JP3487472B2 - Method for producing Si-containing glassy carbon material - Google Patents

Method for producing Si-containing glassy carbon material

Info

Publication number
JP3487472B2
JP3487472B2 JP06021896A JP6021896A JP3487472B2 JP 3487472 B2 JP3487472 B2 JP 3487472B2 JP 06021896 A JP06021896 A JP 06021896A JP 6021896 A JP6021896 A JP 6021896A JP 3487472 B2 JP3487472 B2 JP 3487472B2
Authority
JP
Japan
Prior art keywords
glassy carbon
carbon material
resin
reaction
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06021896A
Other languages
Japanese (ja)
Other versions
JPH09227231A (en
Inventor
公仁弘 藤塚
三男 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP06021896A priority Critical patent/JP3487472B2/en
Publication of JPH09227231A publication Critical patent/JPH09227231A/en
Application granted granted Critical
Publication of JP3487472B2 publication Critical patent/JP3487472B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、Si成分を連続相
として含有する均質緻密な複合組織構造を備える改質さ
れたガラス状カーボン材、特に優れた耐酸化性を有する
Si含有ガラス状カーボン材の製造方法に関する。
TECHNICAL FIELD The present invention relates to a modified glassy carbon material having a homogeneous and dense composite structure structure containing a Si component as a continuous phase, and particularly a Si-containing glassy carbon material having excellent oxidation resistance. Manufacturing method.

【0002】[0002]

【従来の技術】ガラス状カーボン材は、熱硬化性樹脂の
成形体を焼成炭化して得られる巨視的にガラス質の緻密
な組織構造を有する異質な炭素材料で、一般のカーボン
材に比べてガス不透過性、耐摩耗性、耐蝕性、自己潤滑
性、表面の平滑性および堅牢性などに優れることから、
その特性を生かして多様の分野で各種工業部材に有用さ
れている。近年では、組織から微小な炭素粒子が離脱す
ることのない非汚染性の材質性状に着目して、シリコン
ウエハーのプラズマエッチング用電極やイオン注入装置
用部材など汚染を嫌う半導体分野での実用が図られてい
る。
2. Description of the Related Art A glassy carbon material is a heterogeneous carbon material having a macroscopically vitreous and dense structure obtained by firing and carbonizing a thermosetting resin compact, Due to its excellent gas impermeability, wear resistance, corrosion resistance, self-lubricating property, surface smoothness and robustness,
Utilizing its characteristics, it is useful for various industrial members in various fields. In recent years, focusing on the non-contaminating material properties that do not cause minute carbon particles to separate from the tissue, practical applications in the semiconductor field such as electrodes for plasma etching of silicon wafers and members for ion implantation equipment that do not like contamination have been developed. Has been.

【0003】ところが、ガラス状カーボン材は材質的に
脆弱であるうえ、一般のカーボン材と同様に高温酸化雰
囲気中では速やかに酸化が進行して物性を損ねる炭素材
固有の材質的欠点がある。このため、従来からガラス状
カーボン組織中にセラミックス成分を複合させて物性の
改善を図る試みがなされている。初期の段階では、原料
となる熱硬化性樹脂に乾式もしくは湿式法でSiCのよ
うなセラミックス微粒子を混合し、これを硬化した成形
体を焼成炭化する方法が行われたが、この方法ではセラ
ミックス粒子を炭素組織に均一に分散させることができ
ず、またセラミックス粒子と炭素組織間に粒界が存在す
るため、過酷な使用条件では材質破壊を起こしたり、セ
ラミックス粒子が離脱する現象が生じる問題があった。
However, the glassy carbon material is fragile in material, and has a material defect peculiar to the carbon material in that, like the general carbon material, the oxidation rapidly progresses in a high temperature oxidizing atmosphere to deteriorate the physical properties. Therefore, it has been attempted to improve the physical properties by compounding a ceramic component in a glassy carbon structure. In the initial stage, a method was used in which ceramic particles such as SiC were mixed with a thermosetting resin as a raw material by a dry method or a wet method, and a molded body obtained by curing this was carbonized by firing. Cannot be uniformly dispersed in the carbon structure, and grain boundaries exist between the ceramic particles and the carbon structure.Therefore, under severe conditions of use, there is a problem of material destruction or separation of ceramic particles. It was

【0004】このため、熱硬化性樹脂に珪素含有化合物
を混合して原料系とすることにより均一組織のSi含有
ガラス状カーボン材を得る方法が提案されている。例え
ば特開昭61−6111号公報には、液状珪素化合物、
官能基を有し加熱により炭素化する液状有機化合物、お
よび重合または架橋用の触媒を溶化したSi、Oおよび
Cを含む前駆体物質を炭化して耐酸化性の炭素材料を製
造する方法が開示されている。この方法では、液状珪素
化合物として水ガラスの脱アルカリで得られた珪酸ポリ
マー、水酸基を含有する有機化合物と珪酸とのエステ
ル、エチルシリケートのようなSiエステル、四塩化珪
素とエタノールの反応生成物等が挙げられ、触媒として
硫酸、塩酸、有機過酸化物、有機スルホン酸類などの併
用を必須要件としている。
For this reason, there has been proposed a method of obtaining a Si-containing glassy carbon material having a uniform structure by mixing a silicon-containing compound with a thermosetting resin to prepare a raw material system. For example, JP-A-61-1111 discloses a liquid silicon compound,
Disclosed is a method for producing an oxidation resistant carbon material by carbonizing a liquid organic compound having a functional group and carbonized by heating, and a precursor substance containing Si, O and C in which a catalyst for polymerization or crosslinking is solubilized. Has been done. In this method, a silicic acid polymer obtained by dealkalization of water glass as a liquid silicon compound, an ester of a silicic acid with an organic compound having a hydroxyl group, a Si ester such as ethyl silicate, a reaction product of silicon tetrachloride and ethanol, etc. The use of sulfuric acid, hydrochloric acid, organic peroxides, organic sulfonic acids, etc. as a catalyst is an essential requirement.

【0005】しかし、上記の方法は比較的多量のSi成
分(C/Si原子比;0.5〜19)を含有する炭素材
料を製造目的としている関係で、原料系に混合する液状
珪素化合物の量が多いため、Si、OおよびCを含む前
駆体物質を形成する過程で珪素化合物が相互に結合して
微細な凝集体を形成し、これがそのまま炭化組織中にS
i粒状体となって分散する不均一な組織性状になり易
い。また、シロキサン結合(Si-0-Si) のような複数のS
i原子が連鎖する重合エステルを珪素源として用いた場
合にも、同様に凝集化に伴う不均質な組織になるため、
液状有機化合物に対する配合量を少なくしても、Siが
粒子状態で分散することのない連続相の炭素質組織を得
ることはできない。そのうえ、併用する触媒が硫酸や塩
酸等の強酸の場合にはゲル化反応を急激に進行させて組
織の均一性を損ね、ナトリウムエチラートや有機スルホ
ン酸類などの触媒を使用すると含有無機成分が残留不純
物となって純度を低下させる要因となる。
However, the above-mentioned method is intended to produce a carbon material containing a relatively large amount of Si component (C / Si atomic ratio: 0.5 to 19). Due to the large amount, the silicon compounds bond with each other in the process of forming the precursor material containing Si, O and C to form fine agglomerates, which are the same as S in the carbonized structure.
i It tends to have a non-uniform texture that is dispersed as a granular material. Also, multiple S such as siloxane bond (Si-0-Si)
Even when a polymerized ester in which i atoms are chained is used as a silicon source, a heterogeneous structure is likewise caused by agglomeration.
Even if the blending amount with respect to the liquid organic compound is reduced, it is not possible to obtain a continuous phase carbonaceous structure in which Si is not dispersed in a particle state. In addition, when the catalyst used in combination is a strong acid such as sulfuric acid or hydrochloric acid, the gelation reaction proceeds rapidly and the homogeneity of the structure is impaired, and when using a catalyst such as sodium ethylate or organic sulfonic acid, the contained inorganic components remain. It becomes an impurity and becomes a factor to reduce the purity.

【0006】特開平5−43319号公報には、熱硬化
性樹脂と有機金属化合物を液状で均一に混合し、加熱
(焼成)して得られる超微細なセラミックスが高度に分
散した状態のガラス状炭素複合材料が開示されている。
この発明では、珪素源となる有機金属化合物として、S
iCを与えるポリカルボシランおよびポリシラン、Si
−Ti−C−Oを与えるTi含有ポリカルボシラン、S
x y 、Si−N−CあるいはSi3 4 −SiCを
与えるポリシラザン類が用いられている。しかしなが
ら、複数のシラン結合を有するポリカルボシランやポリ
シラン等のポリマーを熱硬化性樹脂と混合して原料系と
すると、セラミックス源が分子として分散する状態とな
るため、熱処理後に微細な金属炭化物粒子となって粒界
が生成することが避けられず、セラミックスと炭素が均
質な連続相を呈するガラス状カーボン組織を得ることが
できない。
JP-A-5-43319 discloses a glassy state in which ultrafine ceramics obtained by uniformly mixing a thermosetting resin and an organometallic compound in a liquid state and heating (calcining) are highly dispersed. A carbon composite material is disclosed.
In the present invention, as the organometallic compound serving as a silicon source, S
Polycarbosilanes and polysilanes that give iC, Si
A Ti-containing polycarbosilane which gives —Ti—C—O, S
Polysilazanes that give i x N y , Si—N—C or Si 3 N 4 —SiC have been used. However, when a polymer such as polycarbosilane or polysilane having a plurality of silane bonds is mixed with a thermosetting resin to form a raw material system, the ceramics source is in a state of being dispersed as a molecule, so that fine metal carbide particles and fine particles are formed after heat treatment. It is unavoidable that grain boundaries are generated, and a glassy carbon structure in which ceramics and carbon exhibit a homogeneous continuous phase cannot be obtained.

【0007】このほか、特開平5−339006号公報
には、液状のケイ素化合物と官能基を有し加熱により炭
素を生成する液状の有機化合物を原料とし、これを均一
に溶化する重合又は架橋触媒を加え、重合又は架橋反応
させ、得られた前駆体物質を非酸化性雰囲気中で加熱炭
化した中間体生成物を非酸化性雰囲気中で更に高温焼成
することからなるβ型炭化ケイ素−炭素混合粉末の製造
方法において、該原料および触媒が不純物元素を実質的
に含有しないものであり、中間体成形物の炭素/ケイ素
のモル比が2.5〜3.5であり、混合粉末中の炭化ケ
イ素と炭素が均質に混合され、その炭素量が3〜28重
量%であり、混合粉末中の各不純物元素の含有量が1pp
m 以下である高純度β型炭化ケイ素−炭素混合粉末の製
造方法が提案されている。しかし、この方法は焼結体用
のSiC−C系粉末を製造するものであって、主要成分
がガラス状カーボン組織からなるSi含有カーボン成形
体の製造技術ではない。
In addition, Japanese Patent Laid-Open No. 5-339006 discloses a polymerization or cross-linking catalyst which uses a liquid silicon compound and a liquid organic compound which has a functional group and produces carbon by heating as a raw material, and uniformly solubilizes it. A β-type silicon carbide-carbon mixture, which is obtained by subjecting the resulting precursor substance to heating or carbonization in a non-oxidizing atmosphere and further firing the resulting intermediate product at a higher temperature in a non-oxidizing atmosphere. In the method for producing a powder, the raw material and the catalyst do not substantially contain an impurity element, the intermediate molded product has a carbon / silicon molar ratio of 2.5 to 3.5, and the carbonization in the mixed powder is Silicon and carbon are homogeneously mixed, the amount of carbon is 3 to 28% by weight, and the content of each impurity element in the mixed powder is 1 pp.
A method for producing a high-purity β-type silicon carbide-carbon mixed powder having a size of m or less has been proposed. However, this method is for producing a SiC-C-based powder for a sintered body, and is not a production technique for a Si-containing carbon compact whose main component is a glassy carbon structure.

【0008】上記の実情に鑑み、本出願人は先に−O−
Si−O−で架橋された熱硬化性樹脂の成形体を焼成炭
化して得られ、原子レベルのSiがガラス状カーボン組
織中に0.1〜15重量%の範囲で均一な連続相として
分布する組織性状を備えるSiC含有ガラス状カーボン
材と、その製造技術として熱硬化性樹脂と1分子中に単
一のSi原子を有するSiアルコキシドの加水分解物を
有機溶媒中で撹拌混合し、架橋反応により得られるゲル
化物を硬化成形したのち、硬化成形体を非酸化性雰囲気
下で800℃以上の温度で焼成炭化処理する方法(特願
平7−155177号)を開発し、更にその改良発明として1
分子中に単一のSi原子を含むアミノシラン化合物を熱
硬化性樹脂液中に滴下して撹拌混合し、該混合溶液を成
形硬化したのち、硬化成形体を非酸化性雰囲気下で80
0℃以上の温度により焼成炭化処理することを特徴とす
るSi含有ガラス状カーボン材の製造方法を提案した
(特願平7−234696号)。
In view of the above situation, the present applicant has previously proposed -O-
Obtained by firing and carbonizing a molded body of a thermosetting resin crosslinked with Si-O-, and atomic level Si is distributed as a uniform continuous phase in the range of 0.1 to 15% by weight in the glassy carbon structure. The SiC-containing glassy carbon material having a texture property, a thermosetting resin, and a hydrolyzate of a Si alkoxide having a single Si atom in one molecule are stirred and mixed in an organic solvent to produce a crosslinking reaction. A method (Japanese Patent Application No. 7-155177) was developed, in which the gelled product obtained by (1) is cured and molded, and then the cured molded body is subjected to firing and carbonization treatment at a temperature of 800 ° C. or higher in a non-oxidizing atmosphere. 1
An aminosilane compound containing a single Si atom in the molecule is dropped into a thermosetting resin solution and mixed by stirring to mold and cure the mixed solution, and then the cured molded article is heated in a non-oxidizing atmosphere at 80
We proposed a method for producing a Si-containing glassy carbon material, which is characterized by performing a firing carbonization treatment at a temperature of 0 ° C. or higher (Japanese Patent Application No. 7-234696).

【0009】[0009]

【発明が解決しようとする課題】Si源として1分子中
に単一のSi原子を含むアミノシラン化合物を選択する
と、Siが原子レベルで組織中に均質分散した比較的大
型のSi含有ガラス状カーボン材を製造することが可能
となる。ところが、この原料系においてはアミノ基が熱
硬化性樹脂と極めて反応し易いために種々の反応トラブ
ルを生じ易い難点がある。すなわち、アミノシラン化合
物と熱硬化性樹脂を混合する過程で、原料中のアミノ基
はアルコキシ基に優先して熱硬化性樹脂と結合し、発熱
しながら急速に脱水縮合反応を進行させる結果、樹脂粘
度の上昇による脱気不良や局部的な歪みの発生などを助
長する。
When an aminosilane compound containing a single Si atom in one molecule is selected as the Si source, a relatively large Si-containing glassy carbon material in which Si is homogeneously dispersed in the tissue at the atomic level. Can be manufactured. However, in this raw material system, the amino group is extremely likely to react with the thermosetting resin, so that various reaction troubles are likely to occur. That is, in the process of mixing the aminosilane compound and the thermosetting resin, the amino group in the raw material is bonded to the thermosetting resin in preference to the alkoxy group, and the dehydration condensation reaction proceeds rapidly while generating heat, resulting in a resin viscosity Promotes degassing failure and local distortion due to rise in temperature.

【0010】上記の現象は、結果的に得られるSi含有
ガラス状カーボン材の組織に亀裂や破損を生じる要因と
なるため、工業生産において高い製品得率を確保する上
の大きな障害となる。この問題はアミノシラン化合物と
熱硬化性樹脂の反応を抑制する操作条件を与えることに
より解消することができるが、製品得率を低下させずに
強制的な反応抑制の操作条件を与えることは容易でな
い。
The above phenomenon causes cracks and damages in the structure of the Si-containing glassy carbon material obtained as a result, and is a major obstacle to ensuring a high product yield in industrial production. This problem can be solved by giving operating conditions that suppress the reaction between the aminosilane compound and the thermosetting resin, but it is not easy to give operating conditions that forcefully suppress the reaction without lowering the product yield. .

【0011】本発明者らはアミノシラン化合物と同等の
効果を持ちながら上記のような反応トラブルを生じない
Si源について多角的に研究を進めた結果、1分子中に
単一のSi原子を含むエポキシシラン化合物をSi源と
すると熱硬化性樹脂との反応を起こさず、反応トラブル
を伴わずに耐酸化性を備えるSi含有ガラス状カーボン
材が効率よく製造し得ることを確認した。
The present inventors have conducted multifaceted research on a Si source that has the same effect as an aminosilane compound but does not cause the above-mentioned reaction trouble, and as a result, an epoxy containing a single Si atom in one molecule. It was confirmed that when a silane compound was used as the Si source, it did not react with the thermosetting resin, and a Si-containing glassy carbon material having oxidation resistance could be efficiently produced without causing a reaction trouble.

【0012】本発明は前記の知見に基づいて開発された
もので、目的とする解決課題は、Siが連続相として分
布する均一緻密な複合組織構造を備える高耐酸化性のS
i含有ガラス状カーボン材を高水準の製品得率で工業的
に製造するための方法を提供することにある。
The present invention has been developed on the basis of the above-mentioned findings, and an object of the object to be solved is a high oxidation resistance S having a uniform and dense composite structure structure in which Si is distributed as a continuous phase.
An object of the present invention is to provide a method for industrially producing an i-containing glassy carbon material with a high level of product yield.

【0013】[0013]

【課題を解決するための手段】上記の課題を解決するた
めの本発明によるSi含有ガラス状カーボン材の製造方
法は、1分子中に単一のSi原子を含むエポキシシラン
化合物を、熱硬化性樹脂液中に滴下して撹拌混合し、得
られたエポキシシラン含有樹脂組成物を所定形状に成形
硬化したのち、成形体を非酸化性雰囲気下で800℃以
上の温度により焼成炭化処理することを構成上の特徴と
する。
A method for producing a Si-containing glassy carbon material according to the present invention for solving the above-mentioned problems is obtained by thermosetting an epoxysilane compound containing a single Si atom in one molecule. After dropping the resin composition into the resin liquid and stirring and mixing, and molding and curing the obtained epoxysilane-containing resin composition into a predetermined shape, the molded body is subjected to firing and carbonization treatment at a temperature of 800 ° C. or higher in a non-oxidizing atmosphere. This is a feature of the configuration.

【0014】[0014]

【発明の実施の形態】本発明において、エポキシシラン
化合物はガラス状カーボン組織にSiを原子レベルで分
散複合させるSi源となる原料成分で、1分子中に単一
のSi原子を含むエポキシシラン化合物が選択的に使用
される。1分子中に2個以上のSi原子が結合したポリ
シランではSi源が高分子として分散する状態となるた
め熱硬化性樹脂液との混合段階で凝集現象が発生し易
く、原子レベルでのSi分散化が不可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, an epoxysilane compound is a raw material component serving as a Si source for dispersing and compounding Si in a glassy carbon structure at the atomic level, and an epoxysilane compound containing a single Si atom in one molecule. Is used selectively. In the case of polysilane in which two or more Si atoms are bonded in one molecule, the Si source is in the state of being dispersed as a polymer, so that the aggregation phenomenon easily occurs at the mixing stage with the thermosetting resin liquid, and the Si dispersion at the atomic level is generated. It becomes impossible.

【0015】1分子中に単一のSi原子を含むエポキシ
シラン化合物は、下記化1の一般式(式中、R1 は酸素
を1つ含む飽和炭素鎖または環状炭素鎖、R2 、R3
よびR4 は炭素数1〜3のアルキル基またはアルコキシ
基である。)で表される。
An epoxysilane compound containing a single Si atom in one molecule is represented by the following general formula (1) (wherein R 1 is a saturated carbon chain or cyclic carbon chain containing one oxygen, R 2 or R 3 And R 4 is an alkyl group or an alkoxy group having 1 to 3 carbon atoms.).

【0016】[0016]

【化1】 [Chemical 1]

【0017】かかるエポキシシラン化合物としては、例
えば3−グリシドキシプロピルメチルジメトキシシラ
ン、3−グリシドキシプロピルジメチルメトキシシラ
ン、3−グリシドキシプロピルトリメトキシシラン、3
−グリシドキシプロピルジメチルエトキシシラン、3−
グリシドキシプロピルメチルジエトキシシラン、3−グ
リシドキシプロピルメチルジイソプロペノキシシラン、
3−グリシドキシプロピルジイソプロピルエトキシシラ
ン、2−(3,4−エポキシシクロヘキシル)エチルト
リメトキシシラン等を挙げることができる。しかし、本
発明の目的には3−グリシドキシプロピルメチルジメト
キシシランが最も好ましく使用される。この理由は、該
3−グリシドキシプロピルメチルジメトキシシランは低
分子量であるため炭化時における揮発成分が相対的に少
なく、収縮に伴う材質歪みが生じない有利性があるから
である。
Examples of such epoxysilane compounds include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyldimethylmethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3
-Glycidoxypropyldimethylethoxysilane, 3-
Glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldiisopropenoxysilane,
Examples thereof include 3-glycidoxypropyldiisopropylethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. However, 3-glycidoxypropylmethyldimethoxysilane is most preferably used for the purposes of the present invention. The reason for this is that the 3-glycidoxypropylmethyldimethoxysilane has a low molecular weight, and therefore has a relatively small amount of volatile components during carbonization, which is advantageous in that material distortion due to shrinkage does not occur.

【0018】上記の1分子中に単一のSi原子を含むエ
ポキシシラン化合物(以下、単に「エポキシシラン化合
物」という)は、熱硬化性樹脂液に滴下する。熱硬化性
樹脂液は焼成炭化処理によりガラス状カーボンに転化す
る炭素源となるもので、例えば液状のフェノール系樹
脂、フラン系樹脂、ポリイミド系樹脂、ポリカルボジイ
ミド系樹脂、ポリアクリロニトリル系樹脂、ピレン−フ
ェナントレン系樹脂、ポリ塩化ビニル系樹脂、エポキシ
系樹脂あるいはこれらの混合樹脂等を用いることができ
る。特に樹脂を非酸化性雰囲気下で800℃の温度によ
り焼成したときに残留する残炭率の高いフェノール系樹
脂またはフラン系樹脂の初期縮合物もしくはこれらの混
合樹脂液が好適に使用される。
The above-mentioned epoxysilane compound containing a single Si atom in one molecule (hereinafter, simply referred to as "epoxysilane compound") is dropped into the thermosetting resin liquid. The thermosetting resin liquid serves as a carbon source which is converted into glassy carbon by firing and carbonizing treatment, and for example, liquid phenolic resin, furan resin, polyimide resin, polycarbodiimide resin, polyacrylonitrile resin, pyrene- A phenanthrene-based resin, a polyvinyl chloride-based resin, an epoxy-based resin, a mixed resin thereof, or the like can be used. In particular, an initial condensate of a phenolic resin or a furan resin having a high residual carbon rate remaining when the resin is fired at a temperature of 800 ° C. in a non-oxidizing atmosphere, or a mixed resin liquid thereof is preferably used.

【0019】エポキシシラン化合物を熱硬化性樹脂液へ
滴下するに当たっては、十分な撹拌条件下で行う。この
際、エポキシシラン化合物と熱硬化性樹脂との反応は起
こらないから、混合樹脂組成物の発熱、増粘などの反応
トラブルが生じることはない。したがって、特に冷却そ
の他の煩雑な反応抑止操作を施す必要はなく、多量のエ
ポキシシラン化合物を滴下しても十分な流動性が確保で
き、また混合時の巻き込んだ空気も容易に脱気できるか
らボイドを残留させることなしに成形することが可能と
なる。なお、アルコキシ基をもつシラン化合物を用いた
場合にも、この時点ではアルコキシ基と樹脂の反応は殆
ど起こらないから、ゲル化に伴う作業性の減退現象が生
じることはない。
The dropping of the epoxysilane compound into the thermosetting resin liquid is carried out under sufficient stirring conditions. At this time, since the reaction between the epoxysilane compound and the thermosetting resin does not occur, reaction troubles such as heat generation and thickening of the mixed resin composition do not occur. Therefore, it is not particularly necessary to perform complicated reaction suppressing operations such as cooling, sufficient fluidity can be ensured even when a large amount of epoxysilane compound is dropped, and air entrained during mixing can be easily degassed, so that voids It becomes possible to mold without leaving. Even when a silane compound having an alkoxy group is used, the reaction between the alkoxy group and the resin hardly occurs at this point, so that the phenomenon of deterioration of workability due to gelation does not occur.

【0020】滴下操作により得られたエポキシシラン含
有樹脂組成物は、混合の均一性を一層高めて原子レベル
での分散を促進するため、一昼夜以上流動状態で保存し
ておくことが好ましい。粘度が低い流動液状で保存され
た混合物はSiが原子レベルで分散する極めて均質な組
成状態を呈しており、メチル基などの疎水性基のみのシ
ラン化合物を混合する場合に起きるシラン化合物の分離
等の現象は生ずることはない。
The epoxysilane-containing resin composition obtained by the dropping operation is preferably stored in a fluid state for one day or more in order to further enhance the uniformity of mixing and promote the dispersion at the atomic level. Mixtures stored in a low-viscosity fluid form have a very homogeneous compositional state in which Si is dispersed at the atomic level. Separation of silane compounds that occurs when mixing silane compounds having only hydrophobic groups such as methyl groups, etc. Does not occur.

【0021】エポキシシラン含有樹脂組成物は、ついで
必要に応じて真空脱気処理して吸蔵する空気を除去した
のち所定形状に成形する。成形手段は、通常、注型成形
や遠心成形により行われるが、半硬化した段階で圧縮成
形、押出成形、トランスファー成形などを適用すること
もできる。成形された成形体は、70〜150℃の温度
に加熱して硬化しガラス状カーボンの前駆体とする。
The epoxysilane-containing resin composition is then vacuum deaerated, if necessary, to remove the stored air, and then molded into a predetermined shape. The molding means is usually cast molding or centrifugal molding, but it is also possible to apply compression molding, extrusion molding, transfer molding, etc. at the semi-cured stage. The molded body thus molded is heated to a temperature of 70 to 150 ° C. and hardened to obtain a glassy carbon precursor.

【0022】室温混合過程で熱硬化性樹脂と反応しなか
ったエポキシシラン化合物は、成形や硬化時の加熱段階
でエポキシ基の開環反応が起き樹脂成分との反応が開始
される。したがって、成形工程での加熱温度を制御する
ことによりエポキシシラン化合物は均一分散状態を維持
しながら緩やかに樹脂成分と反応し、硬化過程を通じて
樹脂の硬化反応と同時にエポキシ基と樹脂成分との反応
が進行する。この作用で樹脂の硬化反応は緩徐な速度で
進行するから、エポキシシラン化合物と樹脂成分の反応
による歪みの発生は効果的に抑制される。
The epoxysilane compound which has not reacted with the thermosetting resin during the room temperature mixing process undergoes a ring-opening reaction of the epoxy group at the heating stage during molding and curing to start the reaction with the resin component. Therefore, by controlling the heating temperature in the molding process, the epoxysilane compound slowly reacts with the resin component while maintaining a uniform dispersion state, and the curing reaction of the resin and the reaction of the epoxy group and the resin component occur at the same time during the curing process. proceed. By this action, the curing reaction of the resin proceeds at a slow rate, so that the occurrence of strain due to the reaction between the epoxysilane compound and the resin component is effectively suppressed.

【0023】例えばエポキシシラン化合物とフェノール
樹脂との反応は、下記化2に示す反応式で進行するもの
と推測される。
For example, the reaction between the epoxysilane compound and the phenol resin is presumed to proceed according to the reaction formula shown in the following chemical formula 2.

【0024】[0024]

【化2】 [Chemical 2]

【0025】ついで、硬化成形体を非酸化性雰囲気に保
持された加熱炉に移し、800℃以上の温度域、好まし
くは1000〜2500℃の温度範囲で焼成炭化処理す
る。該焼成炭化処理の段階で熱硬化性樹脂成分はガラス
状カーボンに転化する。
Then, the cured molded article is transferred to a heating furnace kept in a non-oxidizing atmosphere and subjected to a calcination carbonization treatment in a temperature range of 800 ° C. or higher, preferably in a temperature range of 1000 to 2500 ° C. The thermosetting resin component is converted into glassy carbon at the stage of the firing carbonization treatment.

【0026】上記の工程で製造されるSi含有ガラス状
カーボン材は、実質的に熱硬化性樹脂の成形体を焼成炭
化して得られる炭素質構造体であって、原子レベルのS
iがガラス状カーボン組織中に均一な連続相として分布
する複合組織性状を備えている。この組織性状は、Si
成分が微粒子状態で分散する複合組織とは異なり、組織
内部にSiとCとの粒界が存在しないアロイ状の連続固
溶相を呈しており、巨視的にはガラス状カーボン単独の
組織構造と実質的に相違が認められず、他方、微視的に
はガラス状カーボン組織の一部のCがSiに置換結合さ
れた独特の複合形態となっている。特に本発明によると
ガラス状カーボン組織に占めるSi含有量が5重量%を
越える高配合領域においても、材質欠陥がなく、高強度
と高耐酸化性を兼備する高品位のSi含有ガラス状カー
ボン材を製品得率よく得ることが可能となる。
The Si-containing glassy carbon material produced in the above process is a carbonaceous structure which is obtained by substantially carbonizing a thermosetting resin compact by firing.
i has a composite texture property in which it is distributed as a uniform continuous phase in the glassy carbon structure. This texture is Si
Unlike the composite structure in which the components are dispersed in the form of fine particles, it exhibits an alloy-like continuous solid solution phase in which there are no grain boundaries between Si and C, and macroscopically it has a structure structure of glassy carbon alone. Substantially no difference was observed, while microscopically, it had a unique composite morphology in which a part of C of the glassy carbon structure was substituted and bonded to Si. In particular, according to the present invention, a high-quality Si-containing glassy carbon material having high strength and high oxidation resistance with no material defects even in a high compounding region in which the Si content in the glassy carbon structure exceeds 5% by weight. Can be obtained with high product yield.

【0027】[0027]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。しかし、本発明の範囲はこれらの実施
例に制約されるものではない。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples. However, the scope of the invention is not limited to these examples.

【0028】実施例1〜4 3−グリシドキシプロピルメチルジメトキシシラン〔東
レ・ダウコーニング・シリコーン社製、AY43-026〕粘度
3.4 cp(25℃)をSi源として、室温下でフェノ
ール樹脂初期縮合物〔住友デュレズ(株)製、PR-940〕
粘度400 cp(25℃)中に滴下し、撹拌混合操作を
1時間継続した。この際、滴下量を変え、最終的にガラ
ス状カーボン組織に占めるSi含有量が約5、7、1
0、15重量%になるように設定した。引き続き、室温
で緩徐な撹拌を与えながら流動状態で45時間保存放置
し、液の均質性を高めた。ついで、混合樹脂組成物を型
枠に流入し、真空装置内で脱泡処理を施したのち、70
〜150℃まで加温して混合樹脂組成物を硬化した。な
お、1時間撹拌混合後の混合樹脂組成物の温度および粘
度と型枠に流入する時の混合樹脂組成物の粘度および得
られた硬化成形体の気孔の有無を表1に示した。表1に
示したように混合樹脂組成物の粘度は殆ど変化なく、ま
た得られた硬化成形体は脱泡処理が効果的に行われて気
泡が認められなかった。この硬化成形体を窒素雰囲気に
保持された加熱炉に移し、10℃/hrの昇温速度で20
00℃まで加熱して焼成炭化した。このようにしてSi
含有量の異なるSi含有ガラス状カーボン材(縦横200m
m 、厚さ5mm) を製造した。得られた各Si含有ガラス
状カーボン材には、組織に亀裂やポアの発生は認められ
ず、表面状態はガラス状の平滑面を呈していた。
Examples 1 to 4 3-glycidoxypropylmethyldimethoxysilane [AY43-026 manufactured by Toray Dow Corning Silicone Co., Ltd.] A phenol resin at room temperature using a viscosity of 3.4 cp (25 ° C.) as a Si source. Initial condensate [Sumitomo Dures Co., Ltd., PR-940]
The mixture was dropped into a viscosity of 400 cp (25 ° C.), and the stirring and mixing operation was continued for 1 hour. At this time, the dropping amount was changed so that the Si content in the glassy carbon structure finally became about 5, 7, 1
It was set to be 0,15% by weight. Subsequently, the mixture was allowed to stand at room temperature for 45 hours in a fluidized state while being slowly stirred to improve the homogeneity of the liquid. Then, the mixed resin composition is poured into a mold and subjected to defoaming treatment in a vacuum device, and then 70
The mixed resin composition was cured by heating to ~ 150 ° C. Table 1 shows the temperature and viscosity of the mixed resin composition after stirring and mixing for 1 hour, the viscosity of the mixed resin composition when flowing into the mold, and the presence or absence of pores in the obtained cured molded product. As shown in Table 1, the viscosity of the mixed resin composition hardly changed, and the obtained cured molded article was effectively defoamed and no bubbles were observed. This cured molded product was transferred to a heating furnace maintained in a nitrogen atmosphere, and heated at a heating rate of 10 ° C./hr for 20
It was heated to 00 ° C and carbonized by firing. In this way Si
Si-containing glassy carbon materials with different contents (200 m in length and width)
m, thickness 5 mm). In each of the Si-containing glassy carbon materials obtained, no cracks or pores were observed in the structure, and the surface condition was a glassy smooth surface.

【0029】[0029]

【表1】 [Table 1]

【0030】得られた各Si含有ガラス状カーボン材の
嵩密度、曲げ強度および高温域での耐酸化性を測定し、
その結果を表2に示した。併せて、製品得率を評価した
結果を表2に併載した。なお、耐酸化性は試片を乾燥空
気流で950℃の温度に60分間処理した際の重量減少
率として示した。また、製品得率は検体100個につき
製品組織に割れ、亀裂等の材質欠陥品を除いた歩留り
(%)である。
The bulk density, bending strength and oxidation resistance at high temperature of each Si-containing glassy carbon material obtained were measured,
The results are shown in Table 2. In addition, the results of evaluating the product yield are also shown in Table 2. The oxidation resistance was shown as a weight loss rate when the test piece was treated with a dry air flow at a temperature of 950 ° C. for 60 minutes. The product yield is the yield (%) excluding material defects such as cracks and cracks in the product structure per 100 specimens.

【0031】実施例5 Si源に3−グリシドキシプロピルジイソプロピルエト
キシシラン粘度2.9cp(25℃)を使用し、その他
は実施例1と同一条件によりフェノール樹脂初期縮合物
中に滴下し、1時間撹拌混合してSi含有量約10重量
%のSi含有ガラス状カーボン材を製造した。1時間撹
拌混合後の混合樹脂組成物の温度および粘度と型枠に流
入する時の混合樹脂組成物の粘度および硬化成形体の気
泡の有無を表1に併載したが、混合樹脂組成物の粘度は
殆ど変化なく、また得られた硬化成形体は脱泡処理が効
果的に行われて気泡が認められなかった。また、得られ
たSi含有ガラス状カーボン材には、組織に亀裂やポア
の発生は認められず、表面状態も平滑であった。得られ
たSi含有ガラス状カーボン材の各種特性を測定し、そ
の結果を表2に併載した。
Example 5 A 3-glycidoxypropyldiisopropylethoxysilane having a viscosity of 2.9 cp (25 ° C.) was used as a Si source, and the other conditions were the same as in Example 1 except that the initial condensation product was dropped into the phenol resin initial condensate. By stirring and mixing for a time, a Si-containing glassy carbon material having a Si content of about 10 wt% was manufactured. The temperature and viscosity of the mixed resin composition after stirring and mixing for 1 hour, the viscosity of the mixed resin composition when flowing into the mold, and the presence or absence of bubbles in the cured molded article are also shown in Table 1. Was almost unchanged, and the cured molded product obtained was effectively defoamed and no bubbles were observed. Further, in the obtained Si-containing glassy carbon material, no cracks or pores were observed in the structure, and the surface condition was smooth. Various properties of the obtained Si-containing glassy carbon material were measured, and the results are also shown in Table 2.

【0032】比較例1〜3 3−アミノプロピルトリエトキシシラン〔東京化成
(株)製〕粘度1.5 cp(25℃)をSi源とし、こ
れを室温下でフェノール樹脂初期縮合物〔住友デュレズ
(株)製、PR-940〕中に滴下し、撹拌混合操作を1時間
継続した。この際、滴下量を変え、最終的にガラス状カ
ーボン組織に占めるSi含有量が概ね5、10、15重
量%になるように設定した。その後、直ちに冷蔵庫(2
℃)に移し、18時間冷却してアミノ基と樹脂成分の反
応を抑制した。ついで、室温で緩徐な撹拌を与えながら
流動状態で24時間保存放置したのち、液の均質性を高
めた。ついで、混合樹脂組成物を型枠に流入し、真空装
置内で脱泡処理を施したのち、70〜150℃まで加温
して混合樹脂組成物を硬化した。なお、1時間撹拌混合
後の混合樹脂組成物の温度および粘度と型枠に流入する
時の混合樹脂組成物の粘度および得られた硬化成形体の
気泡の有無を表1に併載した。表1より1時間撹拌混合
後の混合樹脂組成物は混合時に反応が生じて発熱し、温
度上昇および粘度の増大が認められ、また型枠に流入す
る時の混合樹脂組成物の粘度は著しい増大が認められ
た。さらに、得られた硬化成形体は脱泡処理が効果的に
行われず気泡が認められた。この硬化成形体を窒素雰囲
気に保持された加熱炉に移し、10℃/hrの昇温速度で
2000℃まで加熱して焼成炭化した。このようにして
Si含有量の異なるSi含有ガラス状カーボン材(縦横
200mm 、厚さ5mm) を製造した。得られた各Si含有ガ
ラス状カーボン材には、製造過程で一部の組織に亀裂や
割れが発生し、製品得率は減退した。各Si含有ガラス
状カーボン材の各種特性を表2に併載した。
Comparative Examples 1 to 3 3-Aminopropyltriethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) A viscosity of 1.5 cp (25 ° C.) was used as a Si source, and this was used at room temperature to carry out a phenol resin initial condensation product [Sumitomo Dures Co. PR-940] manufactured by K.K., and the stirring and mixing operation was continued for 1 hour. At this time, the dropping amount was changed so that the final Si content in the glassy carbon structure was about 5, 10, and 15% by weight. Then immediately in the refrigerator (2
C.) and cooled for 18 hours to suppress the reaction between the amino group and the resin component. Then, the mixture was allowed to stand in a fluidized state for 24 hours while being slowly stirred at room temperature, and the homogeneity of the liquid was enhanced. Next, the mixed resin composition was flown into a mold, subjected to defoaming treatment in a vacuum device, and then heated to 70 to 150 ° C. to cure the mixed resin composition. Table 1 also shows the temperature and viscosity of the mixed resin composition after stirring and mixing for 1 hour, the viscosity of the mixed resin composition when flowing into the mold, and the presence or absence of bubbles in the obtained cured molded article. From Table 1, the mixed resin composition after stirring and mixing for 1 hour caused a reaction during mixing to generate heat, an increase in temperature and an increase in viscosity were observed, and the viscosity of the mixed resin composition when flowing into the mold significantly increased. Was recognized. Further, the obtained cured molded article was not effectively defoamed, and bubbles were observed. This cured molded body was transferred to a heating furnace maintained in a nitrogen atmosphere, heated to 2000 ° C. at a temperature rising rate of 10 ° C./hr, and carbonized. In this way, Si-containing glassy carbon materials with different Si contents (vertical and horizontal)
200mm, thickness 5mm) was manufactured. In each of the obtained Si-containing glassy carbon materials, cracks and cracks occurred in a part of the structure during the manufacturing process, and the product yield declined. Table 2 also shows various characteristics of each Si-containing glassy carbon material.

【0033】比較例4 トリメチルエトキシシラン〔フルカ社製〕をSi源と
し、これをSi含有量が約10重量%になるような量比
により室温下でフェノール樹脂初期縮合物〔住友デュレ
ズ(株)製、PR-940〕中に滴下し、撹拌混合操作を1時
間継続した。その後の条件は実施例1と同一にして成形
を行ったところ、成形体の組織内部には無数の気泡が発
生しており、無気孔のSi含有ガラス状カーボン材を得
ることはできなかった。
Comparative Example 4 Trimethylethoxysilane (manufactured by Fulka) was used as a Si source, and the phenol resin initial condensate [Sumitomo Dures Co., Ltd.] was used at room temperature at an amount ratio such that the Si content was about 10% by weight. Manufactured by PR-940], and the stirring and mixing operation was continued for 1 hour. When the molding was performed under the same conditions as in Example 1 after that, innumerable bubbles were generated inside the structure of the molded body, and it was not possible to obtain a Si-containing glassy carbon material having no pores.

【0034】[0034]

【表2】 [Table 2]

【0035】表2の結果から、本発明の製造方法から得
られたSi含有ガラス状カーボン材は本発明の条件を外
れる製造方法による同等Si含有率の比較例品に比べ
て、曲げ強度、耐酸化性ともに向上しており、特に製品
得率が大幅に改善されていることが認められる。
From the results shown in Table 2, the Si-containing glassy carbon material obtained by the manufacturing method of the present invention has a bending strength and acid resistance higher than those of the comparative example products having the same Si content by the manufacturing method which deviates from the conditions of the present invention. It is recognized that both the chemical conversion properties are improved and the product yield is significantly improved.

【0036】[0036]

【発明の効果】以上のとおり、本発明に従えば原子レベ
ルのSi成分を連続相として含有する均質緻密な複合組
織を備え、かつ優れた耐酸化性を有するSi含有ガラス
状カーボン材を工業的に製造することができる。特にS
i含有量が高い製造条件においても、常に材質欠陥のな
い高品位のSi含有ガラス状カーボン材を製品得率よく
得ることが可能となるから、組織中からの微細粒子の脱
離や酸化損傷が生じ易い苛酷な条件においても十分に安
定した使用状態が保証される。したがって、半導体用部
材をはじめ多様な用途分野を対象とする工業用部材の製
造技術として極めて有用である。
Industrial Applicability As described above, according to the present invention, an Si-containing glassy carbon material having a homogeneous and dense composite structure containing an atomic level Si component as a continuous phase and having excellent oxidation resistance is industrially produced. Can be manufactured. Especially S
It is possible to obtain a high-quality Si-containing glassy carbon material with no material defects at a high product yield rate even under manufacturing conditions with a high i-content, so that desorption of fine particles from the structure and oxidative damage do not occur. Even in harsh conditions that tend to occur, a sufficiently stable use condition is guaranteed. Therefore, it is extremely useful as a manufacturing technique of industrial members for various fields of application including semiconductor members.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 35/52 C01B 31/02 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) C04B 35/52 C01B 31/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 1分子中に単一のSi原子を含むエポキ
シシラン化合物を、熱硬化性樹脂液中に滴下して撹拌混
合し、得られたエポキシシラン含有樹脂組成物を所定形
状に成形硬化したのち、成形体を非酸化性雰囲気下で8
00℃以上の温度により焼成炭化処理することを特徴と
するSi含有ガラス状カーボン材の製造方法。
1. An epoxysilane compound containing a single Si atom in one molecule is dropped into a thermosetting resin liquid and mixed with stirring to mold and cure the obtained epoxysilane-containing resin composition into a predetermined shape. After that, the molded body is placed in a non-oxidizing atmosphere for 8 hours.
A method for producing a Si-containing glassy carbon material, which comprises performing a carbonization treatment by firing at a temperature of 00 ° C or higher.
【請求項2】 1分子中に単一のSi原子を含むエポキ
シシラン化合物が、3−グリシドキシプロピルメチルジ
メトキシシランである請求項1記載のSi含有ガラス状
カーボン材の製造方法。
2. The method for producing a Si-containing glassy carbon material according to claim 1, wherein the epoxysilane compound containing a single Si atom in one molecule is 3-glycidoxypropylmethyldimethoxysilane.
JP06021896A 1996-02-22 1996-02-22 Method for producing Si-containing glassy carbon material Expired - Fee Related JP3487472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06021896A JP3487472B2 (en) 1996-02-22 1996-02-22 Method for producing Si-containing glassy carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06021896A JP3487472B2 (en) 1996-02-22 1996-02-22 Method for producing Si-containing glassy carbon material

Publications (2)

Publication Number Publication Date
JPH09227231A JPH09227231A (en) 1997-09-02
JP3487472B2 true JP3487472B2 (en) 2004-01-19

Family

ID=13135814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06021896A Expired - Fee Related JP3487472B2 (en) 1996-02-22 1996-02-22 Method for producing Si-containing glassy carbon material

Country Status (1)

Country Link
JP (1) JP3487472B2 (en)

Also Published As

Publication number Publication date
JPH09227231A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
JP5177793B2 (en) Method for producing silicon carbide
CA2189985A1 (en) Ceramic materials fabricated from hydridosiloxane-based ceramic precursors and metal and/or ceramic powders
KR20130135364A (en) Ceramic sintered body and method for producing ceramic sintered body
JP4589491B2 (en) Silicon carbide powder, method for producing green body, and method for producing silicon carbide sintered body
JPH05254965A (en) Ceramic matrix composite and production thereof
KR101152628B1 (en) SiC/C composite powders and a high purity and high strength reaction bonded SiC using the same
JPH0741365A (en) Preparation of high-density boron carbide ceramics
JP3487472B2 (en) Method for producing Si-containing glassy carbon material
JP3396119B2 (en) Method for producing Si-containing glassy carbon material
JP2007320787A (en) Silicon carbide sintered compact and its manufacturing method
JP3396116B2 (en) Method for producing Si-containing glassy carbon material
JP3396113B2 (en) Si-containing glassy carbon material and method for producing the same
JP2002037682A (en) Porous silicon carbide sintered body and its manufacturing method
Ma et al. Processing and characterization of particles reinforced SiOC composites via pyrolysis of polysiloxane with SiC or/and Al fillers
JP2617147B2 (en) Method for producing high-density high-purity glassy carbon material
JP2000272965A (en) Silicon-containing glassy carbon material
JPH11302076A (en) Production of si-containing glassy carbon material
JP2003081682A (en) Method of producing silicon-impregnated silicon carbide ceramic
KR101322796B1 (en) Method of manufacturing silicon carbide powder with improved yields and silicon carbide powder thereof
JP3682094B2 (en) Method for producing carbon fiber reinforced carbon composite
JPH09255427A (en) Carbon heater
JPH0532451A (en) Production of sintered ceramic
JP3342515B2 (en) Method for producing thick glassy carbon material
JP2002308609A (en) Si DISPERSED VITREOUS CARBON MATERIAL
JP3447023B2 (en) Electrode plate for plasma etching

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees