JPH09109645A - Axle load distributing device of air suspension vehicle - Google Patents

Axle load distributing device of air suspension vehicle

Info

Publication number
JPH09109645A
JPH09109645A JP27319995A JP27319995A JPH09109645A JP H09109645 A JPH09109645 A JP H09109645A JP 27319995 A JP27319995 A JP 27319995A JP 27319995 A JP27319995 A JP 27319995A JP H09109645 A JPH09109645 A JP H09109645A
Authority
JP
Japan
Prior art keywords
air
axle
axle load
axis
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27319995A
Other languages
Japanese (ja)
Inventor
Kenichi Nishizawa
賢一 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP27319995A priority Critical patent/JPH09109645A/en
Publication of JPH09109645A publication Critical patent/JPH09109645A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0152Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the action on a particular type of suspension unit
    • B60G17/0155Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the action on a particular type of suspension unit pneumatic unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0164Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during accelerating or braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/30Rigid axle suspensions
    • B60G2200/318Rigid axle suspensions two or more axles being mounted on a longitudinal rocking or walking beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/15Fluid spring
    • B60G2202/152Pneumatic spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/02Trucks; Load vehicles
    • B60G2300/026Heavy duty trucks
    • B60G2300/0262Multi-axle trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/51Pressure in suspension unit
    • B60G2400/512Pressure in suspension unit in spring
    • B60G2400/5122Fluid spring
    • B60G2400/51222Pneumatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/60Load
    • B60G2400/61Load distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/18Starting, accelerating
    • B60G2800/182Traction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/21Traction, slip, skid or slide control
    • B60G2800/214Traction, slip, skid or slide control by varying the load distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/24Steering, cornering

Abstract

PROBLEM TO BE SOLVED: To distribute axle load corresponding to respective traveling modes or carrying load corresponding to the will of a driver, by taking measures for controlling intake and exhaust for each axis on which an air spring is mounted on the basis of the vehicle speed and a plurality of axle loads in response to an on-signal of an axle load distributing switch. SOLUTION: An air tank 1 supplies air to respective pairs of front axes and rear axes square air springs 2f, 2r through an air pipe 3. The compression height of respective air springs 2f, 2r are detected by a height sensor 16. The axle load distribution of respective air springs 2f, 2r is determined by an axle load distributing sensor 5. Pressures of respective air springs 2f, 2r are respectively detected by respective pressure sensors 7, 8 as an axle load detecting means. Air pressures of respective air springs 2f, 2r are adjusted by a control unit 10 on the basis of respective detected signal. That is, respective axle independent solenoid valves 12 interposed in the air pipe 3, respective air supplying solenoid valves 14f, 14r, and respective air discharging solenoid valves 15f, 15r are respectively controlled so as to be opened and closed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、エアサスペンショ
ン車の軸重配分装置に関し、特にタンデム軸等の複軸の
軸重を車両重量、車速によって軸重配分をかえる技術に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an axle load distribution device for an air suspension vehicle, and more particularly to a technique for changing the axle load distribution of the axle weight of multiple axes such as a tandem axle according to the vehicle weight and vehicle speed.

【0002】[0002]

【従来の技術】図7、8、9に示すように、後2軸を持
つ3軸車は、通常は、ばね上重量を後前軸Rfと後後軸
Rrの2軸で支えて、例えば後前軸が突起等の乗り上
げ、制動、加速等、でも片1軸だけで重量支持をするこ
となく他軸も重量支持をするようになっている。即ち、
1軸片方だけのサスペンションに重量負担をさせないよ
うにまた、接地圧を変えぬように構成してある。また、
図示しないが、大型トラッククレーンやトレーラ等の複
数軸をもつサスペンションも同様である。
2. Description of the Related Art As shown in FIGS. 7, 8 and 9, a three-axle vehicle having two rear axles normally has a sprung weight supported by two axles, a rear front axle Rf and a rear rear axle Rr. Even if the rear-front shaft rides on protrusions, brakes, accelerates, etc., one shaft does not support the weight but the other shaft supports the weight. That is,
It is constructed so that the suspension of only one shaft does not bear the weight and the ground pressure does not change. Also,
Although not shown, the same applies to suspensions having multiple axes, such as large truck cranes and trailers.

【0003】その、後前軸Rfと後後軸Rrとの重量配
分は、等分の場合(図8)や、タイヤ負荷の面から2対
1(図9)とすることが一般的である。従来の重ね板ば
ねを使ったいわゆるタンデム型アクスルでは、支点間距
離をレバー比で分けて重量配分している。これに対して
空気ばね式サスペンションでは、ダイヤフラムまたは、
ベローズの受圧面積及びエア圧で軸重配分を決めてい
る。
The weight distribution between the rear front shaft Rf and the rear rear shaft Rr is generally equal to 2 (1) (FIG. 8) or from the viewpoint of tire load (FIG. 9). . In a so-called tandem type axle using a conventional leaf spring, the distance between fulcrums is divided by the lever ratio to distribute the weight. On the other hand, in the air spring type suspension, the diaphragm or
The axial load distribution is determined by the pressure receiving area of the bellows and the air pressure.

【0004】そして、機械式、エア式とも軸重配分は、
固定されている。その結果、後前軸Rf及び後後軸Rr
にかかる重量が少ない空車等の場合には、重量配分の少
ない軸では、重量支持がきわめてすくなくなる。そし
て、重量配分の少ない軸が後後軸Rrの場合には、走行
安定性の面からヨー方向の抵抗力が少なくて好ましくな
い。また、制動力の配分は一般に軸重配分に合わせてい
るので重量支持の少ない軸では、ロックによってタイヤ
が滑り制動力の減少や操縦性等に問題発生の懸念があ
る。
Axial load distribution for both mechanical and pneumatic systems
Fixed. As a result, the rear front shaft Rf and the rear rear shaft Rr
In the case of an empty vehicle or the like which has a small weight, the weight support becomes extremely thin on a shaft having a small weight distribution. In the case where the rear weighted shaft Rr is the shaft having a small weight distribution, the resistance in the yaw direction is small in terms of running stability, which is not preferable. Further, since the distribution of the braking force is generally adjusted to the distribution of the axial load, there is a concern that the tire may slip due to the lock and the braking force may be reduced or a problem may occur in the maneuverability on the shaft having a small weight support.

【0005】大型バス用として、発進時に駆動軸に重量
配分を多くする技術が提案されているが、この場合には
制動時にデッド軸がロックしやすい。また、この技術の
高速走行時の走行安定等への技術展開はまだない。(実
開昭58ー173508号公報、実開昭63ー5180
4号公報参照)。
A technique for increasing the weight distribution to the drive shaft at the time of starting has been proposed for a large-sized bus, but in this case, the dead shaft is easily locked during braking. In addition, this technology has not yet been developed for stable driving at high speeds. (Japanese Utility Model Publication No. 58-173508, Japanese Utility Model Publication No. 63-5180)
No. 4).

【0006】[0006]

【発明が解決しようとする課題】上記のような従来のエ
アサスペンション車の軸重配分装置では、軸重配分が固
定されているので、例えば発進加速に適した駆動軸への
軸重移動、高速走行時の安定性重視の軸重配分、一般中
速走行時の機動性と走行安定を加味した軸重配分等の各
走行モードに合わせた軸重配分ができなかった。
In the conventional axial load distribution device for an air suspension vehicle as described above, since the axial load distribution is fixed, for example, the axial load movement to the drive shaft suitable for start acceleration, high speed It was not possible to distribute the axle weight according to each driving mode, such as the axle weight distribution that emphasizes stability during traveling, and the axle weight distribution that considers maneuverability and traveling stability during general medium speed traveling.

【0007】本発明は、このような各種走行モードに最
適な軸重を得るためのエアサスペンション車の軸重配分
装置を提供することを課題としている。
An object of the present invention is to provide an axle load distribution device for an air suspension vehicle for obtaining an axle load optimum for such various traveling modes.

【0008】[0008]

【課題を解決するための手段】このため請求項1記載の
発明は、図1に示すように、エアタンクを備え、各軸に
空気ばねを装着した複数軸で構成する複軸サスペンショ
ン装置を備えたエアサスペンション車において、複軸各
軸の軸重配分を行うか否かを決定する軸重配分スイッチ
と、走行車速を検出する車速検出手段と、複軸各軸の軸
重を検出する軸重検出手段と、前記軸重配分スイッチの
ON信号により前記検出手段で検出した車速及び複軸重
に応じて前記各軸毎に所定の給気または、排気動作をさ
せる制御手段と、前記制御手段からの信号によって複軸
各軸をエア圧回路において分離独立または、連通させる
各軸エア圧独立手段と、前記制御手段からの信号によっ
てエアタンクの圧縮エアを各軸空気ばねに給気昇圧する
給気手段と、前記制御手段からの信号によって各軸空気
ばねから排気減圧させる排気減圧手段と、を含んで構成
した。
Therefore, as shown in FIG. 1, the invention according to claim 1 is provided with a multi-axis suspension device comprising an air tank and comprising a plurality of shafts each having an air spring attached thereto. In an air suspension vehicle, an axle load distribution switch that determines whether or not to perform axle weight distribution for each of the multiple axes, vehicle speed detection means that detects the traveling vehicle speed, and axle load detection that detects the axle weight of each of the multiple axes. Means, control means for performing a predetermined air supply or exhaust operation for each axis according to the vehicle speed and the multiple axle weight detected by the detection means by the ON signal of the axle weight distribution switch, and the control means from the control means. A shaft air pressure independent means that separates or connects each axis of the multi-axis in the air pressure circuit by a signal, and an air supply means that supplies compressed air in the air tank to each axis air spring by a signal from the control means. , The above An exhaust pressure reducing means for evacuating vacuum from the shaft air spring by a signal from the control means, and configured to include.

【0009】請求項2記載の発明は、エアタンクを備
え、各軸に空気ばねを装着した複数軸で構成する複軸サ
スペンション装置を備えたエアサスペンション車におい
て、複軸各軸の軸重配分を行うか否かを決定する軸重配
分スイッチと、走行車速を検出する車速検出手段と、複
軸各軸の軸重を検出する軸重検出手段と、前記軸重配分
スイッチのON信号により前記検出手段で検出した車速
及び複軸重に応じて前記各軸毎に所定の給気または、排
気動作をさせる制御手段と、前記制御手段からの信号に
よって複軸各軸をエア圧回路において分離独立または、
連通させる各軸エア圧独立手段と、前記制御手段からの
信号によってエアタンクの圧縮エアを各軸空気ばねに給
気昇圧する給気手段と、前記制御手段からの信号によっ
て各軸空気ばねから排気減圧させる排気減圧手段と、を
含んで構成され、前記軸重配分スイッチON状態で、後
前軸が所定軸重以下でかつ走行車速が所定速度以下の中
低速度において後前軸重が増加し、後後軸重が減少する
ように重量配分が変更されるようにした。
According to a second aspect of the present invention, in an air suspension vehicle including an air tank and a multi-axle suspension device composed of a plurality of shafts having air springs mounted on the respective shafts, axial load distribution of each of the multi-axes is performed. Axle load distribution switch for determining whether or not, vehicle speed detection means for detecting the traveling vehicle speed, axis load detection means for detecting the axis load of each axis of the multiple axes, and the detection means by the ON signal of the axis load distribution switch. In accordance with the vehicle speed and the multi-axle load detected by the above, a predetermined air supply or exhaust operation for each axis, and a control means for performing an exhaust operation, and the multi-axis each axis is separated or independently in an air pressure circuit by a signal from the control means, or
Each axis air pressure independent means to communicate with each other, air supply means for boosting the compressed air in the air tank to each axis air spring by a signal from the control means, and exhaust air pressure reduction from each axis air spring by a signal from the control means An exhaust pressure reducing means for causing the rear front axle weight to increase at a middle or low speed where the rear front axle is equal to or lower than a predetermined axle weight and the traveling vehicle speed is equal to or lower than a predetermined speed when the axle load distribution switch is ON. The weight distribution is changed so that the rear axle weight is reduced.

【0010】請求項3記載の発明は、前記軸重配分スイ
ッチON状態で、後前軸が所定軸重以下でかつ走行車速
が所定の低速以下において後前軸が軸重限度までばね上
重量の全部を受け持つようにした。
According to a third aspect of the present invention, when the axle load distribution switch is in the ON state, the rear front axle has a predetermined axle load or less and the traveling vehicle speed is less than a predetermined low speed, the rear front axle has a sprung mass weight up to the axle weight limit. I took charge of everything.

【0011】[0011]

【発明の実施の形態】以下図面を参照して本発明の一実
施の形態を説明する。先ず、図2に基づいて、後2軸タ
ンデム軸エアサスペンションの構成について説明する。
尚、大型クレーンやトレーラ等に使われる後軸が3軸以
上のサスペンションについては、説明容易化のために、
構成、作用要領が本質的に変わらない後2軸タンデムサ
スペンションの説明のあとで述べる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. First, the configuration of the rear two-axis tandem axis air suspension will be described with reference to FIG.
In addition, for the suspension with 3 or more rear axles used for large cranes and trailers, for ease of explanation,
It will be described after the description of the rear two-axis tandem suspension in which the configuration and the operating procedure are essentially the same.

【0012】図2において、サスペンションは、後前軸
が駆動軸、後後軸はデッド軸で許容軸重は同等な構成に
なっている。 ダイヤフラム型の空気ばね2f、2f、
2r、2rに圧縮エアを供給するエアタンク1が図示し
ないコンプレッサからエアを供給されるようになってい
る。そのエアタンク1からエア配管3を介して後前軸用
空気ばね2f、2fと、後後軸用空気ばね2r、2rに
エアが供給されるようになっている。
In FIG. 2, in the suspension, the rear front shaft is a drive shaft, the rear rear shaft is a dead shaft, and the permissible axial loads are the same. Diaphragm type air springs 2f, 2f,
An air tank 1 for supplying compressed air to 2r and 2r is supplied with air from a compressor (not shown). Air is supplied from the air tank 1 to the rear and front axle air springs 2f and 2f and the rear and rear axle air springs 2r and 2r through the air pipe 3.

【0013】その空気ばね2f、2fと2r、2rは、
同面積、同容積を有し、圧縮高さが一定であればエア圧
の高さで支持する軸重が決まるようになっている。その
圧縮高さを検出する車高センサ16が、各後後軸に設け
られている。そして、この後前軸と後後軸の軸重は、両
軸にかかる重量と車速で軸重配分が決められるようにな
っている。例えば通常の走行では、軸重が同等に配分さ
れるように空気ばね内の圧力が同一にになっている。ま
た、後述の軸重配分スイッチ5によって、発進加速では
この場合の駆動軸である後前軸でほとんどの重量を支
え、中低速走行では、後前軸にやや重量配分が片寄るよ
うにされている。
The air springs 2f, 2f and 2r, 2r are
If they have the same area and the same volume and the compression height is constant, the axial load to be supported is determined by the height of the air pressure. A vehicle height sensor 16 for detecting the compression height is provided on each rear rear shaft. As for the axle weights of the rear front axle and the rear rear axle, the axle weight distribution is determined by the weight applied to both axles and the vehicle speed. For example, in normal traveling, the pressure in the air spring is the same so that the axial loads are equally distributed. Further, by a shaft load distribution switch 5 to be described later, most of the weight is supported by the rear front shaft, which is the drive shaft in this case during start-up acceleration, and the weight distribution is slightly offset to the rear front shaft during medium and low speed traveling. .

【0014】その軸重配分ができる機能動作を行わせる
か否かを決定する軸重配分スイッチ5が、運転席に設け
られている。そして軸重配分決定の1要素である車速を
検出する車速検出手段としての車速センサ6が図示しな
い変速機から回転情報を取り出し、後述するコントロー
ルユニット10に信号入力するようになっている。
The driver's seat is provided with a shaft load distribution switch 5 for determining whether or not to perform a functional operation capable of distributing the shaft load. Then, a vehicle speed sensor 6 as a vehicle speed detecting means for detecting a vehicle speed, which is one factor for determining the axial load distribution, takes out rotation information from a transmission (not shown) and inputs it to a control unit 10 which will be described later.

【0015】また同様に、軸重配分決定の他の要素とな
る軸重を検出する軸重検出手段として後前軸の空気ばね
圧力を圧力センサ7pと、後後軸の空気ばね圧力を圧力
センサ8fと、から圧力情報として取り出しコントロー
ルユニット10に信号入力するようになっている。 そ
のコントロールユニット10は、マイクロコンピュータ
等を内蔵した信号処理及び発信装置で、前記軸重配分ス
イッチON信号、車速信号、軸重信号、その他を入力
し、後前軸、後後軸重が所定の重量支持をするための空
気ばね2f、2f、2r、2rのエア圧調整を送信指示
するようになっている。また、エアタンク1を圧力セン
サ1aの信号で確認している。
Similarly, as the axial load detecting means for detecting axial load, which is another factor for determining the axial load distribution, the air spring pressure of the rear and front axles is a pressure sensor 7p, and the air spring pressure of the rear and rear axles is a pressure sensor. 8f, the pressure information is taken out and the signal is inputted to the control unit 10. The control unit 10 is a signal processing and transmitting device incorporating a microcomputer or the like, which inputs the axle load distribution switch ON signal, the vehicle speed signal, the axle weight signal, and the like, and the rear front axle and the rear rear axle load are predetermined. The air pressure adjustment of the air springs 2f, 2f, 2r, 2r for supporting the weight is instructed to be transmitted. Further, the air tank 1 is confirmed by the signal of the pressure sensor 1a.

【0016】また、前記エア配管3の後前軸用空気ばね
2f、2fと、後後軸用空気ばね2r、2rとの中間に
後前軸と後後軸をエア供給に関して分離、独立させるた
めの各軸独立用電磁弁12が介装されている。また前記
エア配管3に後前軸、後後軸用空気ばね2f、2rのそ
れぞれにエアを供給昇圧するエア供給用電磁弁14f、
14r(以下総称の場合は、14と記す)エアを排気減
圧するエア排出用電磁弁15f、15r(以下総称の場
合は、14と記す)が介装されている。
In addition, in order to separate and independently provide the rear front shaft and the rear rear shaft between the rear and front shaft air springs 2f and 2f and the rear and rear shaft air springs 2r and 2r with respect to the air supply. Each axis independent solenoid valve 12 is interposed. Further, an air supply solenoid valve 14f for supplying and boosting air to the front and rear axle air springs 2f, 2r to the air pipe 3, respectively.
14r (hereinafter, generically referred to as 14) Air exhaust electromagnetic valves 15f and 15r (hereinafter, generically referred to as 14) for exhausting and decompressing air are provided.

【0017】そして上記の各軸独立用電磁弁12と、エ
ア供給用電磁弁14及びエア排出用電磁弁15は、前記
コントロールユニット10からの指示信号によって作動
するようになっている。次に作用を説明する。図3のフ
ローチャートで、車速と、積載量からきまるタンデム軸
重と、の走行条件と軸重配分決定のステップ(図ではS
と記す。以下同様)を示す。
The shaft independent solenoid valve 12, the air supply solenoid valve 14 and the air discharge solenoid valve 15 are operated by an instruction signal from the control unit 10. Next, the operation will be described. In the flowchart of FIG. 3, a step of determining the traveling conditions and the axle load distribution of the vehicle speed and the tandem axle weight determined by the load amount (S in the figure).
It is written. The same shall apply hereinafter).

【0018】ステップ1は、通常の軸重配分即ち、後前
軸と後後軸の軸重が常に同等の状態で、この状態での走
行条件をモードNORと呼称する。このモードNORで
は従来のタンデムサスペンションと全く同様に後前軸用
空気ばね2f、2fと、後後軸用空気ばね2r、2rと
もエア圧は同圧となっている。従って各軸独立用電磁弁
12は、エア配管3が前後に連通するような開状態にな
っている。
Step 1 is a normal axle load distribution, that is, the axle weights of the rear front axle and the rear axle are always equal, and the running condition in this state is called mode NOR. In this mode NOR, the air pressures of the rear and front axle air springs 2f and 2f and the rear and rear axle air springs 2r and 2r are the same as in the conventional tandem suspension. Therefore, each axis independent solenoid valve 12 is in an open state such that the air pipe 3 communicates with the front and rear.

【0019】次に、ステップ2で軸重配分スイッチ5が
ONになっているか否かをコントロールユニット10が
判定する。そして、ドライバの意志で走行条件によって
軸重配分を変えるようにONになっていれば、コントロ
ーラ10からの指示信号で走行速度に応じて軸重配分を
変えることになる。また、軸重配分スイッチ5がOFF
であれば軸重配分が常に等分で走行条件は、モードNO
Rとなる。
Next, in step 2, the control unit 10 determines whether or not the axial load distribution switch 5 is ON. If the driver is willing to change the axial load distribution depending on the traveling conditions, the axial load distribution is changed according to the traveling speed by the instruction signal from the controller 10. Also, the axial load distribution switch 5 is turned off.
If this is the case, the axle load distribution will always be even and the driving conditions will be mode NO.
It becomes R.

【0020】ステップ3では、この場合の駆動軸である
後前軸が軸重の許容限度、例えば9・5トン以内にあっ
て軸重を増加できるか否かを判断する。即ち、軸重配分
の変更は、常に駆動軸の、この場合は後前軸の軸重を等
分に対して増加させるので、例えば9・5トンの許容値
以内であることを確認する。9・5トン以上であれば軸
重は等分で走行は、モードNORになる。
In step 3, it is judged whether the rear front shaft, which is the drive shaft in this case, is within the allowable limit of the axial load, for example, within 9.5 tons, and the axial load can be increased. That is, the change of the axial load distribution always increases the axial load of the drive shaft, in this case, the front and rear shafts, so that it is confirmed that it is within the allowable value of 9.5 tons, for example. If the weight is 9.5 tons or more, the axle load will be divided equally and the mode will be NORMAL.

【0021】ステップ4では、車速が所定速(例え
ば、60Km/h)以上の高速走行か否かを判定する。
そして、車速が60Km/h以上では、ステップ5と
し、軸重は等分で走行は、モードNORになる。ステッ
プ6は、ステップ4の判定で車速が所定速(例えば、
60Km/h)以下のときに、後前軸の軸重配分をやや
大きくして後後軸の制動力があまり減少せずにかつ駆動
力を上げ、機動性をあげるようにしている。この場合の
走行を、モード1と呼称する。
In step 4, it is determined whether the vehicle speed is a high speed running at a predetermined speed (for example, 60 km / h) or more.
When the vehicle speed is 60 km / h or more, step 5 is performed, the axle load is equally divided, and the mode is NOR. In step 6, the vehicle speed is a predetermined speed (for example,
When the speed is 60 Km / h or less, the distribution of the axle weight of the rear and front axles is slightly increased so that the braking force of the rear and rear axles does not decrease so much and the driving force is increased to improve maneuverability. The traveling in this case is referred to as mode 1.

【0022】その軸重配分は、図5に示す様な特性線図
になる。図中Aが後前軸重、Bが後後軸重を示す線であ
る。この線図を数式で記述すると、配分後の後前軸重W
Fが許容軸重9・5トン以下では後前軸重WF(トン)
=((Wf+Wr)/2)×一定比率(例えば、1・2
5)、後後軸重WR(トン)=((Wf+Wr)/2)
×一定比率(例えば、0・75)となっている。ここ
で、Wf(トン)は、配分変更前の後前軸重、Wr(ト
ン)は、配分変更前の後後軸重である。また、(Wf+
Wr)は、複軸重である。また、本例では、Wf=Wr
でもある。また、WFが9・5トンの限度軸重に達した
場合、WRの軸重は、WR(トン)=(Wf+Wr)−
9・5になっている。
The axial load distribution has a characteristic diagram as shown in FIG. In the figure, A is a line indicating the front and rear axle loads, and B is a line indicating the rear and rear axle loads. Describing this diagram with a mathematical formula, the front and rear axle weight W after distribution
If F is less than 9.5 tons of allowable axle load, front and rear axle weight WF (ton)
= ((Wf + Wr) / 2) × constant ratio (for example, 1.2)
5), rear rear axle load WR (ton) = ((Wf + Wr) / 2)
× It becomes a fixed ratio (for example, 0.75). Here, Wf (ton) is the front-rear axle load before the distribution change, and Wr (ton) is the rear-rear axle load before the distribution change. Also, (Wf +
Wr) is a multiaxial load. Further, in this example, Wf = Wr
But also. Further, when the WF reaches the limit axial load of 9.5 tons, the axial load of the WR is WR (ton) = (Wf + Wr) −
It is 9/5.

【0023】以上のようにして、モードNOR及びモー
ド1の走行条件に対し軸重が決められるが、装置は次の
ように作動する。ステップ1のモードNORでは、例え
ば6Kg/cm2 で後前軸用空気ばね2f、2f及び後
後軸用空気ばね2r、2rを給気充填する。前後が同圧
なので各軸独立用電磁弁12は、開とし、エア配管3
は、前後が連通する。そしてエアタンク1から導かれる
圧縮エアは、エア供給用電磁弁14f、14rを介して
後前軸、後後軸用空気ばね2f、2f、2r、2rに供
給される。この際、エア排出用電磁弁15f、15r
は、閉とし大気開放しない。そして、後前軸及び後後軸
空気ばね圧センサ7、8で所定の6Kg/ccm2 で所
定の圧縮高さが車高センサ16で確認されると、エア供
給用電磁弁14f、14rは閉じられてサスペンション
機能が作動する。
As described above, the axial load is determined for the traveling conditions of the mode NOR and the mode 1, but the device operates as follows. In the mode NOR of step 1, for example, the rear and front axle air springs 2f and 2f and the rear and rear axle air springs 2r and 2r are filled with air at 6 kg / cm 2 , for example. Since the front and rear have the same pressure, the solenoid valve 12 for each axis is open and the air pipe 3
The front and back communicate. The compressed air guided from the air tank 1 is supplied to the air springs 2f, 2f, 2r, 2r for the front and rear axles via the solenoid valves 14f, 14r for air supply. At this time, solenoid valves 15f and 15r for air discharge
Is closed and not open to the atmosphere. When the vehicle height sensor 16 confirms a predetermined compression height at a predetermined 6 kg / ccm 2 by the rear front and rear rear air spring pressure sensors 7 and 8, the air supply solenoid valves 14f and 14r are closed. The suspension function is activated.

【0024】次にステップ2では、ドライバが手動で軸
重配分スイッチをONするかOFFのままとするかを決
める。ステップ3では、後前軸空気ばね圧センサ7の指
示圧から後前軸重が9.5トンを越えるか否かを判定す
る。ステップ4では、車速センサ5が変速機の出力軸回
転を検出しその信号で車速を演算し、所定速(例え
ば、60Km/h)以上か否かを判定してステップ5ま
たは、6への分岐判定およびスイッチングをしている。
Next, in step 2, the driver manually decides whether to turn on the axial load distribution switch or keep it off. In step 3, it is determined whether the rear front axle load exceeds 9.5 tons from the pressure indicated by the rear front axle air spring pressure sensor 7. In step 4, the vehicle speed sensor 5 detects the rotation of the output shaft of the transmission, calculates the vehicle speed based on the signal, and determines whether or not the speed is equal to or higher than a predetermined speed (for example, 60 Km / h), and then proceeds to step 5 or 6. Branch decision and switching are performed.

【0025】ステップ5では、上記の所定速(例え
ば、60Km/h)以上でモードNOR走行指示にスイ
ッチされる。ステップ6では、モード1走行なので駆動
軸である後前軸重を次の要領で増加させる。まず、各軸
独立用電磁弁12を閉としてエア配管3を後前軸、後後
軸に分離独立させる。次いで、後後軸用空気ばね2r、
2rをにつながる後後軸用エア排出電磁弁15rを開と
して後後軸用空気ばね2r、2rを減圧させ後後軸重を
減少させる。この軸重減少に伴って後前軸が軸重を増加
する。この際、軸重配分の調整、車高調整のために、必
要に応じて後前軸用エア供給電磁弁14fを開にし後前
軸用空気ばね2f、2fにエアタンク1から圧縮エアを
導く。
In step 5, the mode NOR travel instruction is switched at the above-mentioned predetermined speed (for example, 60 km / h) or more. In step 6, since the mode 1 traveling is performed, the weight of the rear front axle, which is the drive shaft, is increased in the following manner. First, the solenoid valves 12 for independent axes are closed to separate the air piping 3 into the front and rear axles and the rear and rear axles. Next, the rear rear axle air spring 2r,
The rear rear axle air discharge solenoid valve 15r connected to 2r is opened to reduce the pressure of the rear rear axle air springs 2r, 2r to reduce the rear rear axle load. With this decrease in axial load, the front and rear axles increase axial load. At this time, in order to adjust the axial load distribution and the vehicle height, the rear-front-shaft air supply solenoid valve 14f is opened to guide the compressed air from the air tank 1 to the rear-front shaft air springs 2f, 2f.

【0026】以上の各ステップの中で必要とする信号の
収集、演算、解析、判断、動作の信号指示等は、すべて
コントロールユニット10が行う。次に、図4のフロー
チャートで、発進加速、悪路からの脱出等で効果のある
駆動軸の後前軸に軸重を片寄らせる方法を説明する。装
置の構成は、前実施形態の図2のとおりで変わらない。
The control unit 10 performs all of the necessary signal collection, calculation, analysis, judgment, operation signal instructions, etc. in the above steps. Next, with reference to the flow chart of FIG. 4, a method of displacing the axle weights on the rear and front axles of the drive shaft, which is effective for starting acceleration, escape from a bad road, etc., will be described. The configuration of the device is the same as that shown in FIG. 2 of the previous embodiment.

【0027】ステップ11、12、13は作用も前実施
形態のステップ1、2、3と同様である。ステップ14
は、車速が所定速(例えば、10Km/h)以下の低
速走行か否かを判定する。そして、車速が所定速(例
えば、10Km/h)以上であればステップ15とす
る。そして、以後のステップ15、17、18は、前実
施形態のステップ4、5、6と同じ作用である。
The operations of steps 11, 12, and 13 are similar to those of steps 1, 2, and 3 of the previous embodiment. Step 14
Determines whether the vehicle speed is a low speed traveling at a predetermined speed (for example, 10 km / h) or less. If the vehicle speed is equal to or higher than the predetermined speed (for example, 10 km / h), the step 15 is performed. Then, the subsequent steps 15, 17, and 18 are the same operations as the steps 4, 5, and 6 of the previous embodiment.

【0028】ステップ16では、車速が所定速(例え
ば、10Km/h)以下の低速走行時に、駆動軸である
後前軸の駆動力をあげるようにしている。この場合の低
速走行をモード2と呼称する。その軸重配分は、図6に
示す特性線図となり、図中、Aが後前軸重、Bが後後軸
重を示す線である。このように後前軸が許容限度の9・
5トンまでは、ばね上重量の全部を後前軸が支持する。
そして後前軸が9・5トンを越える重量を後後軸で支持
する。従って、後前軸が9・5トン以下では後後軸重
は、ばね下重量だけになっている。
In step 16, the driving force of the rear front shaft, which is the drive shaft, is increased when the vehicle travels at a low speed below a predetermined speed (for example, 10 km / h). The low speed traveling in this case is referred to as mode 2. The axial load distribution is the characteristic diagram shown in FIG. 6, in which A is a line indicating the front-rear axle load and B is a line indicating the rear-rear axle load. In this way, the front and rear axles have an allowable limit of 9
Up to 5 tons, the rear front axle supports the entire sprung weight.
The rear and front axles support the weight exceeding 9.5 tons with the rear and rear axles. Therefore, when the rear / front axle is 9.5 tons or less, the rear / rear axle weight is only unsprung weight.

【0029】この場合の軸重配分についての装置作動の
方法は、数値が変わるだけで実質的には、前実施形態の
ステップ6と同じである。次に後軸が3軸以上の複数軸
車について説明する。後軸が全数駆動の場合とデッドが
含まれる場合があるが、どの場合も特定の駆動軸に軸重
負担を大きく配分させる。
In this case, the method of operating the device for distributing the axial load is substantially the same as step 6 of the previous embodiment except that the numerical values are changed. Next, a multi-axle vehicle having three or more rear axles will be described. There are cases where all the rear axles are driven and dead is included. In all cases, a large load is distributed to the specific drive axle.

【0030】そしてこのような特殊な重量車にあって
は、とくに旋回半径を小にする必要がありこの場合に
は、前側の駆動軸に軸重配分を多くする。また一般走行
でタイヤの偏摩耗を防ぐには、中央部の駆動軸の重量増
加をさせる。この複数軸の場合でも、装置構成と作用の
内容は、本質的に前記の後2軸タンデムサスペンション
の例と同様である。
In such a special heavy vehicle, it is necessary to make the turning radius particularly small. In this case, the axial load distribution is increased on the front drive shaft. In addition, in order to prevent uneven wear of the tire during general driving, the weight of the drive shaft in the central portion is increased. Even in the case of the plurality of axes, the device configuration and the content of the operation are essentially the same as the example of the rear two-axis tandem suspension.

【0031】[0031]

【発明の効果】以上説明したように、請求項1記載の発
明によると、エアタンクを備え、各軸に空気ばねを装着
した複数軸で構成する複軸サスペンション装置を備えた
エアサスペンション車において、複軸各軸の軸重配分を
行うか否かを決定する軸重配分スイッチと、走行車速を
検出する車速検出手段と、複軸各軸の軸重を検出する軸
重検出手段と、前記軸重配分スイッチのON信号により
前記検出手段で検出した車速及び複軸重に応じて前記各
軸毎に所定の給気または、排気動作をさせる制御手段
と、前記制御手段からの信号によって複軸各軸をエア圧
回路において分離独立または、連通させる各軸エア圧独
立手段と、前記制御手段からの信号によってエアタンク
の圧縮エアを各軸空気ばねに給気昇圧する給気手段と、
前記制御手段からの信号によって各軸空気ばねから排気
減圧させる排気減圧手段と、を含んで構成されたから、
ドライバの意志で、発進加速、一般中低速走行、高速走
行等の各走行モードおよび積載荷重に応じた軸重配分に
することが出来るので、例えば発進加速では、特定の駆
動軸の軸重を大きくして駆動力を上げて、発進加速や悪
路からの脱出を容易にする、また、中低速では、前側の
駆動軸に軸重配分をやや大きくし、その他の軸は制動時
にロックが起きない程度の軸重として機動性、操縦性を
良くし、後側の軸のタイヤ偏摩耗を防ぐ、また、高速走
行時には各軸重を等分にして走行安定性を良くする、等
が可能になった。
As described above, according to the first aspect of the present invention, in an air suspension vehicle equipped with an air tank and a multi-axle suspension device composed of a plurality of shafts with air springs mounted on each shaft, Axle load distribution switch for deciding whether or not to distribute the axial load of each axis, vehicle speed detection means for detecting the traveling vehicle speed, axial load detection means for detecting the axial load of each of the multiple axes, and the axial load Control means for performing a predetermined air supply or exhaust operation for each axis according to the vehicle speed and the multi-axle load detected by the detecting means by the ON signal of the distribution switch, and each axis of the multi-axis by a signal from the control means. Independently or independently of each other in the air pressure circuit, each axis air pressure independent means, and air supply means for supplying compressed air from the air tank to each axis air spring by a signal from the control means.
Exhaust decompression means for decompressing exhaust from each axial air spring in response to a signal from the control means, and
Since the driver can voluntarily set the axle load according to each traveling mode such as start acceleration, general medium / low speed traveling, high speed traveling, etc. and the load, for example, in start acceleration, the axle load of a specific drive shaft can be increased. The driving force is increased to facilitate starting acceleration and escape from bad roads.At medium and low speeds, the load distribution on the front drive shaft is increased a little, and other shafts do not lock during braking. It is possible to improve maneuverability and maneuverability with a certain degree of axle load, prevent tire uneven wear of the rear axle, and evenly divide each axle weight at high speed to improve traveling stability. It was

【0032】請求項2の発明によると、エアタンクを備
え、各軸に空気ばねを装着した後前軸が駆動軸の後2軸
で構成するタンデム軸サスペンション装置を備えたエア
サスペンション車において、車速及びタンデム軸重に応
じて後前軸、後後軸各軸の軸重配分を行わせる軸重配分
スイッチと、走行車速を検出する車速検出手段と、後前
軸、後後軸各軸の軸重を検出する軸重検出手段と、前記
軸重配分スイッチのON信号により前記各軸毎に所定の
給気または、排気動作をさせる制御手段と、前記制御手
段からの信号によって前記各軸をエア圧回路において分
離独立または、連通させる各軸エア圧独立手段と、前記
制御手段からの信号によってエアタンクの圧縮エアを各
軸空気ばねに給気昇圧する給気手段と、前記制御手段か
らの信号によって各軸空気ばねから排気減圧させる排気
減圧手段と、を含んで構成され、前記軸重配分スイッチ
ON状態で、後前軸が所定軸重以下でかつ走行車速が所
定速度以下の中低速度において後前軸重が増加し、後後
軸重が減少するように重量配分が変更されるように設け
られたから、後前軸駆動、後後軸デッドのタンデムサス
ペンションでは、中低速走行で後前軸重を重く、デッド
軸を軽くして駆動力を大きく機動性を良くすることが出
来た。またこの軸重配分の変更は、ドライバが必要とす
るときに実施できるので便利である。
According to a second aspect of the present invention, there is provided an air suspension vehicle including an tandem shaft suspension device including an air tank, a rear front shaft having air springs mounted on respective shafts, and a rear two shafts of a drive shaft. Axle load distribution switch that distributes the axle weight of each of the front and rear axles and rear and rear axles according to the tandem axle weight, vehicle speed detection means that detects the traveling vehicle speed, and axle weights of the rear front axle and rear rear axle. A shaft load detection means, a control means for performing a predetermined air supply or exhaust operation for each axis by an ON signal of the shaft load distribution switch, and an air pressure for each shaft by a signal from the control means. Independently or independently in the circuit each axis air pressure independent means, air supply means for supplying and boosting compressed air in the air tank to each axis air spring by a signal from the control means, and a signal from the control means Exhaust pressure reducing means for reducing the pressure of the exhaust air from the axial air spring, and when the axle load distribution switch is in the ON state, the rear front axle is at a predetermined axle load or less and the traveling vehicle speed is a predetermined speed or less at a middle or low speed. Since the weight distribution is changed so that the axle load increases and the rear-rear axle weight decreases, the rear-front axle drive and rear-rear axle dead tandem suspension increase the rear-rear axle weight at low and medium speeds. It was heavy and the dead shaft was light to increase the driving force and improve maneuverability. Further, the change of the axial load distribution is convenient because it can be carried out when the driver needs it.

【0033】請求項3記載の発明によると、前記請求項
1及び2記載の軸重配分スイッチON状態で、後前軸が
所定軸重以下でかつ走行車速が所定の低速以下において
後前軸が軸重限度までばね上重量の全部を受け持つよう
設けられたから、発進加速等の低速時には、軸重許容限
度まで後前軸にばね上重量全部を支持させて車両条件内
の最大の駆動力を得ることができる。
According to the third aspect of the present invention, when the axle load distribution switch according to the first and second aspects is ON, the rear front axle is at a predetermined axle load or less and the traveling vehicle speed is at a predetermined low speed or less. Since it is designed to handle the entire sprung weight up to the axle load limit, at low speeds such as starting acceleration, the rear and front axles support the entire sprung weight up to the axle load allowable limit to obtain the maximum driving force within the vehicle conditions. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係わるエアサスペンション車の軸重
配分装置を示す構成図
FIG. 1 is a configuration diagram showing an axle load distribution device for an air suspension vehicle according to the present invention.

【図2】 同上の一実施形態を示す概略構成図FIG. 2 is a schematic configuration diagram showing an embodiment of the above.

【図3】 同上実施形態の作用を説明するフローチャー
FIG. 3 is a flowchart illustrating the operation of the above embodiment.

【図4】 図2の実施形態の別作用を説明するフローチ
ャート
FIG. 4 is a flowchart illustrating another operation of the embodiment of FIG.

【図5】 中低速走行時の駆動軸ーデッド軸重の関係を
示す線図
FIG. 5 is a diagram showing a relationship between a drive shaft and a dead shaft load when traveling at a medium or low speed.

【図6】 発進加速時の駆動軸ーデッド軸重の関係を示
す線図
FIG. 6 is a diagram showing a relationship between a drive shaft and a dead shaft load at the time of starting acceleration.

【図7】 タンデム軸を示す説明図FIG. 7 is an explanatory diagram showing a tandem shaft.

【図8】 タンデム軸で軸重を同等にした例を示す説明
FIG. 8 is an explanatory diagram showing an example in which tandem shafts have the same axial load.

【図9】 タンデム軸で軸重を前2、後1にした例を示
す説明図
FIG. 9 is an explanatory diagram showing an example in which the axle weight is set to front 2 and rear 1 with a tandem shaft.

【符号の説明】[Explanation of symbols]

1 エアタンク 2f 後前軸用空気ばね 2r 後後軸用空気ばね 3 エア配管 5 軸重配分スイッチ 6 車速センサ 7 後前軸空気ばね圧センサ 8 後前軸空気ばね圧センサ 10 コントロールユニット 12 各軸独立用電磁弁 14f 後前軸用エア供給電磁弁 14r 後後軸用エア供給電磁弁 15f 後前軸用エア排出電磁弁 15r 後後軸用エア排出電磁弁 16 車高センサ 1 Air Tank 2f Rear Front Axis Air Spring 2r Rear Rear Axis Air Spring 3 Air Piping 5 Axle Weight Distribution Switch 6 Vehicle Speed Sensor 7 Rear Front Axis Air Spring Pressure Sensor 8 Rear Front Axis Air Spring Pressure Sensor 10 Control Unit 12 Each Axis Independent Solenoid valve 14f Rear-front-axis air supply solenoid valve 14r Rear-rear-axis air supply solenoid valve 15f Rear-front-axis air discharge solenoid valve 15r Rear-rear-axis air discharge solenoid valve 16 Vehicle height sensor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】エアタンクを備え、各軸に空気ばねを装着
した複数軸で構成する複軸サスペンション装置を備えた
エアサスペンション車において、 複軸各軸の軸重配分を行うか否かを決定する軸重配分ス
イッチと、 走行車速を検出する車速検出手段と、 複軸各軸の軸重を検出する軸重検出手段と、 前記軸重配分スイッチのON信号により前記検出手段で
検出した車速及び複軸重に応じて前記各軸毎に所定の給
気または、排気動作をさせる制御手段と、 前記制御手段からの信号によって複軸各軸をエア圧回路
において分離独立または、連通させる各軸エア圧独立手
段と、 前記制御手段からの信号によってエアタンクの圧縮エア
を各軸空気ばねに給気昇圧する給気手段と、 前記制御手段からの信号によって各軸空気ばねから排気
減圧させる排気減圧手段と、 を含んで構成されたことを特徴とするエアサスペンショ
ン車の軸重配分装置。
1. An air suspension vehicle equipped with an air tank and a multi-axle suspension device comprising a plurality of shafts, each of which is equipped with an air spring, and determines whether or not to perform axial load distribution of each of the multi-axes. Axle load distribution switch, vehicle speed detection means for detecting the traveling vehicle speed, axle load detection means for detecting the axle load of each axis of the multiple axes, vehicle speed detected by the detection means by an ON signal of the axle load distribution switch, and Control means for performing a predetermined air supply or exhaust operation for each axis according to the axis load, and each axis air pressure for separating or communicating each axis of the multi-axis in an air pressure circuit by a signal from the control means. Independent means, air supply means for supplying / compressing compressed air from the air tank to each axial air spring by a signal from the control means, and exhaust air for reducing pressure from each axial air spring by a signal from the control means An axle load distribution device for an air suspension vehicle, comprising: a decompression means.
【請求項2】エアタンクを備え、各軸に空気ばねを装着
した後前軸が駆動軸の後2軸で構成するタンデム軸サス
ペンション装置を備えたエアサスペンション車におい
て、 車速及びタンデム軸重に応じて後前軸、後後軸各軸の軸
重配分を行わせる軸重配分スイッチと、 走行車速を検出する車速検出手段と、 後前軸、後後軸各軸の軸重を検出する軸重検出手段と、 前記軸重配分スイッチのON信号により前記各軸毎に所
定の給気または、排気動作をさせる制御手段と、 前記制御手段からの信号によって前記各軸をエア圧回路
において分離独立または、連通させる各軸エア圧独立手
段と、 前記制御手段からの信号によってエアタンクの圧縮エア
を各軸空気ばねに給気昇圧する給気手段と、 前記制御手段からの信号によって各軸空気ばねから排気
減圧させる排気減圧手段と、 を含んで構成され、 前記軸重配分スイッチON状態で、 後前軸が所定軸重以下でかつ走行車速が所定速度以下の
中低速度において後前軸重が増加し、後後軸重が減少す
るように重量配分が変更されるように設けられたことを
特徴とするエアサスペンション車の軸重配分装置。
2. An air suspension vehicle equipped with an tandem shaft suspension device comprising an air tank, an air spring mounted on each shaft, and a rear front shaft composed of two rear shafts of a drive shaft, in accordance with a vehicle speed and a tandem shaft load. Axle load distribution switch that distributes the axial load of each of the front and rear axles and rear and rear axles, vehicle speed detection means that detects the traveling vehicle speed, and axle load detection that detects the axial weight of each of the rear front and rear axles Means, control means for performing a predetermined air supply or exhaust operation for each of the shafts by an ON signal of the shaft load distribution switch, and each of the shafts is separated or independently in an air pressure circuit by a signal from the control means, or Each axis air pressure independent means to communicate with each other, air supply means for supplying compressed air in the air tank to each axis air spring by a signal from the control means, and exhaust from each axis air spring by a signal from the control means The exhaust pressure reducing means for reducing the pressure is included, and when the axle load distribution switch is in the ON state, the rear front axle weight increases when the rear front axle is equal to or lower than a predetermined axle load and the traveling vehicle speed is equal to or lower than a predetermined speed. An axle load distribution device for an air suspension vehicle, wherein the weight distribution is changed so that the rear-rear axle load is reduced.
【請求項3】 前記軸重配分スイッチON状態で、 後前軸が所定軸重以下でかつ走行車速が所定の低速以下
において後前軸が軸重限度までばね上重量の全部を受け
持つよう設けられたことを特徴とする請求項2記載のエ
アサスペンション車の軸重配分装置。
3. When the axle load distribution switch is in the ON state, the rear front axle is provided with the entire sprung weight up to the axle weight limit when the rear front axle has a predetermined axle load or less and the traveling vehicle speed is a predetermined low speed or less. The axle load distribution device for an air suspension vehicle according to claim 2, wherein
JP27319995A 1995-10-20 1995-10-20 Axle load distributing device of air suspension vehicle Pending JPH09109645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27319995A JPH09109645A (en) 1995-10-20 1995-10-20 Axle load distributing device of air suspension vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27319995A JPH09109645A (en) 1995-10-20 1995-10-20 Axle load distributing device of air suspension vehicle

Publications (1)

Publication Number Publication Date
JPH09109645A true JPH09109645A (en) 1997-04-28

Family

ID=17524485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27319995A Pending JPH09109645A (en) 1995-10-20 1995-10-20 Axle load distributing device of air suspension vehicle

Country Status (1)

Country Link
JP (1) JPH09109645A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043872A1 (en) * 2004-10-18 2006-04-27 Volvo Lastvagnar Ab An axle load control system and a wheel base adjustment system
WO2006054940A1 (en) 2004-11-18 2006-05-26 Scania Cv Ab (Publ) Method and computer program for distributing load between axles of a vehicle
WO2009018155A1 (en) * 2007-07-31 2009-02-05 Hendrickson Usa, L.L.C. Pneumatic proportioning system for vehicle air springs
WO2010120235A1 (en) * 2009-04-17 2010-10-21 Scania Cv Ab Motor vehicle with air suspension system and computer program for controlling an air suspension system
GB2516654A (en) * 2013-07-29 2015-02-04 Ifor Williams Trailers Ltd Axle clamping system for deflection sensing beam
WO2015176732A1 (en) * 2014-05-22 2015-11-26 Wabco Gmbh Method for controlling the traction of a pneumatically sprung vehicle and air suspension system for carrying out the method
WO2016094746A1 (en) * 2014-12-12 2016-06-16 Dana Heavy Vehicle Systems Group, Llc Dynamic weight shift suspension system
US9522582B2 (en) 2014-05-09 2016-12-20 Ford Global Technologies, Llc Systems and methods for setting front axle load restoration

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043872A1 (en) * 2004-10-18 2006-04-27 Volvo Lastvagnar Ab An axle load control system and a wheel base adjustment system
WO2006054940A1 (en) 2004-11-18 2006-05-26 Scania Cv Ab (Publ) Method and computer program for distributing load between axles of a vehicle
WO2009018155A1 (en) * 2007-07-31 2009-02-05 Hendrickson Usa, L.L.C. Pneumatic proportioning system for vehicle air springs
US7841608B2 (en) 2007-07-31 2010-11-30 Hendrickson Usa, L.L.C. Pneumatic proportioning system for vehicle air springs
WO2010120235A1 (en) * 2009-04-17 2010-10-21 Scania Cv Ab Motor vehicle with air suspension system and computer program for controlling an air suspension system
GB2516654B (en) * 2013-07-29 2015-08-19 Ifor Williams Trailers Ltd Axle clamping system for deflection sensing beam
GB2516654A (en) * 2013-07-29 2015-02-04 Ifor Williams Trailers Ltd Axle clamping system for deflection sensing beam
US9522582B2 (en) 2014-05-09 2016-12-20 Ford Global Technologies, Llc Systems and methods for setting front axle load restoration
CN106457949B (en) * 2014-05-22 2020-07-21 威伯科有限公司 Method for adjusting the traction of a pneumatic sprung vehicle and air spring system for carrying out said method
WO2015176732A1 (en) * 2014-05-22 2015-11-26 Wabco Gmbh Method for controlling the traction of a pneumatically sprung vehicle and air suspension system for carrying out the method
CN106457949A (en) * 2014-05-22 2017-02-22 威伯科有限公司 Method for controlling the traction of a pneumatically sprung vehicle and air suspension system for carrying out the method
US20170113507A1 (en) * 2014-05-22 2017-04-27 Wabco Gmbh Method for controlling the traction of a pneumatically sprung vehicle and air suspension system for carrying out the method
US11072217B2 (en) 2014-05-22 2021-07-27 Wabco Gmbh Method for controlling the traction of a pneumatically sprung vehicle and air suspension system for carrying out the method
WO2016094746A1 (en) * 2014-12-12 2016-06-16 Dana Heavy Vehicle Systems Group, Llc Dynamic weight shift suspension system
US10358011B2 (en) 2014-12-12 2019-07-23 Dana Heavy Vehicle Systems Group, Llc Dynamic weight shift suspension system
EP3230096B1 (en) 2014-12-12 2018-11-28 Dana Heavy Vehicle Systems Group, LLC Dynamic weight shift suspension system
CN107000530A (en) * 2014-12-12 2017-08-01 德纳重型车辆系统集团有限责任公司 Dynamic weight shifts suspension system

Similar Documents

Publication Publication Date Title
US5850616A (en) Traction control system for four wheel drive vehicle and the method thereof
US5322321A (en) Vehicle active suspension system
JPH08310366A (en) Behavior controller for vehicle
JPS62275814A (en) Suspension controller
JP2877084B2 (en) Braking force control device
CN100467296C (en) Vehicle height adjustment system
US5855419A (en) Process for controlling a distribution of braking force in a vehicle
JPH09109645A (en) Axle load distributing device of air suspension vehicle
JPH0210722B2 (en)
JP2913748B2 (en) Comprehensive control device for braking / driving force and wheel load distribution
JP3079538B2 (en) Comprehensive control system for auxiliary steering angle and braking / driving force
JPH05169956A (en) Air suspension used for rear double axle type vehicle
JP2903784B2 (en) Braking force control device
JP3213170B2 (en) Axle load distribution device used for rear suspension of rear two-axle vehicle
JPH05262212A (en) Vehicle braking method
JP4014117B2 (en) Axial load distribution method and apparatus used for rear suspension of rear biaxial vehicle
JPH03281405A (en) Control device for tire pressure
JPH07149133A (en) Axle load distributing method and device used for rear suspension of rear biaxial vehicle
JPH08142631A (en) Tandem suspension to be used for rear two-axle vehicle
JP2936640B2 (en) Comprehensive control system for auxiliary steering angle and wheel load distribution
JPH02296513A (en) Active suspension
JP3797918B2 (en) Front biaxial vehicle drive force reduction prevention device
JPH07215195A (en) Antiskid brake control device of vehicle furnished with uniaxial, single modulator, two-wheel speed sensor
JP3451811B2 (en) Anti-skid control system for four-wheel drive vehicles
JPH10911A (en) Drive force adding device of rear two axle vehicle