JP3797918B2 - Front biaxial vehicle drive force reduction prevention device - Google Patents

Front biaxial vehicle drive force reduction prevention device Download PDF

Info

Publication number
JP3797918B2
JP3797918B2 JP2001343340A JP2001343340A JP3797918B2 JP 3797918 B2 JP3797918 B2 JP 3797918B2 JP 2001343340 A JP2001343340 A JP 2001343340A JP 2001343340 A JP2001343340 A JP 2001343340A JP 3797918 B2 JP3797918 B2 JP 3797918B2
Authority
JP
Japan
Prior art keywords
load
wheel axle
chassis
rear wheel
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001343340A
Other languages
Japanese (ja)
Other versions
JP2003146039A (en
Inventor
文彦 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2001343340A priority Critical patent/JP3797918B2/en
Publication of JP2003146039A publication Critical patent/JP2003146039A/en
Application granted granted Critical
Publication of JP3797918B2 publication Critical patent/JP3797918B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両前部に二軸の操向車軸を有しかつ車両後部に一軸の駆動車軸を有するトラックやトレーラ等の前二軸車の駆動力の減少を防止する装置に関するものである。
【0002】
【従来の技術】
従来、この種の装置として、互いに接近して配設された駆動軸及び被動軸がイコライザ式タンデムサスペンションを介してフレームを懸架し、駆動軸及びフレーム間に可変流体圧容積体が配設され、この容積体及び流体圧タンク間が切換弁を介して低圧及び高圧の両ラインにより連結され、更に両ラインに低圧電磁弁及び高圧電磁弁が配設されたイコライザ式タンデムサスペンションの制御装置が開示されている(特開平7−144520号)。この制御装置では、低圧ラインに低圧用逆止弁、電磁閉切り弁及び低圧電磁弁が直列に配設され、高圧ラインには高圧用逆止弁及び高圧電磁弁が配設される。また上記電磁弁等はスイッチ類又はセンサ類により電気的に制御可能に構成される。
【0003】
このように構成されたイコライザ式タンデムサスペンションの制御装置では、空車発進時又は同制動時に、センサ類の各検出出力若しくはスイッチ類の切換えに基づき電磁弁等が制御されて可変流体圧容積体に高圧流体が供給される。この結果、駆動軸がフレームにロックされるので、イコライザビームの不必要な回動を抑制できる。また、空車発進時又は同制動時以外の場合には、センサ類の各検出出力若しくはスイッチ類の切換えに基づき電磁弁等が制御されて可変流体圧容積体に低圧流体が供給される。この結果、板ばねやイコライザビームブラケットの通常の動きに支障を来さないようになっている。
【0004】
【発明が解決しようとする課題】
しかし、上記従来の特開平7−144520号に示されたイコライザ式タンデムサスペンションの制御装置では、多くの電磁弁やスイッチ類等を用いているため、部品点数及び組付工数が増大するとともに、電磁弁等の制御が複雑になる不具合があった。
本発明の目的は、僅かな部品点数及び組付工数の増加で、滑り易い路面における走破性を向上でき、雪道や泥道等でのスタック状態からの脱出性を向上できる、前2軸車の駆動力減少防止装置を提供することにある。
【0005】
【課題を解決するための手段】
請求項1に係る発明は、図1及び図2に示すように、前々輪11が回転可能に取付けられ車台18前部を前側板ばね19を介して懸架する操向車軸である前々輪車軸12と、後輪13が固定され車台18後部を後側懸架装置21を介して懸架する駆動車軸である後輪車軸14と、前々輪車軸12から所定の間隔をあけて後方に設けられ前後輪16が回転可能に取付けられかつ車台18中央前部を中間板ばね22を介して懸架する操向車軸である前後輪車軸17と、前端が前側板ばね19の後端に連結され後端が中間板ばね22の前端に連結されかつ中央が支持ピン28を介して車台18に枢支されたイコライザビーム26とを備えた前二軸車の改良である。
その特徴ある構成は、支持ピン28及びイコライザビーム26前端間の長さL1が支持ピン28及びイコライザビーム26後端間の長さL2より短く設定され、前後輪車軸17が中間板ばね22とともに中間空気ばね23を介して車台18中央前部を懸架し、中間空気ばね23がこの中間空気ばね23に圧縮エアを給排するエア給排手段31に接続され、後輪車軸14に作用する荷重が後側荷重センサ36により検出され、前後輪車軸17に作用する荷重が中間荷重センサ37により検出され、後側荷重センサ36及び中間荷重センサ37の各検出出力に基づいてコントローラ38がエア給排手段31を制御するように構成されたところにある。
【0006】
この請求項1に記載された前2軸車の駆動力減少防止装置では、積載量がゼロか或いは極めて小さい場合には、後輪車軸14に作用する荷重が極めて小さいことを後側荷重センサ36が検出し、中間荷重センサ37が大気圧より大きな中間空気ばね23の圧力を検出するため、コントローラ38は後側荷重センサ36及び中間荷重センサ37の各検出出力に基づいてエア給排手段31を制御し、中間空気ばね23内の圧縮エアを排出する。この結果、前々輪車軸12の支持する荷重と前後輪車軸17の支持する荷重の合計荷重の作用する見かけ上の位置が前方に移動し、駆動軸である後輪車軸14に作用する荷重が増加するので、滑り易い路面における走破性を向上できるとともに、雪道や泥道等でのスタック状態からの脱出性を向上できる。
一方、車両10の最大積載量近くまで荷物を積載すると、後輪車軸14に作用する荷重がその許容荷重に近いことを後側荷重センサ36が検出し、中間空気ばね23内の圧力が大気圧であるか或いは極めて低いことを中間荷重センサ37が検出するため、コントローラ38は後側荷重センサ36及び中間荷重センサ37の各検出出力に基づいてエア給排手段31を制御し、中間空気ばね23内の圧力が所定値になるまで中間空気ばね23に圧縮エアを供給する。この結果、前々輪車軸12の支持する荷重と前後輪車軸17の支持する荷重の合計荷重の作用する見かけ上の位置が後方に移動し、前々輪車軸12と前後輪車軸17の支持する荷重の差が小さくなるので、車両10の走行性能は低下せず、前々輪11の摩耗は増大しない。また後輪車軸14に作用する荷重が減少するので、許容荷重を越える荷重が後輪車軸14に作用することもない。
【0007】
請求項2に係る発明は、図3及び図4に示すように、支持ピン28及びイコライザビーム56前端間の長さと支持ピン28及びイコライザビーム56後端間の長さとが同一に設定され、前々輪車軸12が前側板ばね19とともに前側空気ばね23を介して車台18前部を懸架し、前側空気ばね51がエアタンク52にエア管路53により接続され、前側空気ばね51内の圧力を所定値に保持する調圧弁54がエア管路53に設けられたことを特徴とする。
この請求項2に記載された前2軸車の駆動力減少防止装置では、前々輪車軸12と前後輪車軸17がそれぞれ支持する荷重の分担割合が、前々輪車軸12の方が前後輪車軸17より大きく、前々輪車軸12の支持する荷重と前後輪車軸17の支持する荷重の合計荷重の作用する見かけ上の位置が支持ピン28より前方であるため、駆動軸である後輪車軸12に作用する荷重は比較的大きい。この結果、積載量がゼロか或いは極めて少ない場合には、滑り易い路面における走破性を向上できるとともに、雪道や泥道等でのスタック状態からの脱出性を向上できる。
【0008】
【発明の実施の形態】
次に本発明の第1の実施の形態を図面に基づいて説明する。
図1及び図2に示すように、トラック10は前々輪11が回転可能に取付けられた前々輪車軸12と、後輪13が固定された後輪車軸14と、前々輪車軸14から所定の間隔をあけて後方に設けられ前後輪16が回転可能に取付けられた前後輪車軸17とを備える。前々輪車軸12はトラック10の進行方向に延びるシャシフレーム18前部を前側板ばね19を介して懸架し、後輪車軸14はシャシフレーム18後部を後側懸架装置21を介して懸架し、前後輪車軸17はシャシフレーム18中央前部を中間板ばね22及び中間空気ばね23を介して懸架する。また前々輪車軸12及び前後輪車軸14は操向車軸であり、後輪車軸17は駆動車軸である。
【0009】
前側板ばね19は、図2に詳しく示すように、一対のシャシフレーム18の外側面下方にこれらのシャシフレーム18に沿ってそれぞれ1組ずつ設けられる。これらの前側板ばね19の前端はシャシフレーム18に固着されたスプリングブラケット24に枢着され、後端は後述するイコライザビーム26の前端に枢着される。また前側板ばね19の中央はUボルト(図示せず)により前々輪車軸12の上面に固定され、前々輪車軸12とシャシフレーム18との間には図示しないがショックアブソーバ及びスタビライザが設けられ、前側板ばね19、ショックアブソーバ及びスタビライザにより前々輪車軸12が前々輪11を介して路面から受けた振動等が減衰され、シャシフレーム18に伝わらないようになっている。
【0010】
中間板ばね22は、前側板ばね19と同様に、一対のシャシフレーム18の外側面下方にこれらのシャシフレーム18に沿ってそれぞれ1組ずつ設けられる。これらの中間板ばね22の後端はシャシフレーム18に固着されたスプリングブラケット27に枢着され、前端はイコライザビーム26の後端に枢着される。また中間板ばね22の中央はUボルト(図示せず)により前後輪車軸17の上面に固定され、前後輪車軸17とシャシフレーム18との間には図示しないがショックアブソーバ及びスタビライザが設けられ、中間板ばね22、ショックアブソーバ及びスタビライザにより前後輪車軸17が前後輪16を介して路面から受けた振動等が減衰され、シャシフレーム18に伝わらないようになっている。
【0011】
イコライザビーム26の中央は支持ピン28及びビームブラケット29を介してシャシフレーム18に枢着され、支持ピン28及びイコライザビーム26前端間の長さL1は支持ピン28及びイコライザビーム26後端間の長さL2より短く設定される。なお、前側板ばね19及び中間板ばね22は全長が同一に設定されることが好ましい。また中間板ばね22のばね定数は、中間空気ばね23のばね定数が付加されるため、前側板ばね19のばね定数より小さく設定される。
【0012】
更にL1/L2は、板ばね19,22の前後スパンの設定の仕方により変化するけれども、0.3〜0.6の範囲に設定されることが好ましく、0.4〜0.5の範囲に設定されることが更に好ましい。L1/L2を0.3〜0.6の範囲に限定したのは、0.3未満ではトラック10に搭載した場合の寸法的な関係からイコライザビーム26として成立させることが難しく、0.6を越えると荷重移動量が少なくなるからである。
【0013】
一方、中間空気ばね23は、前後輪車軸17上面と一対のシャシフレーム18下面との間にそれぞれ介装される(図1)。上記中間空気ばね23はこれらの中間空気ばね23に圧縮エアを給排するエア給排手段31に接続される。エア給排手段31は、中間空気ばね23をエアタンク32に接続するエア管路33と、このエア管路33に設けられた切換弁34とを有する。切換弁34は3ポート3位置切換えの電磁弁であり、エアタンク32に連通接続された第1ポート34aと、中間空気ばね23に連通接続された第2ポート34bと、大気に連通接続された排気ポート34cとを有する。切換弁34を第1の位置に切換えると第1ポート34aと第2ポート34bとが連通し、第2の位置に切換えると第2ポート34bと排気ポート34cとが連通し、オフすると各ポート34a〜34cがそれぞれ閉じるように構成される。また後側懸架装置21は、この実施の形態では、後輪車軸14とシャシフレーム18との間に介装された後側空気ばねである(図2)。後輪車軸14の下面には一対のシャシフレーム18と略平行に延びる一対の支持具35の中央がそれぞれ取付けられ、これらの支持具35の前端及び後端と一対のシャシフレーム18との間に4つの後側空気ばね21がそれぞれ介装される。
【0014】
図1に戻って、後輪車軸14に作用する荷重は後側荷重センサ36により検出され、前後輪車軸17に作用する荷重は中間荷重センサ37により検出される。後側荷重センサ36は後側空気ばね21内の空気圧力を検出する圧力センサであり、中間荷重センサ37は中間空気ばね23内の空気圧力を検出する圧力センサである。後側荷重センサ36及び中間荷重センサ37の各検出出力はコントローラ38の制御入力に接続され、コントローラ38の制御出力は切換弁34に接続される。またコントローラ38にはメモリ(図示せず)が設けられ、このメモリには後輪車軸14に作用する荷重の変化に対応する中間空気ばね23内の圧力の変化を示すマップが記憶される。具体的には、上記メモリには、後輪車軸14に軽荷重が作用する場合、中間空気ばね23内の圧力を低くし、後輪車軸14に中・重荷重が作用する場合、中間空気ばね23内の圧力を前々輪車軸12と前後輪車軸16が支持する荷重の差を少なくするような設定値が記憶される。
【0015】
このように構成された駆動力減少防止装置の動作を説明する。
前々輪車軸12が前側板ばね19を介して支持する荷重と前後輪車軸17が中間板ばね22を介して支持する荷重の割合は、イコライザビーム26の支持ピン28から両端までの長さの比率、即ちL1/L2の比率で決定される。本発明のようにL1/L2<1と設定することにより、前々輪車軸12が支持する荷重は前後輪車軸17が支持する荷重より大きくなる。即ち、前々輪車軸12の支持する荷重と前後輪車軸17の支持する荷重の合計荷重の作用する見かけ上の位置は、L1/L2=1の場合より前方に移動するため、後輪車軸14に作用する荷重は増加する。
【0016】
しかし、この状態で荷室10aに荷物を積載すると、前々輪車軸12と前後輪車軸17の支持する荷重の差が大きくなり、トラック10の走行性能の低下や前々輪11の摩耗の増大等の悪影響が発生したり、或いは最大積載量以下の荷物を積載しても後輪車軸14に許容荷重を越える荷重が作用するおそれもある。そこで、前後輪車軸17及びシャシフレーム18間に介装された中間空気ばね23に圧縮エアをエアタンク32から供給することにより、前後輪車軸17の支持する荷重を増大させる。この結果、前々輪車軸12と前後輪車軸17の支持する荷重の差が小さくなるとともに、上記前々輪車軸12の支持する荷重と前後輪車軸17の支持する荷重の合計荷重の作用する見かけ上の位置が後方に移動することにより、後輪車軸14に作用する荷重を許容荷重の範囲内に低減できる。
【0017】
具体的には、積載量がゼロか或いは極めて少ない場合には、後側荷重センサ36が許容圧力より遙かに小さい後側空気ばね21の圧力を検出し、中間荷重センサ37が大気圧より大きな中間空気ばね23の圧力を検出するため、コントローラ38は後側荷重センサ36及び中間荷重センサ37の各検出出力に基づいて切換弁34を第2の位置に切換え、中間空気ばね23内の圧縮エアを排出する。この結果、前々輪車軸12の支持する荷重と前後輪車軸17の支持する荷重の合計荷重の作用する見かけ上の位置が最も前方に移動し、駆動軸である後輪車軸14に作用する荷重が最も増加するので、滑り易い路面における走破性を向上できるとともに、雪道や泥道等でのスタック状態からの脱出性を向上できる。
【0018】
一方、トラック10の最大積載量近くまで荷物を積載すると、後側荷重センサ36が許容圧力に近い後側空気ばね21の圧力を検出し、中間空気ばね23内の圧力が大気圧であること或いは極めて低いことを中間荷重センサ37が検出するため、コントローラ38は後側荷重センサ36及び中間荷重センサ37の各検出出力に基づいて切換弁34を第1の位置に切換える。これにより中間空気ばね23にエアタンク32の圧縮エアが供給され、後側空気ばね21の圧力が所定値以下になったことを後側荷重センサ36が検出し、中間空気ばね23の圧力が所定値になったことを中間荷重センサ37が検出したときに、コントローラ38は切換弁34をオフする。この結果、前々輪車軸12の支持する荷重と前後輪車軸17の支持する荷重の合計荷重の作用する見かけ上の位置が後方に移動し、前々輪車軸12と前後輪車軸17の支持する荷重の差が小さくなるので、トラック10の走行性能は低下せず、前々輪11の摩耗は増大しない。また後輪車軸14に作用する荷重が減少するので、許容荷重を越える荷重が後輪車軸14に作用することもない。なお、積載量がゼロか或いは極めて少ない場合には、前々輪車軸12の支持する荷重と前後輪車軸17の支持する荷重の合計荷重の作用する見かけ上の位置が前方に移動していても、各車軸12,14,17に作用する荷重が極めて小さいため、トラック10の走行性能が低下せず、前々輪11の摩耗が増大しないようになっている。
【0019】
図3及び図4は本発明の第2の実施の形態を示す。図3及び図4において図1及び図2と同一符号は同一部品を示す。
この実施の形態では、支持ピン28及びイコライザビーム56前端間の長さL1と支持ピン28及びイコライザビーム56後端間の長さL2とが同一に設定され(L1/L2=1)、前々輪車軸12が前側板ばね19とともに前側空気ばね51を介してシャシフレーム18前部を懸架するように構成される(図3)。前側空気ばね51はエアタンク52にエア管路53により接続され、エア管路53には前側空気ばね51内の圧力を所定値に保持する調圧弁54が設けられる。調圧弁54は、この実施の形態では、リリーフ付き外部パイロット式の減圧弁(定差減圧弁)であり、前側空気ばね51の圧力を常に所定値に保持することにより、最大積載時に後輪車軸14(図4)に作用する荷重が許容荷重を越えないように構成される。具体的には、調圧弁54は、エアタンク52の圧力を例えば0.8MPaとするとき、前側空気ばね51の圧力を例えば0.4MPaの一定値に保持するように構成される。なお、調圧弁として、定圧減圧弁等を用いてもよい。また後側懸架装置61(図4)は、この実施の形態では、後輪車軸14とシャシフレーム18との間に介装された一対の後側板ばねである。上記以外は第1の実施の形態と同一に構成される。
【0020】
このように構成された駆動力減少防止装置の動作を説明する。
前側空気ばね51内の圧力が常に所定値に保持されるので、前側板ばね19が支持する荷重が減少するとともに、イコライザビーム56により前側板ばね19に連結された中間板ばね22が支持する荷重も減少する。前々輪車軸12が支持する荷重は前側空気ばね51の支持する荷重と前側板ばね19の支持する荷重の合計荷重であり、前後輪車軸17が支持する荷重は中間板ばね22の支持する荷重のみである。前々輪車軸12と前後輪車軸17がそれぞれ支持する荷重の分担割合は、前々輪車軸12の方が前後輪車軸17より大きくなる。このため前々輪車軸12の支持する荷重と前後輪車軸17の支持する荷重の合計荷重の作用する見かけ上の位置は、支持ピン28より前方であるため、駆動軸である後輪車軸14に作用する荷重は比較的大きい。この結果、積載量がゼロか或いは極めて少ない場合には、滑り易い路面における走破性を向上できるとともに、雪道や泥道等でのスタック状態からの脱出性を向上できる。一方、トラック10の最大積載量に近い荷物を積載しても、調圧弁54により前側空気ばね51内の圧力が最大積載時に後輪車軸14に作用する荷重が許容荷重を越えないように設定されているため、後輪車軸14に作用する荷重が許容荷重を越えることはない。
【0021】
【発明の効果】
以上述べたように、本発明によれば、支持ピン及びイコライザビーム前端間の長さを支持ピン及びイコライザビーム後端間の長さより短く設定し、前後輪車軸が中間板ばねとともに中間空気ばねを介して車台中央前部を懸架し、更に後輪車軸に作用する荷重を検出する後側荷重センサ及び前後輪車軸に作用する荷重を検出する中間荷重センサの各検出出力に基づいてコントローラが中間空気ばねに圧縮エアを給排するエア給排手段を制御するので、積載量がゼロか或いは極めて小さい場合には、コントローラは中間空気ばね内の圧縮エアを排出する。この結果、前々輪車軸の支持する荷重と前後輪車軸の支持する荷重の合計荷重の作用する見かけ上の位置が前方に移動し、駆動軸である後輪車軸に作用する荷重が増加するので、滑り易い路面における走破性を向上できるとともに、雪道や泥道等でのスタック状態からの脱出性を向上できる。
【0022】
一方、車両の最大積載量近くまで荷物を積載すると、コントローラは中間空気ばねに圧縮エアを供給する。この結果、前々輪車軸の支持する荷重と前後輪車軸の支持する荷重の合計荷重の作用する見かけ上の位置が後方に移動し、前々輪車軸と前後輪車軸の支持する荷重の差が小さくなるので、トラックの走行性能は低下せず、前々輪の摩耗は増大しない。また後輪車軸に作用する荷重が減少するので、許容荷重を越える荷重が後輪車軸に作用することもない。
【0023】
また支持ピン及びイコライザビーム前端間の長さと支持ピン及びイコライザビーム後端間の長さとを同一に設定し、前々輪車軸が前側板ばねとともに前側空気ばねを介して車台前部を懸架し、前側空気ばねをエアタンクにエア管路により接続し、更に前側空気ばね内の圧力を所定値に保持する調圧弁をエア管路に設ければ、前々輪車軸の支持する荷重と前後輪車軸の支持する荷重の合計荷重の作用する見かけ上の位置が支持ピンより前方であるため、駆動軸である後輪車軸に作用する荷重は比較的大きい。この結果、積載量がゼロか或いは極めて少ない場合には、滑り易い路面における走破性を向上できるとともに、雪道や泥道等でのスタック状態からの脱出性を向上できる。
【図面の簡単な説明】
【図1】本発明第1実施形態の前2軸車の駆動力減少防止装置を示す図2のA部拡大断面構成図。
【図2】その装置を搭載したトラックの側面図。
【図3】本発明第2実施形態の前2軸車の駆動力減少防止装置を示す図4のB部拡大断面構成図。
【図4】その装置を搭載したトラックの側面図。
【符号の説明】
10 トラック(車両)
11 前々輪
12 前々輪車軸
13 後輪
14 後輪車軸
16 前後輪
17 前後輪車軸
18 シャシフレーム(車台)
19 前側板ばね
21 後側空気ばね(後側懸架装置)
22 中間板ばね
23 中間空気ばね
26,56 イコライザビーム
28 支持ピン
31 エア給排手段
36 後側荷重センサ
37 中間荷重センサ
38 コントローラ
51 前側空気ばね
52 エアタンク
53 エア管路
54 調圧弁
61 後側板ばね(後側懸架装置)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for preventing a reduction in driving force of a front biaxial vehicle such as a truck or a trailer having a biaxial steering axle at the front of the vehicle and a single drive axle at the rear of the vehicle.
[0002]
[Prior art]
Conventionally, as this type of device, a drive shaft and a driven shaft arranged close to each other suspend a frame via an equalizer tandem suspension, and a variable fluid pressure volume body is arranged between the drive shaft and the frame. There is disclosed a control device for an equalizer tandem suspension in which the volume body and the fluid pressure tank are connected by both low and high pressure lines via a switching valve, and further, the low pressure solenoid valve and the high pressure solenoid valve are arranged on both lines. (JP-A-7-144520). In this control device, a low pressure check valve, an electromagnetic shut-off valve, and a low pressure solenoid valve are arranged in series in the low pressure line, and a high pressure check valve and a high pressure solenoid valve are arranged in the high pressure line. The solenoid valve and the like are configured to be electrically controllable by switches or sensors.
[0003]
In the control device for the equalizer tandem suspension configured as described above, the electromagnetic valve or the like is controlled based on the detection outputs of the sensors or switching of the switches when the vehicle is started or braked, and the variable fluid pressure volume body is pressurized. Fluid is supplied. As a result, since the drive shaft is locked to the frame, unnecessary rotation of the equalizer beam can be suppressed. Also, when the vehicle is not starting or braking, the solenoid valve or the like is controlled based on the detection outputs of the sensors or switching of the switches to supply the low-pressure fluid to the variable fluid pressure body. As a result, the normal movement of the leaf spring and the equalizer beam bracket is not hindered.
[0004]
[Problems to be solved by the invention]
However, the conventional equalizer tandem suspension control apparatus disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 7-144520 uses many solenoid valves and switches, which increases the number of parts and assembly man-hours. There was a problem that the control of valves etc. was complicated.
The object of the present invention is to improve the running performance on a slippery road surface with a slight increase in the number of parts and assembly man-hours, and to improve the escape from a stack state on a snowy road or a muddy road. The object is to provide a driving force reduction preventing device.
[0005]
[Means for Solving the Problems]
As shown in FIGS. 1 and 2, the invention according to claim 1 is a front-wheel that is a steered axle in which a front-wheel 11 is rotatably mounted and a front portion of a chassis 18 is suspended via a front leaf spring 19. Axle 12, rear wheel axle 14 which is a driving axle for fixing rear wheel 13 and a rear part of chassis 18 via rear suspension device 21, and rear wheel axle 12 are provided at a predetermined interval from front wheel axle 12. A front and rear wheel axle 17 is a steering axle on which front and rear wheels 16 are rotatably attached and a central front portion of a chassis 18 is suspended via an intermediate leaf spring 22, and a front end is connected to a rear end of a front leaf spring 19 and a rear end. Is an improvement of the front biaxial vehicle having an equalizer beam 26 connected to the front end of the intermediate leaf spring 22 and pivotally supported by the chassis 18 via a support pin 28 at the center.
The characteristic configuration is such that the length L 1 between the support pin 28 and the front end of the equalizer beam 26 is set shorter than the length L 2 between the support pin 28 and the rear end of the equalizer beam 26, and the front and rear wheel axle 17 is connected to the intermediate leaf spring 22. At the same time, the central front portion of the chassis 18 is suspended via the intermediate air spring 23, and the intermediate air spring 23 is connected to air supply / discharge means 31 for supplying and discharging compressed air to and from the intermediate air spring 23, and acts on the rear wheel axle 14. The load is detected by the rear load sensor 36, the load acting on the front and rear wheel axles 17 is detected by the intermediate load sensor 37, and the controller 38 supplies the air based on the detection outputs of the rear load sensor 36 and the intermediate load sensor 37. It exists in the place comprised so that the discharging means 31 might be controlled.
[0006]
In the front biaxial vehicle driving force reduction preventing device according to the first aspect, when the load is zero or very small, the rear load sensor 36 indicates that the load acting on the rear wheel axle 14 is extremely small. And the intermediate load sensor 37 detects the pressure of the intermediate air spring 23 larger than the atmospheric pressure, so that the controller 38 controls the air supply / discharge means 31 based on the detection outputs of the rear load sensor 36 and the intermediate load sensor 37. The compressed air in the intermediate air spring 23 is discharged. As a result, the apparent position where the total load of the load supported by the front wheel axle 12 and the load supported by the front and rear wheel axles 17 moves forward, and the load acting on the rear wheel axle 14 which is the drive shaft is reduced. Since it increases, the running performance on the slippery road surface can be improved, and the escape from the stuck state on a snowy road or a muddy road can be improved.
On the other hand, when a load is loaded near the maximum load capacity of the vehicle 10, the rear load sensor 36 detects that the load acting on the rear wheel axle 14 is close to the allowable load, and the pressure in the intermediate air spring 23 is atmospheric pressure. Therefore, the controller 38 controls the air supply / discharge means 31 on the basis of the detection outputs of the rear load sensor 36 and the intermediate load sensor 37, and the intermediate air spring 23 is detected. The compressed air is supplied to the intermediate air spring 23 until the internal pressure reaches a predetermined value. As a result, the apparent position where the total load of the load supported by the front wheel axle 12 and the load supported by the front and rear wheel axles 17 moves rearward, and the front wheel axle 12 and the front and rear wheel axles 17 are supported. Since the load difference is reduced, the running performance of the vehicle 10 does not deteriorate, and the wear of the front wheels 11 does not increase. Further, since the load acting on the rear wheel axle 14 decreases, the load exceeding the allowable load does not act on the rear wheel axle 14.
[0007]
In the invention according to claim 2, as shown in FIGS. 3 and 4, the length between the support pin 28 and the front end of the equalizer beam 56 and the length between the support pin 28 and the rear end of the equalizer beam 56 are set to be the same. The two-wheel axle 12 suspends the front part of the chassis 18 through the front air spring 23 together with the front plate spring 19, and the front air spring 51 is connected to the air tank 52 by the air pipe 53, and the pressure in the front air spring 51 is set to a predetermined value. A pressure regulating valve 54 that holds the value is provided in the air pipe 53.
In the driving force reduction preventing device for the front two-wheeled vehicle according to the second aspect, the load sharing ratio supported by the front-wheel axle 12 and the front-and-rear wheel axle 17 is different. Since the apparent position at which the total load of the load supported by the front wheel axle 12 and the load supported by the front and rear wheel axles 17 is larger than the axle 17 and is ahead of the support pins 28, the rear wheel axle which is the drive shaft. The load acting on 12 is relatively large. As a result, when the loading amount is zero or extremely small, it is possible to improve the running performance on a slippery road surface and to improve the escape property from a stuck state on a snowy road or a muddy road.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, a first embodiment of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, the truck 10 includes a front-wheel axle 12 on which a front-wheel 11 is rotatably mounted, a rear-wheel axle 14 to which a rear wheel 13 is fixed, and a front-wheel axle 14. And a front and rear wheel axle 17 provided at the rear with a predetermined interval, to which the front and rear wheels 16 are rotatably attached. The front wheel axle 12 suspends the front portion of the chassis frame 18 extending in the traveling direction of the truck 10 via a front leaf spring 19, and the rear wheel axle 14 suspends the rear portion of the chassis frame 18 via a rear suspension device 21, The front and rear wheel axles 17 suspend the center front portion of the chassis frame 18 via intermediate leaf springs 22 and intermediate air springs 23. The front wheel axle 12 and the front and rear wheel axles 14 are steering axles, and the rear wheel axle 17 is a drive axle.
[0009]
As shown in detail in FIG. 2, a pair of the front leaf springs 19 is provided along the chassis frames 18 below the pair of chassis frames 18. The front ends of the front leaf springs 19 are pivotally attached to a spring bracket 24 fixed to the chassis frame 18, and the rear ends are pivotally attached to a front end of an equalizer beam 26 described later. The center of the front leaf spring 19 is fixed to the upper surface of the front wheel axle 12 by a U bolt (not shown), and a shock absorber and a stabilizer (not shown) are provided between the front wheel axle 12 and the chassis frame 18. The vibrations received by the front wheel axle 12 from the road surface via the front wheel 11 are attenuated by the front leaf spring 19, the shock absorber and the stabilizer, and are not transmitted to the chassis frame 18.
[0010]
One pair of intermediate leaf springs 22 is provided along the chassis frames 18 below the pair of chassis frames 18, similarly to the front leaf springs 19. The rear ends of these intermediate leaf springs 22 are pivotally attached to a spring bracket 27 fixed to the chassis frame 18, and the front ends are pivotally attached to the rear end of the equalizer beam 26. The center of the intermediate leaf spring 22 is fixed to the upper surface of the front and rear wheel axles 17 by U bolts (not shown), and a shock absorber and a stabilizer (not shown) are provided between the front and rear wheel axles 17 and the chassis frame 18, Vibrations and the like received from the road surface by the front and rear wheel axles 17 via the front and rear wheels 16 are attenuated by the intermediate leaf spring 22, the shock absorber, and the stabilizer, and are not transmitted to the chassis frame 18.
[0011]
The center of the equalizer beam 26 is pivotally attached to the chassis frame 18 via a support pin 28 and a beam bracket 29, and the length L 1 between the support pin 28 and the equalizer beam 26 front end is between the support pin 28 and the equalizer beam 26 rear end. It is set to be shorter than the length L 2. The front leaf spring 19 and the intermediate leaf spring 22 are preferably set to have the same overall length. The spring constant of the intermediate leaf spring 22 is set smaller than the spring constant of the front leaf spring 19 because the spring constant of the intermediate air spring 23 is added.
[0012]
Further, L 1 / L 2 varies depending on the setting of the front and rear spans of the leaf springs 19 and 22, but is preferably set in the range of 0.3 to 0.6, and is preferably in the range of 0.4 to 0.5. More preferably, it is set within the range. The reason why L 1 / L 2 is limited to the range of 0.3 to 0.6 is that if it is less than 0.3, it is difficult to establish the equalizer beam 26 due to the dimensional relationship when mounted on the track 10. This is because the amount of load movement decreases when 6 is exceeded.
[0013]
On the other hand, the intermediate air spring 23 is interposed between the upper surface of the front and rear wheel axles 17 and the lower surface of the pair of chassis frames 18 (FIG. 1). The intermediate air spring 23 is connected to air supply / discharge means 31 for supplying and discharging compressed air to and from the intermediate air spring 23. The air supply / discharge means 31 includes an air pipe 33 that connects the intermediate air spring 23 to the air tank 32, and a switching valve 34 provided in the air pipe 33. The switching valve 34 is a three-port / three-position switching electromagnetic valve, and includes a first port 34a connected to the air tank 32, a second port 34b connected to the intermediate air spring 23, and an exhaust connected to the atmosphere. Port 34c. When the switching valve 34 is switched to the first position, the first port 34a and the second port 34b communicate with each other. When the switching valve 34 is switched to the second position, the second port 34b and the exhaust port 34c communicate with each other. -34c are each configured to be closed. Further, in this embodiment, the rear suspension device 21 is a rear air spring interposed between the rear wheel axle 14 and the chassis frame 18 (FIG. 2). Centers of a pair of support members 35 extending substantially parallel to the pair of chassis frames 18 are respectively attached to the lower surface of the rear wheel axle 14, and between the front and rear ends of the support members 35 and the pair of chassis frames 18. Four rear air springs 21 are interposed.
[0014]
Returning to FIG. 1, the load acting on the rear wheel axle 14 is detected by the rear load sensor 36, and the load acting on the front and rear wheel axle 17 is detected by the intermediate load sensor 37. The rear load sensor 36 is a pressure sensor that detects the air pressure in the rear air spring 21, and the intermediate load sensor 37 is a pressure sensor that detects the air pressure in the intermediate air spring 23. The detection outputs of the rear load sensor 36 and the intermediate load sensor 37 are connected to the control input of the controller 38, and the control output of the controller 38 is connected to the switching valve 34. Further, the controller 38 is provided with a memory (not shown), and a map showing a change in pressure in the intermediate air spring 23 corresponding to a change in load acting on the rear wheel axle 14 is stored in this memory. Specifically, in the memory, when a light load acts on the rear wheel axle 14, the pressure in the intermediate air spring 23 is lowered, and when a medium / heavy load acts on the rear wheel axle 14, the intermediate air spring The set value is stored so as to reduce the difference in load that the front wheel axle 12 and the front and rear wheel axles 16 support the pressure in the front 23.
[0015]
The operation of the driving force reduction preventing apparatus configured as described above will be described.
The ratio of the load that the front wheel axle 12 supports via the front leaf spring 19 and the load that the front and rear wheel axle 17 supports via the intermediate leaf spring 22 is the length from the support pin 28 of the equalizer beam 26 to both ends. The ratio is determined by the ratio of L 1 / L 2 . By setting L 1 / L 2 <1 as in the present invention, the load supported by the front wheel axle 12 is larger than the load supported by the front and rear wheel axles 17. That is, the apparent position where the total load of the load supported by the front wheel axle 12 and the load supported by the front and rear wheel axles 17 moves forward from the case of L 1 / L 2 = 1. The load acting on the axle 14 increases.
[0016]
However, when a load is loaded in the luggage compartment 10a in this state, the difference in the load supported by the front wheel axle 12 and the front and rear wheel axles 17 becomes large, and the running performance of the truck 10 decreases and the wear of the front wheel 11 increases. There is a risk that a load exceeding the allowable load may act on the rear wheel axle 14 even if a load such as a load of less than the maximum load is generated. Therefore, the load supported by the front and rear wheel axles 17 is increased by supplying compressed air from the air tank 32 to the intermediate air spring 23 interposed between the front and rear wheel axles 17 and the chassis frame 18. As a result, the difference between the loads supported by the front wheel axle 12 and the front and rear wheel axles 17 is reduced, and the total load of the load supported by the front wheel axle 12 and the load supported by the front and rear wheel axles 17 acts. When the upper position moves rearward, the load acting on the rear wheel axle 14 can be reduced within the allowable load range.
[0017]
Specifically, when the load is zero or extremely small, the rear load sensor 36 detects the pressure of the rear air spring 21 that is much smaller than the allowable pressure, and the intermediate load sensor 37 is larger than the atmospheric pressure. In order to detect the pressure of the intermediate air spring 23, the controller 38 switches the switching valve 34 to the second position based on the respective detection outputs of the rear load sensor 36 and the intermediate load sensor 37, and the compressed air in the intermediate air spring 23. Is discharged. As a result, the apparent position at which the total load of the load supported by the front wheel axle 12 and the load supported by the front and rear wheel axles 17 moves most forward, and the load acting on the rear wheel axle 14 as the drive shaft. Therefore, it is possible to improve the running performance on a slippery road surface and to improve the escape property from a stuck state on a snowy road or a muddy road.
[0018]
On the other hand, when a load is loaded close to the maximum load capacity of the truck 10, the rear load sensor 36 detects the pressure of the rear air spring 21 close to the allowable pressure, and the pressure in the intermediate air spring 23 is atmospheric pressure or Since the intermediate load sensor 37 detects that the load is extremely low, the controller 38 switches the switching valve 34 to the first position based on the detection outputs of the rear load sensor 36 and the intermediate load sensor 37. As a result, the compressed air in the air tank 32 is supplied to the intermediate air spring 23, the rear load sensor 36 detects that the pressure of the rear air spring 21 has become a predetermined value or less, and the pressure of the intermediate air spring 23 has a predetermined value. When the intermediate load sensor 37 detects that it has become, the controller 38 turns off the switching valve 34. As a result, the apparent position where the total load of the load supported by the front wheel axle 12 and the load supported by the front and rear wheel axles 17 moves rearward, and the front wheel axle 12 and the front and rear wheel axles 17 are supported. Since the load difference is reduced, the running performance of the truck 10 does not deteriorate, and the wear of the front wheels 11 does not increase. Further, since the load acting on the rear wheel axle 14 decreases, the load exceeding the allowable load does not act on the rear wheel axle 14. When the loading amount is zero or extremely small, even if the apparent position where the total load of the load supported by the front wheel axle 12 and the load supported by the front and rear wheel axles 17 is moved forward is moved. Since the loads acting on the axles 12, 14, and 17 are extremely small, the running performance of the truck 10 does not deteriorate, and the wear of the front wheels 11 does not increase.
[0019]
3 and 4 show a second embodiment of the present invention. 3 and 4, the same reference numerals as those in FIGS. 1 and 2 denote the same components.
In this embodiment, the length L 1 between the support pin 28 and the front end of the equalizer beam 56 and the length L 2 between the support pin 28 and the rear end of the equalizer beam 56 are set to be the same (L 1 / L 2 = 1). ), The front wheel axle 12 is configured to suspend the front portion of the chassis frame 18 via the front air spring 51 together with the front leaf spring 19 (FIG. 3). The front air spring 51 is connected to the air tank 52 by an air pipe 53, and the air pipe 53 is provided with a pressure regulating valve 54 that holds the pressure in the front air spring 51 at a predetermined value. In this embodiment, the pressure regulating valve 54 is a relief external pilot type pressure reducing valve (constant pressure reducing valve), and by always maintaining the pressure of the front air spring 51 at a predetermined value, the rear wheel axle is at the maximum load. 14 (FIG. 4) is configured so that the load does not exceed the allowable load. Specifically, the pressure regulating valve 54 is configured to hold the pressure of the front air spring 51 at a constant value of 0.4 MPa, for example, when the pressure of the air tank 52 is set to 0.8 MPa, for example. In addition, you may use a constant pressure pressure-reduction valve etc. as a pressure regulation valve. The rear suspension 61 (FIG. 4) is a pair of rear leaf springs interposed between the rear wheel axle 14 and the chassis frame 18 in this embodiment. The configuration other than the above is the same as that of the first embodiment.
[0020]
The operation of the driving force reduction preventing apparatus configured as described above will be described.
Since the pressure in the front air spring 51 is always maintained at a predetermined value, the load supported by the front leaf spring 19 is reduced and the load supported by the intermediate leaf spring 22 connected to the front leaf spring 19 by the equalizer beam 56 is supported. Also decreases. The load supported by the front wheel axle 12 is the total load of the load supported by the front air spring 51 and the load supported by the front leaf spring 19, and the load supported by the front and rear wheel axle 17 is the load supported by the intermediate leaf spring 22. Only. The load sharing ratio supported by the front wheel axle 12 and the front wheel axle 17 is larger for the front wheel axle 12 than the front wheel axle 17. Therefore, the apparent position where the total load of the load supported by the front wheel axle 12 and the load supported by the front and rear wheel axles 17 is in front of the support pin 28, and therefore the rear wheel axle 14 which is the drive shaft is applied. The acting load is relatively large. As a result, when the loading amount is zero or extremely small, it is possible to improve the running performance on a slippery road surface and to improve the escape property from a stuck state on a snowy road or a muddy road. On the other hand, even when a load close to the maximum load capacity of the truck 10 is loaded, the pressure in the front air spring 51 is set by the pressure regulating valve 54 so that the load acting on the rear wheel axle 14 does not exceed the allowable load when the load is maximum. Therefore, the load acting on the rear wheel axle 14 does not exceed the allowable load.
[0021]
【The invention's effect】
As described above, according to the present invention, the length between the support pin and the front end of the equalizer beam is set shorter than the length between the support pin and the rear end of the equalizer beam, and the front and rear wheel axles together with the intermediate leaf springs are provided with the intermediate air spring. Through the center front of the chassis, and the controller detects the intermediate air based on the detection outputs of the rear load sensor that detects the load acting on the rear wheel axle and the intermediate load sensor that detects the load acting on the front and rear wheel axles. Since the air supply / discharge means for supplying and discharging the compressed air to and from the spring is controlled, the controller discharges the compressed air in the intermediate air spring when the load is zero or extremely small. As a result, the apparent position where the total load of the load supported by the front wheel axle and the load supported by the front and rear wheel axles moves forward, and the load acting on the rear wheel axle, which is the drive shaft, increases. In addition, it is possible to improve the running performance on a slippery road surface and to improve the escape performance from a stuck state on a snowy road or a muddy road.
[0022]
On the other hand, when a load is loaded close to the maximum load capacity of the vehicle, the controller supplies compressed air to the intermediate air spring. As a result, the apparent position where the total load of the load supported by the front wheel axle and the load supported by the front and rear wheel axles moves backward, and the difference between the load supported by the front wheel axle and the front and rear wheel axles is As it becomes smaller, the running performance of the truck does not deteriorate and the wear of the front wheels does not increase. Further, since the load acting on the rear wheel axle is reduced, the load exceeding the allowable load does not act on the rear wheel axle.
[0023]
The length between the support pin and the front end of the equalizer beam and the length between the support pin and the rear end of the equalizer beam are set to be the same, and the front wheel axle suspends the front part of the chassis through the front air spring together with the front leaf spring. If the front air spring is connected to the air tank by an air line, and a pressure regulating valve for holding the pressure in the front air spring at a predetermined value is provided in the air line, the load supported by the front wheel axle and the front and rear wheel axles Since the apparent position at which the total load of the loads supported is in front of the support pins, the load acting on the rear wheel axle that is the drive shaft is relatively large. As a result, when the loading amount is zero or extremely small, it is possible to improve the running performance on a slippery road surface and to improve the escape property from a stuck state on a snowy road or a muddy road.
[Brief description of the drawings]
FIG. 1 is an enlarged cross-sectional configuration diagram of a portion A in FIG. 2 showing a driving force reduction preventing device for a front biaxial vehicle according to a first embodiment of the present invention.
FIG. 2 is a side view of a truck on which the device is mounted.
FIG. 3 is an enlarged cross-sectional configuration diagram of a B portion of FIG. 4 showing a driving force reduction preventing device for a front biaxial vehicle according to a second embodiment of the present invention.
FIG. 4 is a side view of a truck on which the device is mounted.
[Explanation of symbols]
10 Truck (vehicle)
11 Front wheel 12 Front wheel axle 13 Rear wheel 14 Rear wheel axle 16 Front and rear wheels 17 Front and rear wheel axles 18 Chassis frame (chassis)
19 Front leaf spring 21 Rear air spring (rear suspension device)
22 Intermediate leaf spring 23 Intermediate air springs 26, 56 Equalizer beam 28 Support pin 31 Air supply / discharge means 36 Rear load sensor 37 Intermediate load sensor 38 Controller 51 Front air spring 52 Air tank 53 Air line 54 Pressure regulating valve 61 Rear leaf spring ( Rear suspension system)

Claims (2)

前々輪(11)が回転可能に取付けられ車台(18)前部を前側板ばね(19)を介して懸架する操向車軸である前々輪車軸(12)と、後輪(13)が固定され前記車台(18)後部を後側懸架装置(21)を介して懸架する駆動車軸である後輪車軸(14)と、前記前々輪車軸(12)から所定の間隔をあけて後方に設けられ前後輪(16)が回転可能に取付けられかつ前記車台(18)中央前部を中間板ばね(22)を介して懸架する操向車軸である前後輪車軸(17)と、前端が前記前側板ばね(19)の後端に連結され後端が前記中間板ばね(22)の前端に連結されかつ中央が支持ピン(28)を介して前記車台(18)に枢支されたイコライザビーム(26)とを備えた前二軸車において、
前記支持ピン(28)及び前記イコライザビーム(26)前端間の長さ(L1)が前記支持ピン(28)及び前記イコライザビーム(26)後端間の長さ(L2)より短く設定され、
前記前後輪車軸(17)が前記中間板ばね(22)とともに中間空気ばね(23)を介して前記車台(18)中央前部を懸架し、
前記中間空気ばね(23)がこの中間空気ばね(23)に圧縮エアを給排するエア給排手段(31)に接続され、
前記後輪車軸(14)に作用する荷重が後側荷重センサ(36)により検出され、
前記前後輪車軸(17)に作用する荷重が中間荷重センサ(37)により検出され、
前記後側荷重センサ(36)及び中間荷重センサ(37)の各検出出力に基づいてコントローラ(38)が前記エア給排手段(31)を制御するように構成された
ことを特徴とする前2軸車の駆動力減少防止装置。
A front-wheel axle (12), which is a steered axle that has a front-wheel (11) rotatably mounted and suspends a front part of a chassis (18) via a front leaf spring (19), and a rear wheel (13) A rear wheel axle (14) that is fixed and suspends the rear part of the chassis (18) via a rear suspension device (21), and a rear space with a predetermined distance from the front wheel axle (12). A front and rear wheel axle (17), which is a steering axle provided on the front and rear wheels (16) so as to be rotatably mounted and suspending the central front portion of the chassis (18) via an intermediate leaf spring (22), and a front end thereof An equalizer beam connected to the rear end of the front leaf spring (19), the rear end connected to the front end of the intermediate leaf spring (22), and the center pivotally supported on the chassis (18) via a support pin (28) (26)
The length (L 1 ) between the support pin (28) and the front end of the equalizer beam (26) is set shorter than the length (L 2 ) between the support pin (28) and the equalizer beam (26) rear end. ,
The front and rear wheel axles (17) suspend the central front part of the chassis (18) through the intermediate leaf spring (22) and the intermediate air spring (23),
The intermediate air spring (23) is connected to air supply / discharge means (31) for supplying and discharging compressed air to the intermediate air spring (23),
A load acting on the rear wheel axle (14) is detected by a rear load sensor (36),
A load acting on the front and rear wheel axles (17) is detected by an intermediate load sensor (37),
The front 2 characterized in that the controller (38) is configured to control the air supply / exhaust means (31) based on detection outputs of the rear load sensor (36) and the intermediate load sensor (37). A device for preventing reduction in driving force of the axle.
前々輪(11)が回転可能に取付けられ車台(18)前部を前側板ばね(19)を介して懸架する操向車軸である前々輪車軸(12)と、後輪(13)が固定され前記車台(18)後部を後側懸架装置(61)を介して懸架する駆動車軸である後輪車軸(14)と、前記前々輪車軸(12)から所定の間隔をあけて後方に設けられ前後輪(16)が回転可能に取付けられかつ前記車台(18)中央前部を中間板ばね(22)を介して懸架する操向車軸である前後輪車軸(17)と、前端が前記前側板ばね(19)の後端に連結され後端が前記中間板ばね(22)の前端に連結されかつ中央が支持ピン(28)を介して前記車台(18)に枢支されたイコライザビーム(56)とを備えた前二軸車において、
前記支持ピン(28)及び前記イコライザビーム(56)前端間の長さ(L1)と前記支持ピン(28)及び前記イコライザビーム(56)後端間の長さ(L2)とが同一に設定され、前記前々輪車軸(12)が前記前側板ばね(19)とともに前側空気ばね(51)を介して前記車台(18)前部を懸架し、
前記前側空気ばね(51)がエアタンク(52)にエア管路(53)により接続され、
前記前側空気ばね(51)内の圧力を所定値に保持する調圧弁(54)が前記エア管路(53)に設けられた
ことを特徴とする前2軸車の駆動力減少防止装置。
A front-wheel axle (12), which is a steered axle that has a front-wheel (11) rotatably mounted and suspends a front part of a chassis (18) via a front leaf spring (19), and a rear wheel (13) A rear wheel axle (14) that is fixed and suspends the rear portion of the chassis (18) via a rear suspension device (61), and a predetermined distance from the front wheel axle (12) to the rear. A front and rear wheel axle (17), which is a steering axle provided on the front and rear wheels (16) so as to be rotatably mounted and suspending the central front portion of the chassis (18) via an intermediate leaf spring (22), and a front end thereof An equalizer beam connected to the rear end of the front leaf spring (19), the rear end connected to the front end of the intermediate leaf spring (22), and the center pivotally supported on the chassis (18) via a support pin (28) (56)
The length (L 1 ) between the support pin (28) and the front end of the equalizer beam (56) is the same as the length (L 2 ) between the support pin (28) and the equalizer beam (56) and the rear end. Set, the front wheel axle (12) suspends the front part of the chassis (18) via the front air spring (51) together with the front leaf spring (19),
The front air spring (51) is connected to an air tank (52) by an air line (53),
A driving force reduction preventing device for a front two-shaft vehicle, characterized in that a pressure regulating valve (54) for maintaining the pressure in the front air spring (51) at a predetermined value is provided in the air pipe (53).
JP2001343340A 2001-11-08 2001-11-08 Front biaxial vehicle drive force reduction prevention device Expired - Fee Related JP3797918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001343340A JP3797918B2 (en) 2001-11-08 2001-11-08 Front biaxial vehicle drive force reduction prevention device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001343340A JP3797918B2 (en) 2001-11-08 2001-11-08 Front biaxial vehicle drive force reduction prevention device

Publications (2)

Publication Number Publication Date
JP2003146039A JP2003146039A (en) 2003-05-21
JP3797918B2 true JP3797918B2 (en) 2006-07-19

Family

ID=19157048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001343340A Expired - Fee Related JP3797918B2 (en) 2001-11-08 2001-11-08 Front biaxial vehicle drive force reduction prevention device

Country Status (1)

Country Link
JP (1) JP3797918B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103182913A (en) * 2013-03-05 2013-07-03 中国重汽集团福建海西汽车有限公司 Comfortable and long-service-life truck
KR101755890B1 (en) * 2015-11-20 2017-07-10 현대자동차주식회사 Suspension of front double axle truck

Also Published As

Publication number Publication date
JP2003146039A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
US6808035B1 (en) Tandem rear axle suspensions for trucks and truck-tractors
US8047551B2 (en) Multi-stage height control valve including position sensitive pilot signal and pressure boost for vehicle air springs
US6517094B1 (en) Hydraulic anti-roll suspension system for motor vehicles
US20090174158A1 (en) Suspension system
US20070273072A1 (en) Tandem suspension for steerable axles
US6308793B1 (en) Proportional load transfer valve for suspension control with 6×2 automatic traction control
JP3797918B2 (en) Front biaxial vehicle drive force reduction prevention device
US20050093260A1 (en) Non co-planar rear suspension for heavy trucks
JP3450513B2 (en) Drive axle weight addition device
JP2001206036A (en) Air pressure controlling device for air suspension
JP3610728B2 (en) Air suspension control device
WO1998030404A1 (en) Tandem rear axle suspensions for trucks and truck-tractors
JPH11348798A (en) Rear axle steering device
JPH10911A (en) Drive force adding device of rear two axle vehicle
JP3218577B2 (en) Axle load distribution device used for rear suspension of rear two-axle vehicle
JPH09300937A (en) Axle load control device
JP2959351B2 (en) Rear wheel 2-axle air suspension structure
JP3166581B2 (en) Trunnion type suspension
JPH06115338A (en) Air suspension device
JP2980799B2 (en) Rear suspension used for rear two-axle
JPH04126621A (en) Active suspension device for vehicle
JPH08142631A (en) Tandem suspension to be used for rear two-axle vehicle
JPH02262412A (en) Suspension apparatus of axle
JP2798282B2 (en) Height adjustment device
JPH10166834A (en) Suspension device for front and rear shafts of front two-axle car

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051226

A131 Notification of reasons for refusal

Effective date: 20060105

Free format text: JAPANESE INTERMEDIATE CODE: A131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060418

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060418

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees