon source component, the amino group in the silane compound acts to slowly perform the dehydration condensation reaction. An initial condensate of a phenolic resin or a furan-based resin, or a mixed resin solution thereof, which produces the above is preferably used.

【0024】熱硬化性樹脂液へ希釈溶液を滴下するに当
たっては、十分な撹拌ならびに冷却条件下で行う。滴下
混合を進めると、アミノシラン化合物中のアミノ基が他
の官能基(アルコキシ基)に優先して熱硬化性樹脂と結
合し、脱水縮合反応が進行する。例えば、3−アミノプ
ロピルトリエトキシシランをフェノール樹脂液中に滴下
しながら撹拌混合すると、下記の化2および化3に示す
ような二段階の反応が進行する。
The dropping of the diluted solution into the thermosetting resin liquid is carried out under sufficient stirring and cooling conditions. When the dropping and mixing are advanced, the amino group in the aminosilane compound is bonded to the thermosetting resin in preference to other functional groups (alkoxy groups), and the dehydration condensation reaction proceeds. For example, when 3-aminopropyltriethoxysilane is dropped into a phenol resin solution and mixed with stirring, a two-step reaction as shown in Chemical formulas 2 and 3 below proceeds.

【0025】[0025]

【化2】 Embedded image

【0026】[0026]

【化3】 Embedded image

【0027】上記の反応を介して発熱を伴いながらアミ
ノシラン化合物は熱硬化性樹脂中に分散するが、本発明
においてはアミノシラン化合物が炭化残留率の高い有機
溶媒で希釈化した状態で熱硬化性樹脂液に滴下されるか
ら、激しい反応の進行は緩和され、極度の発熱は効果的
に抑制される。したがって、アミノシラン化合物を高配
合比率で熱硬化性樹脂液に添加しても、反応系の粘度が
高まらず、常に良好な流動性を維持したまま均一混合系
のアミノシラン含有樹脂組成物が形成される。また、こ
の段階でアミノシラン化合物中のアルコキシ基は熱硬化
性樹脂と殆ど反応せず、アミノ基が樹脂成分と結合して
Siを中心として分子が巨大化した特有の形態となる。
このため、相対的にアルコキシ基の反応性は減退するか
らアルコキシ基と樹脂成分との反応は抑制され、同時に
アミノシラン同士の重合に伴う凝集化が抑制されるた
め、混合溶液は凝集粒子を含まない極めて均質な連続相
を呈する。
Although the aminosilane compound is dispersed in the thermosetting resin while generating heat through the above reaction, in the present invention, the aminosilane compound is diluted with the organic solvent having a high carbonization residual ratio and the thermosetting resin is dispersed. Since it is dropped in the liquid, the progress of the violent reaction is moderated, and the extreme heat generation is effectively suppressed. Therefore, even if the aminosilane compound is added to the thermosetting resin liquid in a high blending ratio, the viscosity of the reaction system does not increase, and a homogeneously mixed aminosilane-containing resin composition is always formed while maintaining good fluidity. . Further, at this stage, the alkoxy group in the aminosilane compound hardly reacts with the thermosetting resin, and the amino group is bonded to the resin component to form a peculiar form in which the molecule is enlarged around Si.
For this reason, since the reactivity of the alkoxy group is relatively decreased, the reaction between the alkoxy group and the resin component is suppressed, and at the same time, the aggregation caused by the polymerization of aminosilanes is suppressed, so that the mixed solution does not contain aggregated particles. It exhibits a very homogeneous continuous phase.

【0028】このようにして形成されたアミノシラン含
有樹脂組成物は、そのまま放置しておくと蓄熱作用によ
り硬化反応が進行し、不均質組成の混合分散状態となり
易いため、冷却保存して硬化反応を抑制し、成形段階で
再び緩徐な流動を与えて混合状態の均質性を高める操作
を施すことが好ましい。
If the aminosilane-containing resin composition thus formed is left to stand as it is, the curing reaction proceeds due to the heat storage effect, and the heterogeneous composition is likely to be mixed and dispersed. It is preferable to carry out an operation of suppressing the above and giving a slow flow again in the molding stage to enhance the homogeneity of the mixed state.

【0029】アミノシラン含有樹脂組成物は、必要に応
じて真空脱気処理して吸蔵する空気を除去したのち所定
形状に成形する。成形手段は、通常、注型成形や遠心成
形により行われるが、半硬化した段階で圧縮成形、押出
成形、トランスファー成形などを適用することもでき
る。成形された成形体は、70〜150℃の温度に加熱
して硬化しガラス状カーボンの前駆体とする。
The aminosilane-containing resin composition is, if necessary, vacuum-deaerated to remove air to be occluded and then molded into a predetermined shape. The molding means is usually cast molding or centrifugal molding, but it is also possible to apply compression molding, extrusion molding, transfer molding, etc. at the semi-cured stage. The molded body thus molded is heated to a temperature of 70 to 150 ° C. and hardened to obtain a glassy carbon precursor.

【0030】ついで、硬化成形体を非酸化性雰囲気に保
持された加熱炉に移し、800℃以上の温度域、好まし
くは1000〜2500℃の温度範囲で焼成炭化処理す
る。該焼成炭化処理の段階で熱硬化性樹脂成分ならびに
炭化残留率の高い有機溶媒の残留物は共にガラス状カー
ボンに転化する。
Then, the cured molded article is transferred to a heating furnace maintained in a non-oxidizing atmosphere and subjected to a firing carbonization treatment in a temperature range of 800 ° C. or higher, preferably in a temperature range of 1000 to 2500 ° C. At the stage of the calcination and carbonization treatment, the thermosetting resin component and the residue of the organic solvent having a high carbonization residual rate are both converted into glassy carbon.

【0031】上記の工程で製造されるSi含有ガラス状
カーボン材は、実質的に熱硬化性樹脂の成形体を焼成炭
化して得られる炭素質構造体であって、原子レベルのS
iがガラス状カーボン組織中に均一な連続相として分布
する複合組織性状を備えている。この組織性状は、Si
成分が微粒子状態で分散する複合組織とは異なり、組織
内部にSiとCとの粒界が存在しないアロイ状の連続固
溶相を呈しており、巨視的にはガラス状カーボン単独の
組織構造と実質的に相違が認められず、他方、微視的に
はガラス状カーボン組織の一部のCがSiに置換結合さ
れた独特の複合形態となっている。特に本発明によると
ガラス状カーボン組織に占めるSi含有量が5重量%を
越える高配合領域においても、材質欠陥がなく、高強度
と高耐酸化性を兼備する高品位のSi含有ガラス状カー
ボン材を得ることが可能となる。
The Si-containing glassy carbon material produced in the above process is a carbonaceous structure obtained by substantially carbonizing a thermosetting resin compact by firing and carbonization.
i has a composite texture property in which it is distributed as a uniform continuous phase in the glassy carbon structure. This texture is Si
Unlike the composite structure in which the components are dispersed in the form of fine particles, it exhibits an alloy-like continuous solid solution phase in which there are no grain boundaries between Si and C, and macroscopically it has a structure structure of glassy carbon alone. Substantially no difference was observed, while microscopically, it had a unique composite morphology in which a part of C of the glassy carbon structure was substituted and bonded to Si. In particular, according to the present invention, a high-quality Si-containing glassy carbon material having high strength and high oxidation resistance with no material defects even in a high compounding region in which the Si content in the glassy carbon structure exceeds 5% by weight. Can be obtained.

【0032】[0032]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。しかし、本発明の範囲はこれらの実施
例に制約されるものではない。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples. However, the scope of the invention is not limited to these examples.

【0033】実施例1〜3 3−アミノプロピルトリエトキシシラン〔東芝シリコー
ン(株)製、TSL8345)をSi源とし、これに0.5倍
容量のフルフリルアルコールを混合して十分に撹拌し、
均一な希釈溶液を作製した。この希釈溶液を流水冷却槽
中で撹拌状態にあるフェノール樹脂初期縮合物〔住友デ
ュレズ(株)製、PR-940〕中に滴下し、撹拌混合操作を
1時間継続した。この際、希釈溶液の滴下量を変え、最
終的にガラス状カーボン組織に占めるSi含有量が7、
10、15重量%になるように設定した。撹拌混合した
アミノシラン含有樹脂組成物を冷蔵庫(2℃) に入れて1
8時間冷却保存し、再び撹拌機で緩やかに撹拌し、24
時間に亘り溶液を流動状態に保持した。ついで、溶液を
型枠に流入し、真空装置内で脱泡処理を施したのち、7
0〜150℃まで加温して樹脂成分を硬化した。得られ
た硬化成形体を窒素雰囲気に保持された加熱炉に移し、
10℃/hrの昇温速度で2000℃まで加熱して焼成炭
化した。このようにしてSi含有量の異なるSi含有ガ
ラス状カーボン材(縦横300mm 、厚さ5mm) を製造し
た。得られた各Si含有ガラス状カーボン材には、組織
に亀裂やポアの発生は認められず、表面状態はガラス状
の平滑面を呈していた。
Examples 1 to 3 3-aminopropyltriethoxysilane (TSL8345 manufactured by Toshiba Silicone Co., Ltd.) was used as a Si source, and 0.5 times volume of furfuryl alcohol was mixed with this and sufficiently stirred,
A uniform diluted solution was made. This diluted solution was added dropwise to the phenol resin initial condensate [PR-940 manufactured by Sumitomo Durez Co., Ltd.] in a running water cooling tank under stirring, and the stirring and mixing operation was continued for 1 hour. At this time, the dropping amount of the dilute solution was changed so that the Si content in the glassy carbon structure finally became 7,
It was set to be 10 and 15% by weight. Put the agitated and mixed aminosilane-containing resin composition in the refrigerator (2 ° C) and
Cool and store for 8 hours, then gently stir again with a stirrer,
The solution was kept in the fluidized state over time. Then, the solution was poured into the mold and subjected to defoaming treatment in a vacuum device, followed by 7
The resin component was cured by heating to 0 to 150 ° C. The obtained cured molded article was transferred to a heating furnace maintained in a nitrogen atmosphere,
It was heated to 2000 ° C. at a heating rate of 10 ° C./hr and carbonized by firing. Thus, Si-containing glassy carbon materials having different Si contents (300 mm in length and width, 5 mm in thickness) were manufactured. No cracks or pores were found in the structure of each of the obtained Si-containing glassy carbon materials, and the surface condition was a glassy smooth surface.

【0034】得られた各Si含有ガラス状カーボン材の
嵩密度、曲げ強度および高温域での耐酸化性を測定し、
その結果を表1に示した。なお、耐酸化性は試片を乾燥
空気流で750℃および950℃の温度に40分間処理
した際の重量減少率として示した。
The bulk density, bending strength and oxidation resistance at high temperature of each Si-containing glassy carbon material obtained were measured,
The results are shown in Table 1. The oxidation resistance was shown as the weight loss rate when the test piece was treated with a dry air flow at temperatures of 750 ° C. and 950 ° C. for 40 minutes.

【0035】比較例1〜3 3−アミノプロピルトリエトキシシラン〔東芝シリコー
ン(株)製、TSL8345)をSi源とし、これに有機溶媒
で希釈せず、直接に流水冷却槽中で撹拌状態にあるフェ
ノール樹脂初期縮合物〔住友デュレズ(株)製、PR-94
0〕中に滴下し、撹拌混合操作を1時間継続した。この
際、希釈溶液の滴下量を変え、最終的にガラス状カーボ
ン組織に占めるSi含有量が7、10、15重量%にな
るように設定した。その他は実施例1〜3と同一条件に
よりSi含有ガラス状カーボン材を製造した。得られた
各Si含有ガラス状カーボン材には、組織に亀裂やポア
の発生は認められず、表面状態も平滑であったが、Si
成分の分散に若干偏析が認められた。各Si含有ガラス
状カーボン材の嵩密度、曲げ強度および高温域での耐酸
化性を測定し、その結果を表1に併載した。
Comparative Examples 1 to 3 3-Aminopropyltriethoxysilane (TSL8345 manufactured by Toshiba Silicone Co., Ltd.) was used as a Si source, which was not diluted with an organic solvent and was directly stirred in a running water cooling tank. Phenolic resin initial condensate [PR-94 manufactured by Sumitomo Dures Co., Ltd.
0] and the stirring and mixing operation was continued for 1 hour. At this time, the dropping amount of the diluted solution was changed so that the Si content in the glassy carbon structure was finally set to 7, 10, 15% by weight. Other than that, the Si-containing glassy carbon material was manufactured under the same conditions as in Examples 1 to 3. In each of the Si-containing glassy carbon materials obtained, no cracks or pores were found in the structure, and the surface condition was smooth.
A slight segregation was observed in the dispersion of the components. The bulk density, bending strength, and oxidation resistance at high temperatures of each Si-containing glassy carbon material were measured, and the results are also shown in Table 1.

【0036】実施例4 Si源を3−アミノプロピルジエチルメチルシランに代
え、その他は実施例2と同一条件によりSi含有量が1
0重量%のSi含有ガラス状カーボン材を製造した。得
られたSi含有ガラス状カーボン材には、組織に亀裂や
ポアの発生は認められず、表面状態はガラス状の平滑面
を呈するものであった。このSi含有ガラス状カーボン
材について測定された嵩密度、曲げ強度および高温域で
の耐酸化性を表1に併載した。
Example 4 The Si source was changed to 3-aminopropyldiethylmethylsilane, and the Si content was 1 under the same conditions as in Example 2.
A 0 wt% Si-containing glassy carbon material was produced. No cracks or pores were found in the structure of the obtained Si-containing glassy carbon material, and the surface state thereof was a glassy smooth surface. Table 1 shows the bulk density, bending strength, and oxidation resistance in a high temperature region measured for this Si-containing glassy carbon material.

【0037】実施例5 3−アミノプロピルトリエトキシシランを希釈化する有
機溶剤としてフルフラールを用い、その他は実施例2と
同一条件によりSi含有量が10重量%のSi含有ガラ
ス状カーボン材を製造した。得られたSi含有ガラス状
カーボン材には、組織に亀裂やポアの発生は認められ
ず、表面状態はガラス状の平滑面を呈するものであっ
た。このSi含有ガラス状カーボン材について測定され
た嵩密度、曲げ強度および高温域での耐酸化性を表1に
併載した。
Example 5 Furfural was used as an organic solvent for diluting 3-aminopropyltriethoxysilane, and the Si-containing glassy carbon material having a Si content of 10% by weight was produced under the same conditions as in Example 2. . No cracks or pores were found in the structure of the obtained Si-containing glassy carbon material, and the surface state thereof was a glassy smooth surface. Table 1 shows the bulk density, bending strength, and oxidation resistance in a high temperature region measured for this Si-containing glassy carbon material.

【0038】比較例4 3−アミノプロピルトリエトキシシランを希釈化する有
機溶剤にエタノールを用い、その他は実施例2と同一条
件によりSi含有量が10重量%のSi含有ガラス状カ
ーボン材を製造した。得られたSi含有ガラス状カーボ
ン材には、組織内部に微小なボイドが多数認められた。
このSi含有ガラス状カーボン材について測定された嵩
密度、曲げ強度および高温域での耐酸化性を表1に併載
した。
Comparative Example 4 A Si-containing glassy carbon material having a Si content of 10% by weight was produced under the same conditions as in Example 2 except that ethanol was used as an organic solvent for diluting 3-aminopropyltriethoxysilane. . In the obtained Si-containing glassy carbon material, many minute voids were recognized inside the structure.
Table 1 shows the bulk density, bending strength, and oxidation resistance in a high temperature region measured for this Si-containing glassy carbon material.

【0039】比較例5 Si源にテトラエトキシシランを、また希釈化する有機
溶剤にエタノールを用い、その他は実施例2と同一条件
によりSi含有ガラス状カーボン材を製造したところ、
フェノール樹脂液に滴下する段階で反応系が著しくゲル
化し、成形硬化時に成形体に割れが発生してSi含有ガ
ラス状カーボン材を得ることができなかった。
Comparative Example 5 A Si-containing glassy carbon material was produced under the same conditions as in Example 2 except that tetraethoxysilane was used as the Si source and ethanol was used as the diluting organic solvent.
At the stage of dropping into the phenol resin solution, the reaction system remarkably gelled, cracking occurred in the molded body during molding and curing, and the Si-containing glassy carbon material could not be obtained.

【0040】[0040]

【表1】 [Table 1]

【0041】表1の結果から、本発明の製造方法から得
られたSi含有ガラス状カーボン材は本発明の条件を外
れる製造方法による比較例品に比べて、曲げ強度および
耐酸化性能が向上していることが認められた。
From the results shown in Table 1, the Si-containing glassy carbon material obtained by the production method of the present invention is improved in bending strength and oxidation resistance as compared with the comparative example product produced by the production method which deviates from the conditions of the present invention. It was recognized that

【0042】[0042]

【発明の効果】以上のとおり、本発明に従えば原子レベ
ルのSi成分を連続相として含有する均質緻密な複合組
織を備え、かつ優れた耐酸化性を有するSi含有ガラス
状カーボン材を工業的に製造することができる。特にS
i含有量が高い製造条件でも、常に材質欠陥のない高品
位のSi含有ガラス状カーボン材を容易に得ることがで
きる。したがって、組織中からの微細粒子の脱離や酸化
損傷が生じ易い苛酷な条件においても十分に安定した使
用状態が保証されるため、半導体用部材をはじめ多様な
用途分野を対象とする工業用部材の製造技術として極め
て有用である。
Industrial Applicability As described above, according to the present invention, an Si-containing glassy carbon material having a homogeneous and dense composite structure containing an atomic level Si component as a continuous phase and having excellent oxidation resistance is industrially produced. Can be manufactured. Especially S
It is possible to easily obtain a high-quality Si-containing glassy carbon material which is always free of material defects even under the manufacturing conditions in which the i content is high. Therefore, a sufficiently stable use condition is guaranteed even under severe conditions in which desorption of fine particles from the tissue and oxidative damage are likely to occur, and therefore industrial members for various application fields including semiconductor members. It is extremely useful as a manufacturing technology.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年3月4日[Submission date] March 4, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Correction target item name] Name of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【発明の名称】 Si含有ガラス状カーボン材の製
造方法
Method of producing Si-containing glassy carbon material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 1分子中に単一のSi原子を含むアミノ
シラン化合物を炭化残留率の高い有機溶媒で混合希釈
し、該希釈溶液を熱硬化性樹脂液中に滴下して撹拌混合
し、得られたアミノシラン含有樹脂組成物を所定形状に
成形硬化したのち、成形体を非酸化性雰囲気下で800
℃以上の温度により焼成炭化処理することを特徴とする
Si含有ガラス状カーボン材の製造方法。
1. An aminosilane compound containing a single Si atom in one molecule is mixed and diluted with an organic solvent having a high carbonization residual ratio, and the diluted solution is dropped into a thermosetting resin liquid and mixed by stirring to obtain After the obtained aminosilane-containing resin composition is molded and cured into a predetermined shape, the molded body is subjected to 800 in a non-oxidizing atmosphere.
A method for producing a Si-containing glassy carbon material, which comprises performing a carbonization treatment at a temperature of ℃ or more.
【請求項2】 炭化残留率の高い有機溶媒が、フルフリ
ルアルコール、フルフラール、またはこれらの混合物で
ある請求項1記載のSi含有ガラス状カーボン材の製造
方法。
2. The method for producing a Si-containing glassy carbon material according to claim 1, wherein the organic solvent having a high carbonization residual rate is furfuryl alcohol, furfural, or a mixture thereof.
JP29345695A 1995-10-17 1995-10-17 Method for producing Si-containing glassy carbon material Expired - Fee Related JP3396119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29345695A JP3396119B2 (en) 1995-10-17 1995-10-17 Method for producing Si-containing glassy carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29345695A JP3396119B2 (en) 1995-10-17 1995-10-17 Method for producing Si-containing glassy carbon material

Publications (2)

Publication Number Publication Date
JPH09110528A true JPH09110528A (en) 1997-04-28
JP3396119B2 JP3396119B2 (en) 2003-04-14

Family

ID=17794993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29345695A Expired - Fee Related JP3396119B2 (en) 1995-10-17 1995-10-17 Method for producing Si-containing glassy carbon material

Country Status (1)

Country Link
JP (1) JP3396119B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371425B2 (en) 2003-05-16 2008-05-13 Cinvention Ag Method for coating substrates with a carbon-based material
TWI683916B (en) * 2018-11-27 2020-02-01 國家中山科學研究院 Method for manufacturing ultra-thin graphite film on silicon carbide substrate
CN114057178A (en) * 2020-08-05 2022-02-18 中国科学院广州能源研究所 Preparation method and application of nano composite carbon spheres

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371425B2 (en) 2003-05-16 2008-05-13 Cinvention Ag Method for coating substrates with a carbon-based material
TWI683916B (en) * 2018-11-27 2020-02-01 國家中山科學研究院 Method for manufacturing ultra-thin graphite film on silicon carbide substrate
CN114057178A (en) * 2020-08-05 2022-02-18 中国科学院广州能源研究所 Preparation method and application of nano composite carbon spheres
CN114057178B (en) * 2020-08-05 2024-03-29 中国科学院广州能源研究所 Preparation method and application of nano composite carbon sphere

Also Published As

Publication number Publication date
JP3396119B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
JPH09100174A (en) Method for forming ceramic composite material, prepreg and fiber-reinforced ceramic matrix composite material
JPH10114827A (en) Cross-linker for silazane polymer
KR101152628B1 (en) SiC/C composite powders and a high purity and high strength reaction bonded SiC using the same
JP3396119B2 (en) Method for producing Si-containing glassy carbon material
KR101627371B1 (en) Preparing method of size-controlled silicon carbide powder
JP3396116B2 (en) Method for producing Si-containing glassy carbon material
JP3396113B2 (en) Si-containing glassy carbon material and method for producing the same
JP3487472B2 (en) Method for producing Si-containing glassy carbon material
JP4619118B2 (en) Sputtering target and manufacturing method thereof
JP3548649B2 (en) Carbon heating element
JPH11302076A (en) Production of si-containing glassy carbon material
JP2000272965A (en) Silicon-containing glassy carbon material
JP3682094B2 (en) Method for producing carbon fiber reinforced carbon composite
JP3447023B2 (en) Electrode plate for plasma etching
JP2000031136A (en) Protective member for plasma processing system
JP2000272986A (en) Production of glassy carbon-coated carbon material
KR101322796B1 (en) Method of manufacturing silicon carbide powder with improved yields and silicon carbide powder thereof
JP2002308609A (en) Si DISPERSED VITREOUS CARBON MATERIAL
JPH10167828A (en) Dummy wafer for plasma etching
JPH11307464A (en) Dummy wafer
JPH10251061A (en) Boron-containing vitreous carbon material and its production
JP3730343B2 (en) Electrode plate for plasma etching
JPH0532451A (en) Production of sintered ceramic
JP4361989B2 (en) Method for producing ceramic and method for producing sintered silicon carbide
JP3496900B2 (en) Ion implanter components

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees