JPH09108801A - Method for predicting and preventing breakout in continuous casting - Google Patents

Method for predicting and preventing breakout in continuous casting

Info

Publication number
JPH09108801A
JPH09108801A JP29055895A JP29055895A JPH09108801A JP H09108801 A JPH09108801 A JP H09108801A JP 29055895 A JP29055895 A JP 29055895A JP 29055895 A JP29055895 A JP 29055895A JP H09108801 A JPH09108801 A JP H09108801A
Authority
JP
Japan
Prior art keywords
temperature
breakout
mold
time
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29055895A
Other languages
Japanese (ja)
Other versions
JP3103498B2 (en
Inventor
Koichi Hirai
康一 平井
Keiichi Otaki
慶一 大滝
Hisayuki Shiraishi
久幸 白石
Isayoshi Hatano
今佐由 波多野
Koichi Dobashi
浩一 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP07290558A priority Critical patent/JP3103498B2/en
Publication of JPH09108801A publication Critical patent/JPH09108801A/en
Application granted granted Critical
Publication of JP3103498B2 publication Critical patent/JP3103498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately predict the breakout by arranging a plurality of temp. measuring elements to a mold in the casting direction to measure the temps., obtaining deviations from normal values when the measured values change, using the product of the deviations as a covariance value and monitoring. SOLUTION: The temp. detecting points 3a, 3b on the mold 1 are arranged in line in the casting direction. When the broken part 4 of a solidified shell passes through near the temp. detecting points 3a, 3b, the temps. are raised, and after passing through, the temps. are returned back to the original temp. changed as the hill-shape. In the case of parallel shifting the variation with time of the temp. detecting point 3a in the future direction on the time axis so that the delay of time becomes zero, similar temp. variation appears on the detecting points 3a, 3b in the same timing. The deviations ΔTA and ΔTB are obtd. from the temps. C, D at the normal time. The product of the deviations ΔTA and ΔTB is obtd. and made to the covariance value N. The covariance N becomes the large value only when the broken part 4 of the solidified shell and inclusion pass through. The breakout caused by constraint and the breakout caused by inclusion can surely be predicted by observing the covariance value N.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、連続鋳造法による
鋳造中に発生する凝固殻破断および介在物を起因するブ
レイクアウトの予知とその防止方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting breakout caused by solidified shell breakage and inclusions occurring during casting by a continuous casting method and a method for preventing the breakout.

【0002】[0002]

【従来の技術】連続鋳造の過程においては、鋳型に溶鋼
を注入した後、それを鋳型下方より連続的に引き抜いて
鋳片が製造されている。そして溶鋼の初期凝固状況によ
り、鋳片の品質のみならず、連続鋳造の生産性、安全性
および設備機能維持が大きく左右される。
2. Description of the Related Art In the process of continuous casting, a molten steel is poured into a mold and then continuously drawn from below the mold to produce a slab. Further, not only the quality of the slab but also the productivity, safety and maintenance of facility functions of the continuous casting are largely influenced by the initial solidification state of the molten steel.

【0003】溶鋼の鋳型内での初期凝固においては、鋳
型と溶鋼間のパウダーの枯渇等により、溶鋼が鋳型に直
接に触れて凝固殻が形成されたときに、この凝固殻が鋳
型に吸着し拘束される。そして、この吸着部分が鋳片の
引き抜きにより下方に引っ張られる際に、この吸着部分
を起点としてV字型に凝固殻が破断する。その後、破断
した凝固殻の間隙に流入した溶鋼により、新たに鋳型に
吸着した凝固殻が形成され、さらに破断するという過程
を繰り返しながら、凝固殻破断位置は引き抜きにより漸
次下方に移動し、最終的に鋳型を抜け出た後に、鋳片内
部の未凝固部分の溶鋼が流出する、いわゆる拘束性ブレ
イクアウトが発生する場合がある。
In the initial solidification of the molten steel in the mold, when the molten steel directly contacts the mold to form a solidified shell due to depletion of powder between the mold and the molten steel, the solidified shell is adsorbed to the mold. Be detained. When the adsorbed portion is pulled downward by pulling out the slab, the solidified shell breaks in a V shape starting from the adsorbed portion. After that, the molten steel flowing into the gap of the broken solidified shell forms a solidified shell that is newly adsorbed in the mold, and while repeating the process of further breaking, the solidified shell breaking position gradually moves downward by withdrawal, and finally After leaving the mold, molten steel in the unsolidified portion inside the slab may flow out, so-called restraint breakout may occur.

【0004】また、溶鋼の鋳型内での初期凝固におい
て、パウダーが鋳型と溶鋼間に異常に流入したり、凝固
殻の表面部に大型介在物が巻き込まれたりしたときに、
その部分だけ鋳型冷却による抜熱が充分になされず凝固
殻の厚みが薄くなる。そして、この凝固殻の薄い部分
が、鋳片の引き抜きにより鋳型を抜け出た後に、内部の
未凝固部分の溶鋼静圧に耐えきれずに、該介在物が脱落
すると同時に鋳片表面凝固殻が破断し、内部の溶鋼が流
出する、いわゆる介在物性ブレイクアウトが発生する場
合がある。
Further, in the initial solidification of molten steel in the mold, when powder is abnormally flowed between the mold and molten steel or a large inclusion is caught in the surface of the solidified shell,
Only in that part, heat removal by cooling the mold is not sufficient and the thickness of the solidified shell becomes thin. Then, the thin portion of the solidified shell, after exiting the mold by pulling out the slab, could not withstand the molten steel static pressure of the internal non-solidified portion, the inclusions fell off and the slab surface solidified shell broke at the same time. However, so-called inclusion breakout may occur in which molten steel flows out.

【0005】これらのブレイクアウトが発生した場合に
は、流出した高温の溶鋼により、連鋳機近傍の各種信号
線が切断されたり、設備が損傷を受けたりという発生直
後の直接的な被害のみならず、流出後凝固した地金によ
る、地金そのものの排除が不可能になったり、たとえこ
の作業が可能であっても、鋳型に残留した鋳片が完全に
凝固してしまい、引き抜きが不可能となったり、また流
出地金の溶削中に損傷した鋳造ロールの交換が必要にな
る等、発生後の復旧作業に長時間を要すという被害もあ
り、連続鋳造における生産性、安全性および設備機能維
持を大きく妨げている。さらに、介在物性ブレイクアウ
トについては、鋳型通過後溶鋼静圧に耐えきれなくなっ
て初めて該介在物が脱落して溶鋼が流出するために、鋳
型内にて凝固殻が破断して鋳型通過直後に溶鋼が流出す
る拘束性ブレイクアウトと比較して、流出する溶鋼量が
多くその分だけ被害も甚大なものとなる。
When these breakouts occur, it is only a direct damage immediately after the occurrence that various signal lines in the vicinity of the continuous casting machine are cut or the equipment is damaged by the high temperature molten steel flowing out. However, it is impossible to remove the metal itself due to the solidified metal after flowing out, or even if this work is possible, the slab remaining in the mold will be completely solidified and cannot be withdrawn. In addition, there is also the damage that it takes a long time for the recovery work after the occurrence, such as the replacement of the casting roll damaged during the smelting of the outflow metal, and the productivity, safety and safety in continuous casting. It greatly hinders maintenance of facility functions. Furthermore, regarding the inclusion breakout, since the inclusions fall out and the molten steel flows out only after it cannot withstand the molten steel static pressure after passing through the mold, the solidified shell ruptures in the mold and the molten steel immediately after passing the mold. The amount of molten steel that flows out is large compared to the restrictive breakout that flows out.

【0006】そこで、特開昭57−115959号公
報、特開昭57−115960号公報、特開昭57−1
15961号公報、特開昭57−115962号公報等
に、破断や介在物による凝固殻の異常をそれが、鋳型内
にある間に検知することにより拘束性もしくは介在物性
ブレイクアウトの発生を予知し、直ちに引き抜きの停止
または減速を指示して、鋳型内での凝固殻の成長を促
し、これらのブレイクアウトを未然に防止する方法が提
案されている。これらは何れも鋳型に取り付けられた複
数の温度測定素子の温度の時系列変化に現れる、ある異
常な温度変化パターンを捕捉することによってブレイク
アウトの発生を予知するものである。
Therefore, JP-A-57-115959, JP-A-57-115960, and JP-A-57-1
No. 15961, JP-A-57-115962, etc. predict the occurrence of restraint or inclusion breakout by detecting breakage or abnormality of solidified shell due to inclusion while it is in the mold. There has been proposed a method of immediately instructing to stop or decelerate withdrawal to promote the growth of a solidified shell in a mold and prevent these breakouts. All of these are for predicting the occurrence of breakout by capturing a certain abnormal temperature change pattern that appears in the time series change in temperature of a plurality of temperature measuring elements attached to the mold.

【0007】[0007]

【発明が解決しようとする課題】しかし、これらの予知
方法には精度面で問題点がある。それは鋳型温度の変化
を、基準温度からの温度偏差と、温度偏差の継続してい
る時間、および温度変化率により捕捉しようとしている
ためで、具体的には二つの弊害が生じている。一つは温
度偏差を算出する際に時系列平滑値を基準温度としてい
るために、鋳造条件による外乱や縦割れの発生等により
鋳型温度が安定していない場合に温度偏差が正確に把握
できないという点であり、もう一つは鋳型の鋳造方向に
多数の温度測定素子を設置し、これで測定した鋳型温度
をもとに予知する場合には、判定定数が非常に多く調節
の負荷が高くなるために、充分に調節することが困難と
なる点である。
However, these prediction methods have a problem in terms of accuracy. This is because the change in the mold temperature is to be captured by the temperature deviation from the reference temperature, the time during which the temperature deviation continues, and the rate of temperature change, and specifically, two adverse effects occur. One is that since the time-series smoothed value is used as the reference temperature when calculating the temperature deviation, the temperature deviation cannot be accurately grasped when the mold temperature is not stable due to disturbances or vertical cracks caused by casting conditions. Another point is that if a large number of temperature measuring elements are installed in the casting direction of the mold and prediction is made based on the measured mold temperature, the judgment constant is very large and the adjustment load becomes high. Therefore, it is difficult to adjust it sufficiently.

【0008】このためには、凝固殻破断部や介在物が鋳
型内にある間に、拘束性もしくは介在物性ブレイクアウ
トの発生を正確にかつ迅速に予知できるものであり、こ
れをもとにブレイクアウトの防止を確実に図ることが必
要である。そしてその予知方法は容易に調節できなけれ
ばならない。つまり判定に用いる定数をできるだけ少な
くする必要がある。
For this purpose, it is possible to accurately and promptly predict the occurrence of restraint or inclusion breakout while the solidified shell rupture portion and inclusions are in the mold, and based on this, breakage can be predicted. It is necessary to make sure to prevent out. And the prediction method must be easily adjustable. That is, it is necessary to reduce the constant used for the determination as much as possible.

【0009】[0009]

【課題を解決するための手段】本発明は、上記課題を解
決するためになされたもので、その手段1は、連続鋳造
機の鋳型に、その鋳造方向に複数の温度測定素子を設置
して鋳型温度を測定し、その測定値が上昇した際、その
上昇開始点からの1次遅れ温度を求め、前記測定した鋳
型温度とこの1次遅れ温度から温度差を鋳造方向の温度
測定素子別に求め、該鋳造方向上流側の温度測定素子位
置における前記温度差と、該上流側温度測定素子位置と
下流側温度測定素子位置間の距離および鋳片の引抜速度
から求めた鋳片の移動時間後の該下流側温度測定素子位
置における前記温度差との積算値を算出し、この積算値
が所定値以上になったときに凝固殻破断に起因する拘束
性ブレイクアウトの発生を予知する方法にある。
Means for Solving the Problems The present invention has been made to solve the above problems. Means 1 is to install a plurality of temperature measuring elements in a casting direction of a mold of a continuous casting machine. The mold temperature is measured, and when the measured value rises, the first-order lag temperature from the rising start point is obtained, and the temperature difference is obtained from the measured mold temperature and the first-order lag temperature for each temperature measuring element in the casting direction. The temperature difference in the temperature measuring element position on the upstream side in the casting direction, the distance between the upstream temperature measuring element position and the downstream temperature measuring element position, and the moving time of the slab obtained from the slab drawing speed In the method, an integrated value with the temperature difference at the position of the downstream temperature measuring element is calculated, and when the integrated value becomes a predetermined value or more, the occurrence of a restrictive breakout due to the fracture of the solidified shell is predicted.

【0010】また手段2は、連続鋳造機の鋳型に、その
鋳造方向に複数の温度測定素子を設置して鋳型温度を測
定し、その測定値が降下した際、その降下開始点からの
1次遅れ温度を求め、この1次遅れ温度と前記測定した
鋳型温度から温度差を鋳造方向の温度測定素子別に求
め、該鋳造方向上流側の温度測定素子位置における前記
温度差と、該上流側温度測定素子位置と下流側温度測定
素子位置間の距離および鋳片の引抜速度から求めた鋳片
の移動時間後の該下流側温度測定素子位置における前記
温度差との積算値を算出し、この積算値が所定値以上に
なったときに介在物に起因する介在物性ブレイクアウト
の発生を予知する方法にある。
Further, the means 2 measures the mold temperature by installing a plurality of temperature measuring elements in the casting direction in the mold of the continuous casting machine, and when the measured value drops, the primary from the descent start point The delay temperature is obtained, and the temperature difference is obtained for each temperature measuring element in the casting direction from the primary delay temperature and the measured mold temperature, and the temperature difference at the temperature measuring element position on the upstream side in the casting direction and the upstream side temperature measurement Calculate the integrated value of the temperature difference at the downstream temperature measuring element position after the moving time of the cast piece obtained from the distance between the element position and the downstream temperature measuring element position and the withdrawal speed of the cast piece, and this integrated value Is a method of predicting the occurrence of inclusion breakout caused by inclusions when the value exceeds a predetermined value.

【0011】そして手段1にて求めた拘束性ブレイクア
ウトの指標および手段2にて求めた介在物性ブレイクア
ウトの指標である積算値が、所定値以上になったとき
に、この積算値の大きさに応じて鋳片の引抜速度を調整
してブレイクアウトの発生を未然に防止することを特徴
とする連続鋳造における拘束性および介在物性ブレイク
アウトの防止方法にある。
Then, when the integrated value, which is the index of the constraint breakout obtained by the means 1 and the index of the intervening property breakout obtained by the means 2, becomes a predetermined value or more, the magnitude of this integrated value According to the above, there is provided a method for preventing the breakout of restraint properties and inclusions in continuous casting, which is characterized in that the occurrence of breakout is prevented by adjusting the drawing speed of the slab.

【0012】[0012]

【作用】まず、鋳型内での初期凝固中に発生した凝固殻
破断を検知することによって、拘束性ブレイクアウトを
予知する方法について、図1,2を参照して説明する。
図2は鋳型1に設置した温度検出列2の1例を示したも
ので、鋳造方向に複数の温度検出点3a,3bを持つ。
凝固殻破断部4では鋳型に直接溶鋼が接触するため、こ
れが温度検出列2b近辺を通過する際、温度検出点3a
と3bの時系列温度変化は、図1(a)に示すような、
正常時の温度から大きく上昇して後に元に戻る(いわゆ
る山型)という両者相似な温度変化パターンが、3a,
3bの順に通過するタイミングに合わせて、つまり引抜
速度による時間遅れを伴って現れる。
First, a method for predicting a constrained breakout by detecting a solidified shell rupture occurring during initial solidification in a mold will be described with reference to FIGS.
FIG. 2 shows an example of the temperature detection line 2 installed in the mold 1, which has a plurality of temperature detection points 3a and 3b in the casting direction.
Since the molten steel directly contacts the mold at the solidified shell rupture portion 4, when the molten steel passes near the temperature detection row 2b, the temperature detection point 3a
As shown in FIG. 1 (a), the time series temperature changes of 3 and 3b are
There is a similar temperature change pattern of 3a, in which the temperature greatly increases from the normal temperature and then returns to the original value (so-called mountain shape).
It appears in time with the passage of 3b, that is, with a time delay due to the drawing speed.

【0013】この温度変化パターンに対して、引き抜き
による時間遅れが0になるように、温度検出点3aの時
系列変化を時間軸上で未来の方向に平行移動させると、
図1(b)に示すように、相似な温度変化が同一タイミ
ングで現れ、この温度変化を正常時の温度C(t),D
(t)からの上昇分つまり偏差ΔTA,ΔTBで捕捉す
る。そして偏差ΔTAとΔTBの積により算出した、い
わゆる共分散値N(t)が図1(c)に示すように、凝
固殻破断部が通過するときにのみ大きな値となるので、
拘束性ブレイクアウトの発生を正確に予知する際の指標
として非常に適している。
With respect to this temperature change pattern, when the time series change of the temperature detection point 3a is translated in the future direction on the time axis so that the time delay due to extraction becomes 0,
As shown in FIG. 1 (b), similar temperature changes appear at the same timing, and these temperature changes are expressed as normal temperature C (t), D
The increase from (t), that is, the deviations ΔTA and ΔTB are captured. The so-called covariance value N (t) calculated by the product of the deviations ΔTA and ΔTB becomes large only when the solidified shell fracture portion passes, as shown in FIG. 1 (c).
It is very suitable as an index for accurately predicting the occurrence of restraint breakout.

【0014】次に、鋳型内での初期凝固中に凝固殻に巻
き込まれた介在物を検知することによって、介在物性ブ
レイクアウトを予知する方法について、図10,11を
参照して説明する。図11は鋳型1に設置した温度検出
列2の1例を示したもので、鋳造方向に複数の温度検出
点3a,3bを持つ。凝固殻に巻き込まれた介在物5
は、いわゆる抜熱不良の部分であり、これが温度検出列
2a近辺を通過する際、温度検出点3aと3bの時系列
温度変化は、図10(a)に示すような、正常時の温度
から大きく下降して後に上昇して元に戻る(いわゆる谷
型)という両者相似な温度変化パターンが、3a,3b
の順に通過するタイミングに合わせて、つまり引抜速度
による時間遅れを伴って現れる。
Next, a method of predicting the breakout of inclusions by detecting inclusions caught in the solidified shell during initial solidification in the mold will be described with reference to FIGS. FIG. 11 shows an example of the temperature detection line 2 installed in the mold 1, which has a plurality of temperature detection points 3a and 3b in the casting direction. Inclusion 5 caught in the solidified shell
Is a so-called heat removal failure portion, and when this passes through the vicinity of the temperature detection row 2a, the time-series temperature change at the temperature detection points 3a and 3b changes from the normal temperature as shown in FIG. A similar temperature change pattern of 3a and 3b, in which the temperature greatly descends, then rises, and then returns to the original (so-called valley type)
It appears at the timing of passing in the order of, that is, with a time delay due to the drawing speed.

【0015】この温度変化パターンに対して、引き抜き
による時間遅れが0になるように、温度検出点3aの時
系列変化を時間軸上で未来の方向に平行移動させると、
図10(b)に示すように、相似な温度変化が同一タイ
ミングで現れ、この温度変化を正常時の温度C(t),
D(t)からの下降分つまり偏差ΔTA,ΔTBで捕捉
する。そして偏差ΔTAとΔTBの積により算出した、
いわゆる共分散値N(t)が図10(c)に示すよう
に、凝固殻に巻き込まれた介在物が通過するときにのみ
大きな値となるので、介在物ブレイクアウトの発生を正
確に予知する際の指標として非常に適している。
With respect to this temperature change pattern, when the time series change of the temperature detection point 3a is moved in parallel in the future direction on the time axis so that the time delay due to extraction becomes 0,
As shown in FIG. 10 (b), similar temperature changes appear at the same timing, and this temperature change is represented by the normal temperature C (t),
The amount of decrease from D (t), that is, the deviations ΔTA and ΔTB are captured. And calculated by the product of the deviation ΔTA and ΔTB,
The so-called covariance value N (t) becomes a large value only when the inclusions caught in the solidified shell pass, as shown in FIG. 10 (c), so that the occurrence of inclusion breakout can be accurately predicted. It is very suitable as an index for the occasion.

【0016】また、山型もしくは谷型の温度変化が大き
いほど凝固殻の厚みが薄いことが考えられ、実際温度上
昇が大きいほど拘束性ブレイクアウトが、温度下降が大
きいほど介在物性ブレイクアウトが、それぞれ発生する
確率が高くなることが経験的に確認されている。これら
のブレイクアウトを未然に防止するには、凝固殻の充分
な成長を促すために凝固殻破断部、もしくは介在物が鋳
型内に留まる時間を長くする、つまり引き抜きの速度低
下または停止を指示する必要がある。そして温度変化が
大きければ共分散値も大きくなるため、共分散値により
凝固殻の厚みがどれだけ薄いかをある程度推測できるの
で、共分散値の大きさに応じて最低限の引抜速度の低下
とすることが可能となり、鋳片の品質および生産性への
影響を最低限に押さえることができる。
Further, it is considered that the thickness of the solidified shell becomes thinner as the peak-shaped or valley-shaped temperature change is larger, and the larger the temperature rise is, the more restrictive breakout is caused, and the larger the temperature decrease is, the more the intervening property breakout is caused. It has been empirically confirmed that the probability of each occurrence is high. To prevent these breakouts, the breakage of the solidified shell or the inclusions in the mold should be extended to promote sufficient growth of the solidified shell. There is a need. Since the covariance value increases with a large temperature change, it is possible to estimate to some extent how thin the solidified shell is from the covariance value. Therefore, it is possible to minimize the influence on the quality and productivity of the slab.

【0017】[0017]

【実施例】本発明の実施例を、以下に(1)〜(7)式
および図1〜18を参照して説明する。まず、拘束性ブ
レイクアウトの予知および防止方法について説明し、次
に介在物性ブレイクアウトの予知および防止方法につい
ては、拘束性ブレイクアウトとの相違点を中心に説明す
る。
EXAMPLES Examples of the present invention will be described below with reference to equations (1) to (7) and FIGS. First, a method for predicting and preventing a restrictive breakout will be described, and then a method for predicting and preventing an intervening property breakout will be described focusing on differences from the restrictive breakout.

【0018】まず、拘束性ブレイクアウトの原因とな
る、鋳型内で初期凝固中に発生する凝固殻破断の指標と
して用いる、共分散値の算出方法について具体的に述べ
る。これは、時刻tにおける共分散値N(t)で表さ
れ、数式で表すと次の(1)式のようになる。
First, the method of calculating the covariance value, which is used as an index of solidified shell rupture occurring during initial solidification in the mold, which causes the restraint breakout, will be specifically described. This is represented by the covariance value N (t) at time t, and is expressed by the following equation (1).

【0019】 N(t)=ΔTA(t−v(t))×ΔTB(t) ・・・(1−1) ΔTA(t)=A(t)−C(t) ・・・(1−2) ΔTB(t)=B(t)−D(t) ・・・(1−3) ただし、ΔTA(t):時刻tにおける温度検出点3a
の温度偏差(℃) ΔTB(t):時刻tにおける温度検出点3bの温度偏
差(℃) v(t) :時刻tにおける引き抜き速度による温度
検出点3a,3b間の時間遅れ(秒) A(t) :時刻tにおける温度検出点3aの温度
(℃) B(t) :時刻tにおける温度検出点3bの温度
(℃) C(t) :時刻tにおける温度検出点3aの正常時
の温度(℃) D(t) :時刻tにおける温度検出点3bの正常時
の温度(℃) 式中のt−v(t)は時刻がtよりv(t)秒前である
ことを示しており、これが時間軸上の平行移動にあた
る。そして引抜速度による温度検出点3a,3b間の時
間遅れv(t)を数式で表すと次の(2)式のようにな
る。
N (t) = ΔTA (t−v (t)) × ΔTB (t) (1-1) ΔTA (t) = A (t) −C (t) (1− 2) ΔTB (t) = B (t) -D (t) (1-3) where ΔTA (t): temperature detection point 3a at time t.
Temperature deviation (° C.) ΔTB (t): Temperature deviation of temperature detection point 3b at time t (° C.) v (t): Time delay between the temperature detection points 3a and 3b due to extraction speed at time t (second) A ( t): temperature of temperature detection point 3a at time t (° C) B (t): temperature of temperature detection point 3b at time t (° C) C (t): temperature of temperature detection point 3a at time t at normal time ( C) D (t): Temperature at normal temperature of temperature detection point 3b at time t (° C) tv (t) in the formula indicates that the time is v (t) seconds before t, This corresponds to the parallel movement on the time axis. Then, the time delay v (t) between the temperature detection points 3a and 3b depending on the drawing speed is expressed by the following formula (2).

【0020】 v(t)=L/W(t) ・・・(2) ただし、v(t):時刻tにおける引抜速度による温度
検出点3a,3b間の時間遅れ(秒) L :温度検出点3a,3b間の距離(m) W(t):時刻tにおける引抜速度(m/秒) また、偏差ΔTA,ΔTBは、急激な温度の上昇のとき
にのみ大きくなるように、正常時の温度をその時刻での
温度と1次遅れ温度の低い方となるようにしている。こ
れを数式で表すと次の(3),(4)式のようになる。
V (t) = L / W (t) (2) where v (t): time delay (seconds) between the temperature detection points 3a and 3b due to the drawing speed at time t L: temperature detection Distance between points 3a and 3b (m) W (t): Extraction speed at time t (m / sec) Further, the deviations ΔTA and ΔTB are set so as to increase only when the temperature suddenly rises. The temperature is set to be the lower of the temperature at that time and the first-order lag temperature. When this is expressed by a mathematical expression, the following expressions (3) and (4) are obtained.

【0021】 C(t)=min{A(t),E(t)} ・・・(3) D(t)=min{B(t),F(t)} ・・・(4) ただし、E(t):時刻tにおける温度検出点3aの1
次遅れ温度(℃) F(t):時刻tにおける温度検出点3bの1次遅れ温
度(℃) 式中の1次遅れ温度は温度検出点3の、今回サンプリン
グ温度A(t),B(t)と、前回サンプリング温度に
より算出した正常時の温度C(t−Δt),D(t−Δ
t)と、1次遅れ係数より次の(5),(6)式を用い
て求める。
C (t) = min {A (t), E (t)} (3) D (t) = min {B (t), F (t)} (4) , E (t): 1 of the temperature detection point 3a at time t
Next delay temperature (° C) F (t): First delay temperature (° C) at temperature detection point 3b at time t The first delay temperature in the formula is the current sampling temperature A (t), B (of temperature detection point 3). t) and the temperatures C (t-Δt) and D (t-Δ) at the normal time calculated from the previous sampling temperature.
t) and the first-order lag coefficient are obtained using the following equations (5) and (6).

【0022】 E(t)=ALFA×A(t)+(1−ALFA)×C(t−Δt) ・・・(5) F(t)=ALFA×B(t)+(1−ALFA)×D(t−Δt) ・・・(6) ただし、ALFA:時刻tにおける1次遅れ係数 Δt :サンプリング周期(秒) そして1次遅れ係数を次の(7)式より求める。E (t) = ALFA × A (t) + (1-ALFA) × C (t−Δt) (5) F (t) = ALFA × B (t) + (1-ALFA) × D (t−Δt) (6) However, ALFA: First-order delay coefficient at time t Δt: Sampling period (second) Then, the first-order delay coefficient is calculated from the following equation (7).

【0023】 ALFA=1/{1+TAU/Δt} ・・・(7) ただし、TAU:時刻tにおける1次遅れ時定数(秒) この時定数を、温度検出点3における温度が上昇してい
る部分の継続時間より長くすれば、凝固殻破断部の通過
による温度変化を容易に捕捉できる。以上7つの式より
共分散値を求める際に、調節を必要とする定数は1次遅
れ時定数のみで、この値も温度変化パターンより容易に
決定できるため、実質的には調節する必要はない。
ALFA = 1 / {1 + TAU / Δt} (7) However, TAU: first-order lag time constant at time t (seconds) This time constant is the portion where the temperature at the temperature detection point 3 is increasing. If it is longer than the duration of, the temperature change due to passage through the solidified shell rupture portion can be easily captured. When obtaining the covariance value from the above seven equations, the only constant that needs to be adjusted is the first-order lag time constant, and this value can also be easily determined from the temperature change pattern, so there is virtually no need for adjustment. .

【0024】上記に示す方法により求めた共分散値の時
系列推移に対して、予め設定しておいた拘束性ブレイク
アウト発生限界値と比較してより大きな場合に、初めて
拘束性ブレイクアウトとして認識し、この凝固殻破断部
が鋳型通過直後にブレイクアウトとなるであろうと予測
することで、拘束性ブレイクアウトの発生を予知するこ
とができる。この拘束性ブレイクアウト発生限界値は調
節を要する定数ではあるが、温度変化パターンより容易
に見積もることができるため、実質的には調節する必要
がない。
The time-series transition of the covariance value obtained by the above method is recognized as a constraint breakout for the first time when it is larger than the preset limit value of constraint breakout occurrence, which is set in advance. However, it is possible to predict the occurrence of the constrained breakout by predicting that this solidified shell rupture portion will be a breakout immediately after passing through the mold. This restraint breakout occurrence limit value is a constant that requires adjustment, but since it can be easily estimated from the temperature change pattern, it does not substantially need to be adjusted.

【0025】さらに、この共分散値が操業上の外乱より
受ける影響について述べ、誤検知の有無について説明す
る。鍋交換や鍋注入末期による溶鋼温度の変動と人為的
な湯面変更については、溶鋼温度の下降や湯面の上昇の
場合は、温度検出点の温度が下降し正常時の温度がこれ
に追随するため、偏差が0となり誤検知を避けることが
でき、また溶鋼温度の上昇や湯面の下降の場合も、温度
検出点の温度が上昇するがその傾きが緩やかであるた
め、正常時の温度がこれに追随し偏差が0となり誤検知
を避けることができる。
Further, the influence of this covariance value due to operating disturbance will be described, and the presence or absence of erroneous detection will be described. Regarding changes in molten steel temperature and artificial changes in the molten metal level at the end of ladle replacement and artificial pouring, when the molten steel temperature decreases or the molten metal level rises, the temperature at the temperature detection point decreases and the normal temperature follows this. Therefore, the deviation becomes 0 and erroneous detection can be avoided. Also, when the molten steel temperature rises or the molten metal surface falls, the temperature at the temperature detection point rises but the slope is gentle, so However, following this, the deviation becomes 0 and erroneous detection can be avoided.

【0026】人為的でない湯面変動についても、湯面の
上昇の場合は、温度検出点の温度が下降し正常時の温度
がこれに追随するため、偏差が0となり誤検出を避ける
ことができ、また湯面の下降の場合も、温度検出点の温
度が急激に上昇するため偏差が生じるが、この偏差は湯
面から距離のある温度検出点については、小さな値とな
るため偏差の積をとる共分散値は、小さな値となり誤検
知を避けることができる。
Even for unnatural fluctuations in the surface of the molten metal, when the surface of the molten metal rises, the temperature at the temperature detection point decreases and the normal temperature follows this, so the deviation becomes 0 and erroneous detection can be avoided. Also, when the level of the molten metal drops, a deviation occurs because the temperature at the temperature detection point rises sharply, but this deviation is a small value for the temperature detection point that is a distance from the molten metal surface, so the product of the deviations is calculated. The covariance value to be taken will be a small value and erroneous detection can be avoided.

【0027】引抜速度の変動についても、その下降の場
合は、温度検出点の温度が下降し正常時の温度がこれに
追随するため、偏差が0となり誤検知を避けることがで
きるが、上昇の場合は全ての温度検出点の温度が上昇す
るため偏差が生じるが、急激な上昇というものが操業の
安全上有り得ないため、正常時の温度がこれに追随し偏
差が0となり誤検知を避けることができる。このように
して求めた共分散値は凝固殻破断部が通過するときにだ
け大きな値となり、拘束性ブレイクアウトの指標として
非常に適しているということができる。
Regarding the fluctuation of the drawing speed, when the drawing speed is decreased, the temperature at the temperature detection point is decreased and the temperature in the normal state follows this, so that the deviation becomes 0 and erroneous detection can be avoided. In this case, deviations occur because the temperature at all temperature detection points rises, but a sudden increase in temperature is not possible for operational safety, so the normal temperature follows this and the deviation becomes 0, and erroneous detection should be avoided. You can The covariance value thus obtained becomes large only when the solidified shell rupture portion passes, and it can be said that it is very suitable as an index of the restraint breakout.

【0028】拘束性ブレイクアウトの発生を予知、そし
て防止するための処理フローを図3を基に説明する。図
中、100は鋳型1における温度検出列2a〜2dで検
出された鋳型温度と、連続鋳造機のピンチロール(いず
れも図示せず)で検出した鋳片引抜速度Wを入力し、こ
れをもとに時々刻々共分散値N(t)を算出する共分散
値算出部、101は共分散値算出部100で演算した共
分散値N(t)を、凝固殻破断の指標として操業監視画
面CRTに出力すると共に、予め設定した拘束性ブレイ
クアウト発生限界値T0と比較し、前記共分散値N
(t)が拘束性ブレイクアウト発生限界値T0より大き
いときに、拘束性ブレイクアウト発生を予知する拘束性
ブレイクアウト発生予知判定部、102は前記拘束性ブ
レイクアウト発生予知判定部101から前記共分散値N
(t)を入力すると、必要に応じて引き抜きの減速また
は停止を指示して、拘束性ブレイクアウトの発生を未然
に防止する拘束性ブレイクアウト防止制御部、103は
前記拘束性ブレイクアウト発生予知判定部101から拘
束性ブレイクアウト発生予知結果を入力すると、必要に
応じて警報を鳴らす警報装置である。
A processing flow for predicting and preventing the occurrence of the restrictive breakout will be described with reference to FIG. In the figure, 100 is the mold temperature detected by the temperature detection rows 2a to 2d of the mold 1 and the slab drawing speed W detected by a pinch roll (not shown) of the continuous casting machine. Further, a covariance value calculation unit for calculating the covariance value N (t) every moment, 101 is the covariance value N (t) calculated by the covariance value calculation unit 100 as an index of solidified shell rupture, and the operation monitoring screen CRT To the covariance value N by comparing with a preset constraint breakout occurrence limit value T0.
When (t) is larger than the restrictive breakout occurrence limit value T0, the restrictive breakout occurrence prediction determination unit predicts the occurrence of restrictive breakout, and 102 is the covariance from the restrictive breakout occurrence prediction determination unit 101. Value N
When (t) is input, a restraint breakout prevention control unit 103 for instructing deceleration or stop of pulling out as necessary to prevent occurrence of restraint breakout, 103 is the restraint breakout occurrence prediction determination. It is an alarm device that sounds an alarm when necessary when a constraint breakout occurrence prediction result is input from the unit 101.

【0029】前記共分散値算出部100の処理フローを
図4に示すフローチャートで説明する。まず、前記鋳型
1の温度検出点3a,3bで検出された鋳型温度A
(t),B(t)とピンチロールで測定した鋳片の引抜
速度W(t)を読み込む(S41)。この読み込んだ時
刻tにおける引抜速度W(t)による温度検出点3aと
3b間の時間遅れ、すなわち、鋳片のある位置が温度検
出点3aを通過して温度検出点3bに達する時間v
(t)を前記(2)式により算出する(S42)。
The processing flow of the covariance value calculation unit 100 will be described with reference to the flowchart shown in FIG. First, the mold temperature A detected at the temperature detection points 3a and 3b of the mold 1
(T), B (t) and the drawing speed W (t) of the slab measured by the pinch roll are read (S41). The time delay between the temperature detection points 3a and 3b due to the drawing speed W (t) at the read time t, that is, the time v at which a position of the slab reaches the temperature detection point 3b after passing through the temperature detection point 3a.
(T) is calculated by the equation (2) (S42).

【0030】そして、予め設定した温度検出点3a,3
bのサンプリング周期Δtと、時刻tにおける1次遅れ
定数TAUをもとに、前記(7)式により1次遅れ係数
ALFAを算出する(S43)。さらに、前回のサンプ
リング時に演算して求めて記憶した正常時の温度(C
(t−Δt),D(t−Δt))、今回のサンプリング
時の温度検出点3a,3bの鋳型温度A(t),B
(t)、上記演算した1次遅れ係数ALFAを基に、前
記(5)式と(6)式により時刻tにおける温度検出点
3aの1次遅れ温度E(t)と、時刻tにおける温度検
出点3bの1次遅れ温度F(t)を算出する(S44,
45)。そして、この両1次遅れ温度E(t),F
(t)と、前記S41で読み込んだ温度検出点3a,3
bの鋳型温度A(t),B(t)にて、前記(3),
(4)式により正常時の温度C(t),D(t)を求め
る(S46)。
Then, preset temperature detection points 3a, 3
Based on the sampling period Δt of b and the first-order delay constant TAU at time t, the first-order delay coefficient ALFA is calculated by the equation (7) (S43). Furthermore, the normal temperature (C
(T-Δt), D (t-Δt)), mold temperatures A (t), B at the temperature detection points 3a, 3b at the time of this sampling.
(T), based on the calculated first-order lag coefficient ALFA, the first-order lag temperature E (t) at the temperature detection point 3a at the time t and the temperature detection at the time t by the equations (5) and (6). The first-order lag temperature F (t) at the point 3b is calculated (S44,
45). Then, both of these first-order lag temperatures E (t) and F
(T) and the temperature detection points 3a and 3 read in S41.
At the mold temperatures A (t) and B (t) of b, the above (3),
The temperatures C (t) and D (t) at the normal time are calculated by the equation (4) (S46).

【0031】このようにして求めた正常時の温度を記憶
(セット)して(S47)、次回サンプリング時にS4
4にて用いる。
The normal temperature thus obtained is stored (set) (S47), and S4 is set at the next sampling.
Used in 4.

【0032】そして、前記(1)式により共分散値N
(t)を算出する(S48,S49)ものであり、この
模式図を図1の(a),(b)に示す。すなわち、前記
時刻tより前記温度検出点3a,3b間の時間遅れv
(t)前における温度検出点3aで測定した鋳型温度A
(t−v(t))と、前記正常時の温度C(t−v
(t))の偏差ΔTA(t−v(t))を、前記(1−
2)式で求めると共に時刻tにおける温度検出点3bで
測定した鋳型温度B(t)と、前記正常時の温度D
(t)の偏差ΔTB(t)を前記(1−3)式で求める
(S48)。次に、前記偏差ΔTA(t−v(t))と
ΔTB(t)を積算、つまり、前記(1−1)式により
共分散値N(t)を算出(S49)し、S4Aにてセッ
ト(記憶)して、操業状況監視画面CRTに出力して操
業者に操業状況の認識を促すと共に、拘束性ブレイクア
ウト発生予知判定部101および拘束性ブレイクアウト
防止制御部102に出力する。
Then, the covariance value N is calculated by the above equation (1).
(T) is calculated (S48, S49), and a schematic diagram thereof is shown in (a) and (b) of FIG. That is, a time delay v between the temperature detection points 3a and 3b from the time t
(T) Mold temperature A measured at the temperature detection point 3a before
(T-v (t)) and the temperature C (t-v) in the normal state.
The deviation ΔTA (t-v (t)) of (t)) is calculated as (1-
2) the mold temperature B (t) measured at the temperature detection point 3b at time t and the temperature D in the normal state
The deviation ΔTB (t) of (t) is calculated by the equation (1-3) (S48). Next, the deviation ΔTA (t-v (t)) and ΔTB (t) are integrated, that is, the covariance value N (t) is calculated by the equation (1-1) (S49) and set in S4A. It is stored (stored) and is output to the operation status monitoring screen CRT to prompt the operator to recognize the operation status, and is output to the restrictive breakout occurrence prediction determination unit 101 and the restrictive breakout prevention control unit 102.

【0033】次に、拘束性ブレイクアウト発生予知判定
部101の処理フローを図5に示すフローチャートで説
明する。この模式図を図1の(c)に示す。まず、上記
共分散値算出部100で算出された共分散値N(t)を
読み込んで凝固殻破断の指標として認識し(S51)、
その値を予め設定した拘束性ブレイクアウト発生限界値
T0と比較して、拘束性ブレイクアウト発生限界値T0
以内か否かを判定し(S52)、拘束性ブレイクアウト
発生限界値以内の場合には拘束性ブレイクアウト発生予
知無しとセット(記憶)し(S53)、拘束性ブレイク
アウト発生限界値T0より大きい場合には、拘束性ブレ
イクアウト発生予知とセット(記憶)する(S54)。
そして、拘束性ブレイクアウト発生予知判定結果を操業
状況監視画面CRTに出力すると共に、拘束性ブレイク
アウト防止制御部102に出力し、さらに、拘束性ブレ
イクアウト発生予知と判定した場合には警報装置103
に出力する。
Next, the processing flow of the restraint breakout occurrence prediction determination unit 101 will be described with reference to the flowchart shown in FIG. This schematic diagram is shown in FIG. First, the covariance value N (t) calculated by the covariance value calculation unit 100 is read and recognized as an index of solidified shell rupture (S51),
The value is compared with a preset restrictive breakout occurrence limit value T0, and the restrictive breakout occurrence limit value T0 is compared.
It is determined whether or not it is within the constraint breakout occurrence limit value (S52), and if it is within the constraint breakout occurrence limit value, it is set (memorized) as no constraint breakout occurrence prediction (S53) and is larger than the constraint breakout occurrence limit value T0. In this case, it is set (stored) with the predictive occurrence of restrictive breakout (S54).
Then, the restraint breakout occurrence prediction determination result is output to the operation status monitoring screen CRT and is also output to the restraint breakout prevention control unit 102. Further, when it is determined that the restraint breakout occurrence prediction is made, an alarm device 103 is output.
Output to

【0034】さらに、拘束性ブレイクアウト防止制御部
102の処理フローを図6に示すフローチャートにより
説明する。まず、拘束性ブレイクアウト発生予知判定部
101にセットされた拘束性ブレイクアウト発生予知判
定結果を読み込み(S61)、拘束性ブレイクアウト発
生予知無しの情報か、拘束性ブレイクアウト発生予知の
情報かを判別し(S62)、拘束性ブレイクアウト発生
予知無しの情報であった場合には何もしない。しかし、
拘束性ブレイクアウト発生予知の情報であった場合に
は、共分散値算出部100にセットされた共分散値を読
み込み、その数値の大きさに応じて、予め設定した引抜
速度を選択して指示する。
Further, the processing flow of the restrictive breakout prevention control unit 102 will be described with reference to the flowchart shown in FIG. First, the restraint breakout occurrence prediction determination result set in the restraint breakout occurrence prediction determination unit 101 is read (S61) to determine whether there is no restraint breakout occurrence prediction information or restraint breakout occurrence prediction information. If it is determined (S62) and the information indicates that there is no predictive occurrence of a restrictive breakout, nothing is done. But,
If the information is predictive of occurrence of restraint breakout, the covariance value set in the covariance value calculation unit 100 is read, and a preset drawing speed is selected and instructed according to the magnitude of the numerical value. To do.

【0035】図7は、共分散値の大きさに応じて引抜速
度を設定する際の一例で、図1(c)に示した共分散値
の時系列推移のうちで、共分散値が増加中の部分につい
ての時系列拡大図である。図中の拘束性ブレイクアウト
発生限界値T0になる時刻がt0で、共分散値がT0よ
りも大きくなった場合のT1,T2,T3になる時刻が
それぞれt1,t2,t3である。そして拘束性ブレイ
クアウトの発生を防止するために、図中右方に共分散値
の大きさに応じて引き抜きの速度低下または停止を指示
する際の設定値を示す。凝固殻破断部が通過する際に時
刻tにおける共分散値N(t)が図に示すように変化す
る場合に、以下のように引き抜きの速度低下または停止
を指示する。
FIG. 7 shows an example of setting the drawing speed according to the magnitude of the covariance value. In the time series transition of the covariance value shown in FIG. 1C, the covariance value increases. It is a time series enlarged view about the inside part. In the figure, the time at which the restrictive breakout occurrence limit value T0 is reached is t0, and the times at which the covariance values are greater than T0 are T1, T2, and T3 are t1, t2, and t3, respectively. In order to prevent the occurrence of the restraint breakout, the set values for instructing the pulling speed reduction or stop depending on the magnitude of the covariance value are shown on the right side of the figure. When the covariance value N (t) at time t changes as shown in the figure when the solidified shell rupture portion passes through, an instruction to reduce or stop the drawing speed is given as follows.

【0036】時刻tが0≦1≦t0のときは共分散値N
(t)がN(t)≦T0であるため引抜速度については
指示無しとし、t0<t≦t1のときはT0<N(t)
≦T1であるため、引抜速度をW1に低下するように指
示し、t1<t≦t2のときはT1<N(t)≦T2で
あるため、引抜速度をW2に低下するように指示し、t
2<t≦t3のときはT2<N(t)≦T3であるた
め、引抜速度をW3に低下するように指示し、t>t3
のときはN(t)>T3であるため引き抜きの停止を指
示する。なお、引抜速度の設定値W1,W2,W3の関
係は、W1≧W2≧W3≧0で、それぞれ時刻tにおけ
る引抜速度W(t)より小さい場合にのみ設定されるも
のとする。つまり、凝固殻破断部を検知した際に引き抜
きの速度増加を指示して拘束性ブレイクアウトの発生を
助長することがないようにする。
When the time t is 0 ≦ 1 ≦ t0, the covariance value N
Since (t) is N (t) ≦ T0, no instruction is given regarding the drawing speed, and when t0 <t ≦ t1, T0 <N (t).
Since ≦ T1, it is instructed to reduce the drawing speed to W1, and when t1 <t ≦ t2, T1 <N (t) ≦ T2, so it is instructed to decrease the drawing speed to W2. t
When 2 <t ≦ t3, T2 <N (t) ≦ T3. Therefore, the pulling speed is instructed to decrease to W3, and t> t3.
In the case of, since N (t)> T3, an instruction to stop the withdrawal is given. The relationship between the set values W1, W2 and W3 of the withdrawal speed is set only when W1 ≧ W2 ≧ W3 ≧ 0 and each is smaller than the withdrawal speed W (t) at time t. That is, when the broken portion of the solidified shell is detected, the increase in the drawing speed is not instructed to prevent the occurrence of the constrained breakout.

【0037】そして、これらの予め設定される共分散値
と、引抜速度の設定値を決定する際に、凝固殻の成長時
間により見積もる方法もあるが、今回は過去の拘束性ブ
レイクアウトの経験より以下に示すような数値とした。
There is also a method of estimating the preset covariance value and the set value of the drawing rate by the growth time of the solidified shell, but this time, based on the past experience of restraint breakout. The values are as shown below.

【0038】図8は低炭アルミキルド鋼を垂直曲げ型連
続鋳造設備により、鋳造幅:1830mm、鋳造厚:2
82mm、引抜速度:1.30m/分で鋳造時に軽度の
凝固殻破断部が通過した際の例であり、図9は低炭アル
ミキルド鋼を垂直曲げ型連続鋳造設備により、鋳造幅:
1800mm、鋳造厚:282mm、引抜速度:1.3
0m/分で鋳造時に重度の凝固殻破断部が通過した際の
例である。上段が温度検出点3aと3bの温度とその正
常時の温度を、中段が共分散値算出部100で算出した
共分散値N(t)を、下段が引抜速度を、それぞれ縦軸
に、測定開始からの経過時間を横軸に、時系列推移を示
したものである。
FIG. 8 is a vertical bending type continuous casting equipment for low carbon aluminum killed steel, casting width: 1830 mm, casting thickness: 2
82 mm, drawing speed: 1.30 m / min, an example when a slight solidified shell rupture portion passed during casting, FIG. 9 shows a casting width:
1800mm, casting thickness: 282mm, drawing speed: 1.3
This is an example when a severely solidified shell rupture portion passes during casting at 0 m / min. The upper part shows the temperature of the temperature detection points 3a and 3b and the temperature at the normal time, the middle part shows the covariance value N (t) calculated by the covariance value calculation unit 100, and the lower part shows the drawing speed. The time-series transition is shown with the horizontal axis representing the elapsed time from the start.

【0039】そして、中断の共分散値の500の値より
横軸に平行な直線が描かれているが、この500という
数値が拘束性ブレイクアウト発生限界値T0である。な
お、鋳型温度検出列は図8が鋳型長辺端部(図11中の
2b)、図9が鋳型長辺中央部(図11中の2c)のも
ので、温度検出点3aと3bの距離は何れも130mm
であった。そして共分散値を求める際のパラメータとし
て、1次遅れの時定数TAUは50秒、サンプリング周
期ΔTは0.5秒とした。また、引抜速度の指示につい
ては前述の従来の技術の項にて紹介した、特許公報の実
施例によるものである。
Then, a straight line parallel to the horizontal axis is drawn from the interruption covariance value of 500, and this numerical value of 500 is the restrictive breakout occurrence limit value T0. The mold temperature detection row is shown in FIG. 8 for the long side end of the mold (2b in FIG. 11) and for the center of the long side of the mold (2c in FIG. 11), and the distance between the temperature detection points 3a and 3b. Are all 130 mm
Met. Then, as parameters for obtaining the covariance value, the time constant TAU of the first-order lag was 50 seconds and the sampling period ΔT was 0.5 seconds. Further, the instruction of the drawing speed is based on the embodiment of the patent publication introduced in the section of the above-mentioned conventional technique.

【0040】図8は凝固殻の破断が検知され、実際に凝
固殻が破断していたが、引き抜きの減速にて対処した際
の時系列推移であり、図中、163.0秒付近で温度検
出点3aの温度が168℃で正常時の温度(約140
℃)と約28℃の偏差を生じており、引抜速度による時
間遅れが6.0秒なので、6.0秒遅らせた169.0
秒付近の温度検出点3bにおける温度が149℃で、正
常時の温度(約103℃)と約46℃の偏差が生じてい
る。この両者の偏差約28℃と約46℃を掛け合わせた
約1288程度の値が共分散値であり、この169.0
秒付近でこの共分散値が最大となっている。この温度変
化は凝固殻の破断によるもので、温度検出列を通過する
際に、共分散値が拘束性ブレイクアウト発生限界値50
0よりも高くなり、拘束性ブレイクアウト発生予知と判
定されたものである。
FIG. 8 is a time-series transition when the solidified shell was fractured and the solidified shell was actually fractured, but it was dealt with by decelerating the drawing. In the figure, the temperature was around 163.0 seconds. The temperature at the detection point 3a is 168 ° C and the temperature at the normal time (about 140
C.) and a deviation of about 28.degree. C. and the time delay due to the drawing speed is 6.0 seconds, so it was delayed by 6.0 seconds to 169.0.
The temperature at the temperature detection point 3b in the vicinity of the second is 149 ° C., and there is a deviation of about 46 ° C. from the normal temperature (about 103 ° C.). The covariance value is a value of about 1288, which is obtained by multiplying the deviation between the two by about 28 ° C. and about 46 ° C., and this covariance value is 169.0.
This covariance value is maximum around the second. This temperature change is due to the fracture of the solidified shell, and when passing through the temperature detection train, the covariance value is the limit value of the constraint breakout occurrence of 50.
It was higher than 0, and it was judged that the restraint breakout occurrence was predicted.

【0041】そして軽度の凝固殻破断であったため、引
抜速度は0.55m/分まで減速する必要があったのだ
が、その指示に注目すると、従来の判定では174.5
秒にて凝固殻破断部が初めて検知され、0.20m/分
への速度低下の指示が出されているので、必要以上に速
度を下げすぎていたが、本発明では共分散値の推移が5
00(T0)を超える165.5秒に0.82m/分
(W1)、1000(T1)を超える168.0秒に
0.55m/分(W2)の速度指示を出力するので、約
6.5秒早くしかも適正な速度指示を出すことができ、
シェルの成長をより促進させることができる。
Since the solidified shell rupture was slight, the drawing speed had to be reduced to 0.55 m / min, but when attention was paid to the instruction, the conventional judgment was 174.5.
In seconds, the solidified shell rupture portion was detected for the first time, and an instruction to reduce the speed to 0.20 m / min was issued. Therefore, the speed was reduced too much, but in the present invention, the transition of the covariance value is 5
Since a speed instruction of 0.82 m / min (W1) is output at 165.5 seconds exceeding 00 (T0) and 0.55 m / min (W2) is output at 168.0 seconds exceeding 1000 (T1), approximately 6. 5 seconds earlier and you can give a proper speed instruction,
The growth of the shell can be further promoted.

【0042】図9は凝固殻の破断が検知され、実際に凝
固殻が破断していたが、重度なため重度の引き抜きの減
速にて対処した際の時系列推移であり、図中、166.
5秒付近で温度検出点3aの温度が、183℃で正常時
の温度(約143℃)と約40℃の偏差を生じており、
引抜速度による時間遅れが6.0秒なので、6.0秒遅
らせた172.5秒付近の温度検出点3bにおける温度
が、178℃で正常時の温度(約118℃)と約60℃
の偏差が生じている。この両者の偏差約40℃と約60
℃を掛け合わせた約2400程度の値が共分散値であ
り、この172.5秒付近でこの共分散値が最大となっ
ている。この温度変化は凝固殻の破断によるもので、温
度検出列を通過する際に、共分散値が拘束性ブレイクア
ウト発生限界値500よりも高くなり、拘束性ブレイク
アウト発生予知と判定されたものである。
FIG. 9 is a time-series transition when the breakage of the solidified shell was detected and the solidified shell was actually broken.
At about 5 seconds, the temperature at the temperature detection point 3a is 183 ° C. and a deviation of about 40 ° C. from the normal temperature (about 143 ° C.) occurs.
Since the time delay due to the drawing speed is 6.0 seconds, the temperature at the temperature detection point 3b in the vicinity of 172.5 seconds delayed by 6.0 seconds is 178 ° C and the normal temperature (about 118 ° C) and about 60 ° C.
There is a deviation of. Deviation between these two is about 40 ℃ and about 60
A value of about 2400 multiplied by ° C is a covariance value, and the covariance value is maximum around 172.5 seconds. This temperature change is due to the fracture of the solidified shell, and when passing through the temperature detection series, the covariance value became higher than the restrictive breakout occurrence limit value 500, and it was judged as predictive occurrence of restrictive breakout. is there.

【0043】そして重度の凝固殻破断であったため、引
抜速度は0.20m/分まで減速する必要があったのだ
が、その指示に注目すると、従来の判定では176.0
秒にて凝固殻破断部が初めて検知され、0.20m/分
への速度低下の指示が出されていたが、本発明では共分
散値の推移が500(T0)を超える164.5秒に
0.82m/分(W1)、1000(T1)を超える1
70.5秒に0.55m/分(W2)、1500(T
2)を超える172秒に0.20m/分の速度指示を出
力するので、約6.5秒早くしかも適正な速度指示を出
すことができ、シェルの成長をより促進させることがで
きる。
Since the solidified shell rupture was severe, the drawing speed had to be reduced to 0.20 m / min. However, focusing on the instruction, the conventional judgment was 176.0.
At the second, the solidified shell fracture was detected for the first time, and an instruction to reduce the speed to 0.20 m / min was issued, but in the present invention, the transition of the covariance value exceeds 500 (T0) to 164.5 seconds. 0.82m / min (W1), more than 1000 (T1) 1
0.55 m / min (W2), 1500 (T
Since the speed instruction of 0.20 m / min is output in 172 seconds exceeding 2), it is possible to give a proper speed instruction about 6.5 seconds earlier and further accelerate the growth of the shell.

【0044】また、引抜速度の指示についてであるが、
従来の判定方法においては、図8を検知した軽度の引き
抜きの速度低下を指示するロジックと、図9を検知した
重度の引き抜きの速度低下を指示するロジックの、二重
の判定を用いる必要があったが、本発明の場合は先述し
たように共分散値の大きさにより、引き抜きの速度低下
および停止を指示することができるので、ただ一つのロ
ジックで充分となり、計算機の演算負荷を下げることが
可能となる。また、引き抜きの速度低下の指示について
もただ一つのロジックにて、多段階に設定することが可
能である。
Regarding the drawing speed instruction,
In the conventional determination method, it is necessary to use a double determination of the logic for instructing the slow speed reduction of the light pullout detected in FIG. 8 and the logic for instructing the slow speed reduction of the heavy pullout detected in FIG. However, in the case of the present invention, as described above, since it is possible to instruct to decrease the speed of pulling out and stop by the magnitude of the covariance value, only one logic is sufficient, and the calculation load of the computer can be reduced. It will be possible. Further, it is possible to set the pulling speed reduction instruction in multiple stages with only one logic.

【0045】次に、介在物性ブレイクアウトの原因とな
る、鋳型内で初期凝固中に巻き込まれた介在物の指標と
して用いる、共分散値の算出方法についてであるが、こ
れは拘束ブレイクアウトの原因となる、鋳型内で初期凝
固中に発生する凝固殻破断の指標として用いる、共分散
値の算出方法と類似点が多いため、双方の間の相違点を
中心に述べる。(1−1)式、(2)式、(5)式、
(6)式、(7)式は同様で、相違点は二つあり、一つ
は(1−2)および(1−3)式における偏差ΔTA,
ΔTBを算出する際に、偏差が正となるように順序を入
れ換えする点で、もう一つは(3)および(4)式にお
ける正常時の温度C(t),D(t)を算出する際に、
偏差を算出するときに急激な温度の下降のときにのみ大
きくなるように、正常時の温度をその時刻での温度と1
次遅れ温度の高い方となるようにしている点である。こ
れらを数式で表すと次の(1−2’)式、(1−3’)
式、(3’)式、(4’)式のようになる。
Next, regarding the method of calculating the covariance value, which is used as an index of the inclusions involved in the initial solidification in the mold, which causes the breakout of inclusions, it is the cause of the constraint breakout. Since there are many similarities with the calculation method of the covariance value used as an index of solidified shell rupture that occurs during initial solidification in the mold, the differences between the two will be mainly described. Formula (1-1), Formula (2), Formula (5),
The equations (6) and (7) are the same, and there are two differences. One is the deviation ΔTA in the equations (1-2) and (1-3),
When calculating ΔTB, the order is changed so that the deviation becomes positive, and the other is to calculate the temperatures C (t) and D (t) at the normal time in the expressions (3) and (4). When
When calculating the deviation, the normal temperature is set to 1 at the time so that it becomes large only when there is a rapid temperature drop.
The point is that the next lag temperature is higher. When these are expressed by mathematical formulas, the following (1-2 ') formula, (1-3')
It becomes like Formula, Formula (3 '), and Formula (4').

【0046】 ΔTA(t)=C(t)−A(t) ・・・(1−2’) ΔTB(t)=D(t)−B(t) ・・・(1−3’) C(t)=max{A(t),E(t)} ・・・(3’) D(t)=max{B(t),F(t)} ・・・(4’)ΔTA (t) = C (t) −A (t) ... (1-2 ′) ΔTB (t) = D (t) −B (t) ... (1-3 ′) C (T) = max {A (t), E (t)} ... (3 ') D (t) = max {B (t), F (t)} ... (4')

【0047】そして共分散値算出方法の調節について
も、(7)式における1次遅れ時定数については、温度
検出点3における温度が下降している部分の継続時間よ
り長くして、介在物の通過による温度変化を容易に捕捉
できるようにするという点で同様で、この値も温度変化
パターンより容易に決定できるため、実質的には調節す
る必要がないという点でも同様である。
Also regarding the adjustment of the covariance value calculation method, the first-order lag time constant in the equation (7) is set to be longer than the duration of the portion where the temperature is decreasing at the temperature detection point 3 so that the inclusions are included. The same applies in that the temperature change due to passage can be easily captured, and since this value can also be easily determined from the temperature change pattern, there is no need to adjust it substantially.

【0048】このようにして求めた共分散値の時系列推
移に対して、予め設計しておいた介在物性ブレイクアウ
ト発生限界値と比較してより大きな場合に、初めて介在
物性ブレイクアウトとして認識し、この介在物が鋳型通
過後に脱落し凝固殻の薄い部分が、溶鋼静圧に耐えられ
なくなって破断しブレイクアウトとなるであろうと予測
することで、介在物性ブレイクアウトの発生を予知する
ことができる。そしてこの介在物性ブレイクアウト発生
限界値の調節についても、温度変化パターンより容易に
見積もることができるため、実質的にはその必要がない
という点で同様である。
The time series transition of the covariance value thus obtained is recognized as the inclusion property breakout for the first time when it is larger than the previously designed limit value of inclusion property breakout occurrence. , It is possible to predict the occurrence of inclusion breakout by predicting that this inclusion will fall off after passing through the mold and the thin part of the solidified shell will not be able to withstand the static pressure of molten steel and will break to breakout. it can. The adjustment of the threshold value for the occurrence of the breakout of inclusions can also be easily estimated from the temperature change pattern, and is substantially the same in that it is not necessary.

【0049】次に、共分散値が操業上の外乱より受ける
影響について述べ、誤検知の有無おおび改良点について
説明する。鍋交換や鍋注入末期による溶鋼温度の変動と
人為的な湯面変更については、溶鋼温度の上昇や湯面の
下降の場合は、温度検出点の温度が上昇し正常時の温度
がこれに追随するため、偏差が0となり誤検知を避ける
ことができ、また溶鋼温度の下降や湯面の上昇の場合
も、温度検出点の温度が下降するがその傾きが緩やかで
あるため、正常時の温度がこれに追随し偏差が0となり
誤検知を避けることができる。
Next, the influence of the covariance value from the operating disturbance will be described, and the presence or absence of erroneous detection and the improvement points will be described. Regarding changes in molten steel temperature and artificial changes in molten metal level at the end of ladle replacement and infusion, the temperature at the temperature detection point rises when the molten steel temperature rises or falls, and the normal temperature follows this. Therefore, the deviation becomes 0 and erroneous detection can be avoided. Also, when the molten steel temperature decreases or the molten metal surface rises, the temperature at the temperature detection point decreases, but the slope is gentle, so However, following this, the deviation becomes 0 and erroneous detection can be avoided.

【0050】人為的でない湯面変動についても、湯面の
下降の場合は、温度検出点の温度が上昇し正常時の温度
がこれに追随するため、偏差が0となり誤検出を避ける
ことができ、また湯面の上昇の場合も、温度検出点の温
度が急激に下降するため、偏差が生じるが、この偏差は
湯面から距離のある温度検出点については小さな値とな
るため、偏差の積をとる共分散値は小さな値となり誤検
知を避けることができる。
Even for unnatural fluctuations in the surface of the molten metal, when the surface of the molten metal descends, the temperature at the temperature detection point rises and the normal temperature follows this, so the deviation becomes 0 and erroneous detection can be avoided. Also, when the level of the molten metal rises, the temperature at the temperature detection point drops sharply, causing a deviation, but this deviation is a small value at the temperature detection point that is a distance from the molten metal surface, so the product of the deviations Since the covariance value that takes is small, false detection can be avoided.

【0051】ただし引抜速度の変動については、その上
昇の場合は、温度検出点の温度が上昇し正常時の温度が
これに追随するため、偏差が0となり誤検知を避けるこ
とができるが、急激な下降の場合は全ての温度検出点の
温度が急激に下降するため、偏差が生じ共分散値が大き
な値となり誤検知となってしまう。そこで引抜速度低下
の際のみ、温度検出点の正常時の温度をその時刻の温度
に追随するよう改良して偏差を0とし、この誤検知を避
ける。このようにして求めた共分散値は介在物が通過す
る時にだけ大きな値となり、介在物性ブレイクアウトの
指標として非常に適しているということができる。
Regarding the fluctuation of the pulling speed, however, when the pulling speed rises, the temperature at the temperature detection point rises and the temperature at the normal time follows this, so that the deviation becomes 0 and erroneous detection can be avoided. In the case of such a decrease, the temperatures at all the temperature detection points drop abruptly, resulting in deviations and large covariance values, resulting in erroneous detection. Therefore, only when the drawing speed is decreased, the temperature at the normal temperature detection point is improved so as to follow the temperature at that time, and the deviation is set to 0 to avoid this erroneous detection. The covariance value thus obtained becomes large only when inclusions pass, and it can be said that it is very suitable as an index of the breakout of inclusion physicality.

【0052】介在物性ブレイクアウトの発生を予知そし
て防止するための処理フローを図12を基に説明する。
図中、100は鋳型1における温度検出列2a〜2d
で、検出された鋳型温度と、連続鋳造機のピンチロール
(いずれも図示せず)で検出した鋳片引抜速度Wを入力
し、これをもとに時々刻々共分散値N(t)を算出する
共分散値算出部、101は共分散値算出部100で演算
した共分散値N(t)を介在物の指標として操業監視画
面CRTに出力すると共に、予め設定した介在物性ブレ
イクアウト発生限界値T0と比較し、前記共分散値N
(t)が介在物性ブレイクアウト発生限界値T0より大
きい時に、介在物性ブレイクアウト発生を予知する介在
物性ブレイクアウト発生予知判定部、102は前記介在
物性ブレイクアウト発生予知判定部101から、前記共
分散値N(t)を入力すると、必要に応じて引き抜きの
減速または停止を指示して介在物性ブレイクアウトの発
生を未然に防止する介在物性ブレイクアウト防止制御
部、103は前記介在物性ブレイクアウト発生予知判定
部101から介在物性ブレイクアウト発生予知結果を入
力すると必要に応じて警報を鳴らす警報装置である。
A process flow for predicting and preventing the occurrence of inclusion breakout will be described with reference to FIG.
In the figure, 100 is the temperature detection lines 2a to 2d in the mold 1.
Then, the detected mold temperature and the slab drawing speed W detected by the pinch roll (not shown) of the continuous casting machine are input, and the covariance value N (t) is calculated every moment based on this. The covariance value calculation unit 101 outputs the covariance value N (t) calculated by the covariance value calculation unit 100 to the operation monitoring screen CRT as an index of inclusions, and also sets a preset inclusion physical property breakout limit value. Compared with T0, the covariance value N
When (t) is larger than the inclusion property breakout occurrence limit value T0, an inclusion property breakout occurrence prediction determination unit for predicting the occurrence of an inclusion property breakout occurrence, 102 is from the inclusion property breakout occurrence prediction determination unit 101, the covariance When the value N (t) is input, the inclusion property breakout prevention control unit 103 for instructing the deceleration or stop of the withdrawal as necessary to prevent the occurrence of the inclusion property breakout, 103 is the inclusion property breakout prediction. It is an alarm device that sounds an alarm as necessary when a result of predicting occurrence of an intervening physical property breakout is input from the determination unit 101.

【0053】前記共分散値算出部100の処理フローを
図13に示すフローチャートで説明する。まず、前記鋳
型1の温度検出点3a,3bで検出された鋳型温度A
(t),B(t)とピンチロールで測定した鋳片の引抜
速度W(t)を読み込む(S131)。この読み込んだ
時刻tにおける引抜速度W(t)による温度検出点3a
と3b間の時間遅れ、すなわち、鋳片のある位置が温度
検出点3aを通過して温度検出点3bに達する時間v
(t)を前記(2)式により算出する(S132)と共
に、読み込んだ引抜速度W(t)からその変化を判定す
る(S133)。
The processing flow of the covariance value calculation unit 100 will be described with reference to the flowchart shown in FIG. First, the mold temperature A detected at the temperature detection points 3a and 3b of the mold 1
(T), B (t) and the drawing speed W (t) of the slab measured by the pinch roll are read (S131). Temperature detection point 3a based on the drawing speed W (t) at the read time t
And 3b, that is, the time v at which a position of the slab reaches the temperature detection point 3b after passing through the temperature detection point 3a.
(T) is calculated by the equation (2) (S132), and the change is determined from the read drawing speed W (t) (S133).

【0054】そして引抜速度W(t)に変化がない場
合、または引抜速度W(t)が上昇している場合には、
予め設定した温度検出点3a,3bのサンプリング周期
Δtと、時刻tにおける1次遅れ定数TAUをもとに、
前記(7)式により1次遅れ係数ALFAを算出する
(S134)。さらに、前回のサンプリング時に演算し
て求めて記憶した正常時の温度(C(t−Δt),D
(t−Δt))、今回のサンプリング時の温度検出点3
a,3bの鋳型温度A(t),B(t)、上記演算した
1次遅れ係数ALFAを基に、前記(5)式と(6)式
により時刻tにおける温度検出点3aの1次遅れ温度E
(t)と、時刻tにおける温度検出点3bの1次遅れ温
度F(t)を算出する(S135),(S136)。そ
して、この両1次遅れ温度E(t),F(t)と前記S
41で読み込んだ温度検出点3a,3bの鋳型温度A
(t),B(t)にて前記(3’),(4’)式により
正常時の温度C(t),D(t)を求める(S13
7)。
When the drawing speed W (t) does not change or when the drawing speed W (t) increases,
Based on the preset sampling cycle Δt of the temperature detection points 3a and 3b and the first-order delay constant TAU at the time t,
The first-order delay coefficient ALFA is calculated by the equation (7) (S134). Further, the normal temperature (C (t-Δt), D stored and calculated and stored at the previous sampling is stored.
(T-Δt)), temperature detection point 3 at the time of this sampling
Based on the mold temperatures A (t) and B (t) of a and 3b and the calculated first-order lag coefficient ALFA, the first-order lag of the temperature detection point 3a at the time t is calculated by the equations (5) and (6). Temperature E
(T) and the first-order lag temperature F (t) at the temperature detection point 3b at time t are calculated (S135), (S136). Then, both of these first-order lag temperatures E (t), F (t) and the S
Mold temperature A of the temperature detection points 3a and 3b read at 41
At (t) and B (t), the temperatures C (t) and D (t) at the normal time are calculated by the above equations (3 ') and (4') (S13).
7).

【0055】一方、前記S133において、引抜速度の
速度変化が下降中であると判定した場合には、今回読み
込んだ鋳型温度を正常時の温度とする(S138)。つ
まり、この場合は偏差が生じず共分散値N(t)が0と
なるため、引抜速度が下降中の誤検知を回避することが
できる。このようにして求めた正常時の温度を記憶(セ
ット)して(S139)、次回サンプリング時にS13
5にて用いる。
On the other hand, when it is determined in S133 that the speed change of the drawing speed is decreasing, the mold temperature read this time is set to the normal temperature (S138). That is, in this case, since no deviation occurs and the covariance value N (t) becomes 0, it is possible to avoid erroneous detection while the drawing speed is decreasing. The normal temperature thus obtained is stored (set) (S139), and the next sampling is performed at S13.
Used in 5.

【0056】そして、前記(1)式により共分散値N
(t)を算出する(S13A,S13B)ものであり、
この模式図を図10の(a),(b)に示す。すなわ
ち、前記時刻tより前記温度検出点3a,3b間の時間
遅れv(t)前における温度検出点3aで測定した鋳型
温度A(t−v(t))と、前記正常時の温度C(t−
v(t))の偏差ΔTA(t−v(t))を、前記(1
−2’)式で求めると共に時刻tにおける温度検出点3
bで測定した鋳型温度B(t)と、前記正常時の温度D
(t)の偏差ΔTB(t)を前記(1−3’)式で求め
る(S13A)。次に、前記偏差ΔTA(t−v
(t))とΔTB(t)を積算、つまり、前記(1−
1)式により共分散値N(t)を算出(S13B)し、
S13Cにてセット(記憶)して、操業状況監視画面C
RTに出力して操業者に操業状況の認識を促すと共に、
介在物性ブレイクアウト発生予知判定部101および介
在物性ブレイクアウト防止制御部102に出力する。
Then, the covariance value N is calculated by the equation (1).
(T) is calculated (S13A, S13B),
This schematic diagram is shown in FIGS. That is, the mold temperature A (tv (t)) measured at the temperature detection point 3a before the time delay v (t) between the temperature detection points 3a and 3b from the time t and the normal temperature C ( t-
The deviation ΔTA (t-v (t)) of v (t)) is calculated as
-2 ') and the temperature detection point 3 at time t
The mold temperature B (t) measured in b and the temperature D in the normal state
The deviation ΔTB (t) of (t) is obtained by the above equation (1-3 ′) (S13A). Next, the deviation ΔTA (tv)
(T)) and ΔTB (t) are integrated, that is, (1-)
The covariance value N (t) is calculated by the equation 1) (S13B),
Set (memorize) in S13C, operating status monitoring screen C
Output to RT to encourage operators to recognize the operating situation,
The output is output to the inclusion property breakout occurrence prediction determination unit 101 and the inclusion property breakout prevention control unit 102.

【0057】次に、介在物性ブレイクアウト発生予知判
定部101の処理フローを図14に示すフローチャート
で説明する。この模式図を図1の(c)に示す。まず、
上記共分散値算出部100で算出された共分散値N
(t)を読み込んで介在物の指標として認識し(S14
1)、その値を予め設定した介在物性ブレイクアウト発
生限界値T0と比較して、介在物性ブレイクアウト発生
限界値T0以内か否かを判定し(S142)、介在物性
ブレイクアウト発生限界値以内の場合には、介在物性ブ
レイクアウト発生予知無しとセット(記憶)し(S14
3)、介在物性ブレイクアウト発生限界値T0以上の場
合には、介在物性ブレイクアウト発生予知とセット(記
憶)する(S144)。そして、介在物性ブレイクアウ
ト発生予知判定結果を操業状況監視画面CRTに出力す
ると共に、介在物性ブレイクアウト防止制御部102に
出力し、さらに、介在物性ブレイクアウト発生予知と判
定した場合には、警報装置103に出力する。
Next, the process flow of the inclusion property breakout occurrence prediction determination unit 101 will be described with reference to the flowchart shown in FIG. This schematic diagram is shown in FIG. First,
Covariance value N calculated by the covariance value calculation unit 100
(T) is read and recognized as an index of the inclusion (S14
1), comparing the value with a preset inclusion physical property breakout occurrence limit value T0 to determine whether it is within the inclusion physical property breakout occurrence limit value T0 (S142). In this case, it is set (memorized) as no prediction of occurrence of inclusion physical breakout (S14).
3) If it is at or above the occurrence limit value T0 of occurrence of inclusion breakout, it is set (stored) as prediction of occurrence of breakout of inclusion property (S144). Then, the judgment result of the occurrence prediction of the inclusion breakout is output to the operation status monitoring screen CRT, and also output to the inclusion breakout prevention control unit 102. Further, when it is determined to be the breakout occurrence prediction of the inclusion, the alarm device Output to 103.

【0058】さらに、介在物性ブレイクアウト防止制御
部102の処理フローを図15に示すフローチャートに
より説明する。まず、介在物性ブレイクアウト発生予知
判定部101にセットされた介在物性ブレイクアウト発
生予知判定結果を読み込み(S151)、介在物性ブレ
イクアウト発生予知無しの情報か、介在物性ブレイクア
ウト発生予知の情報かを判別し(S152)、介在物性
ブレイクアウト発生予知無しの情報であった場合には何
もしない。しかし、介在物性ブレイクアウト発生予知の
情報であった場合には、共分散値算出部100にセット
された共分散値を読み込み、その数値の大きさに応じ
て、予め設定した引抜速度を選択して指示する。
Further, the processing flow of the inclusion property breakout prevention control unit 102 will be described with reference to the flowchart shown in FIG. First, the inclusion property breakout occurrence prediction determination result set in the inclusion property breakout occurrence prediction determination unit 101 is read (S151), and it is determined whether there is no inclusion property breakout occurrence prediction information or inclusion property breakout occurrence prediction information. It is determined (S152), and if the information indicates that there is no prediction of the occurrence of inclusion physical breakout, nothing is done. However, when it is the information of occurrence prediction of inclusion breakout, the covariance value set in the covariance value calculation unit 100 is read, and the preset drawing speed is selected according to the magnitude of the numerical value. To instruct.

【0059】図16は、共分散値の大きさに応じて引抜
速度を設定する際の一例で、図10(c)に示した共分
散値の時系列推移のうちで、共分散値が増加中の部分に
ついての時系列拡大図である。図中の介在物性ブレイク
アウト発生限界値T0になる時刻がt0で、共分散値が
T0よりも大きくなった場合のT1,T2,T3になる
時刻がそれぞれt1,t2,t3である。そして介在物
性ブレイクアウトの発生を防止するために、図中右方に
共分散値の大きさに応じて引き抜きの速度低下または停
止を指示する際の設定値を示す。具体的には介在物が通
過する際に時刻tにおける共分散値N(t)が図に示す
ように変化する場合に以下のように引き抜きの速度低下
または停止を指示する。
FIG. 16 shows an example of setting the drawing speed according to the magnitude of the covariance value. In the time series transition of the covariance value shown in FIG. 10C, the covariance value increases. It is a time series enlarged view about the inside part. In the figure, the time at which the inclusion physical property breakout limit value T0 is reached is t0, and the times at which the covariance values are greater than T0 are T1, T2, and T3 are t1, t2, and t3, respectively. In order to prevent the occurrence of a breakout of inclusions, the right side of the figure shows the set value for instructing the speed reduction or stop of the drawing according to the magnitude of the covariance value. Specifically, when the covariance value N (t) at time t changes as shown in the figure when an inclusion passes through, an instruction to reduce or stop the extraction speed is given as follows.

【0060】時刻tが0≦t≦t0のときは共分散値N
(t)がN(t)≦T0であるため引抜速度については
指示無しとし、t0<t≦t1のときはT0<N(t)
≦T1であるため、引抜速度をW1に低下するように指
示し、t1<t≦t2のときはT1<N(t)≦T2で
あるため、引抜速度をW2に低下するように指示し、t
2<t≦t3のときはT2<N(t)≦T3であるた
め、引抜速度をW3に低下するように指示し、t>t3
のときはN(t)>T3であるため引き抜きの停止を指
示する。なお、引抜速度の設定値W1,W2,W3の関
係は、W1≧W2≧W3≧0で、それぞれ時刻tにおけ
る引抜速度W(t)より小さい場合にのみ設定されるも
のとする。つまり、介在物を検知した際に引き抜きの速
度増加を指示して介在物性ブレイクアウトの発生を助長
することがないようにする。
When the time t is 0≤t≤t0, the covariance value N
Since (t) is N (t) ≦ T0, no instruction is given regarding the drawing speed, and when t0 <t ≦ t1, T0 <N (t).
Since ≦ T1, it is instructed to reduce the drawing speed to W1, and when t1 <t ≦ t2, T1 <N (t) ≦ T2, so it is instructed to decrease the drawing speed to W2. t
When 2 <t ≦ t3, T2 <N (t) ≦ T3. Therefore, the pulling speed is instructed to decrease to W3, and t> t3.
In the case of, since N (t)> T3, an instruction to stop the withdrawal is given. The relationship between the set values W1, W2 and W3 of the withdrawal speed is set only when W1 ≧ W2 ≧ W3 ≧ 0 and each is smaller than the withdrawal speed W (t) at time t. That is, when the inclusion is detected, the increase in the extraction speed is not instructed so as to prevent the occurrence of the inclusion breakout.

【0061】そして、これらの予め設定される共分散値
と、引抜速度の設定値を決定する際に、凝固殻の成長時
間により見積もる方法もあるが、今回は過去の介在物性
ブレイクアウトの経験より以下に示すような数値とし
た。
There is also a method of estimating the preset covariance value and the set value of the drawing rate by the growth time of the solidified shell, but this time, based on the experience of past breakout of inclusion physical properties, The values are as shown below.

【0062】図17は高炭アルミキルド鋼を湾曲型連続
鋳造設備により、鋳造幅:1830mm、鋳造厚:28
2mm、引抜速度:1.35m/分で鋳造時に軽度の介
在物が通過した際の例であり、図18は高炭アルミキル
ド鋼を垂直曲げ型連続鋳造設備により、鋳造幅:180
0mm、鋳造厚:282mm、引抜速度:1.20〜
1.40m/分(増速中)で鋳造時に重度の介在物が通
過した際の例である。上段が温度検出列3aと3bの温
度とその正常時の温度を、中段が共分散値算出部100
で算出した共分散値N(t)を、下段が引抜速度を、そ
れぞれ縦軸に、測定開始からの経過時間を横軸に、時系
列推移を示したものである。
FIG. 17 shows a high-charcoal aluminum killed steel using a curved continuous casting facility, which has a casting width of 1830 mm and a casting thickness of 28.
2 mm, drawing speed: 1.35 m / min, it is an example when a light inclusion passes through during casting. Fig. 18 shows a casting width: 180 using a vertical bending type continuous casting equipment for high carbon aluminum killed steel.
0 mm, casting thickness: 282 mm, drawing speed: 1.20
This is an example when a heavy inclusion passes during casting at 1.40 m / min (during acceleration). The upper part shows the temperatures of the temperature detection columns 3a and 3b and the temperature at the normal time, and the middle part shows the covariance value calculation unit 100.
In the covariance value N (t) calculated in step 1, the lower part shows the withdrawal speed, the vertical axis shows the time series transition, and the horizontal axis shows the elapsed time from the start of measurement.

【0063】そして、中段の共分散値の1000の値よ
り横軸に平行な直線が描かれているが、この1000と
いう数値が介在物性ブレイクアウト発生限界値T0であ
る。なお、鋳型温度検出列は鋳型短辺中央部(図11中
の2a)のもので、温度検出点3aと3bの距離は16
0mmであった。そして共分散値を求める際のパラメー
タとして、1次遅れの時定数TAUは50秒、サンプリ
ング周期はΔTは0.5秒とした。また、引抜速度の指
示については前述の従来の技術の項にて紹介した、特許
公報の実施例によるものである。
A straight line parallel to the horizontal axis is drawn from the covariance value of 1000 in the middle row, and this numerical value of 1000 is the limit value T0 for occurrence of inclusion breakout. Note that the mold temperature detection row is for the center of the short side of the mold (2a in FIG. 11), and the distance between the temperature detection points 3a and 3b is 16
It was 0 mm. Then, as parameters for obtaining the covariance value, the time constant TAU of the first-order lag was set to 50 seconds, and the sampling period was set to ΔT of 0.5 seconds. Further, the instruction of the drawing speed is based on the embodiment of the patent publication introduced in the section of the above-mentioned conventional technique.

【0064】図17は介在物の巻き込みが検知され、実
際に介在物が巻き込まれていたが、軽度なため引き抜き
の減速にて対処した際の時系列推移であり、図中、16
9.0秒付近で温度検出点3aの温度が、151℃で正
常時の温度(約219℃)と約68℃の偏差を生じてお
り、引抜温度による時間遅れが7.0秒なので、7.0
秒遅らせた176.0秒付近の温度検出点3bにおけ
る、温度が105℃で正常時の温度(約145℃)と約
40℃の偏差が生じている。この両者の偏差約68℃と
約40℃を掛け合わせた約2720程度の値が共分散値
であり、この176.0秒付近でこの共分散値が最大と
なっている。この温度変化は凝固殻に巻き込まれた介在
物によるもので、温度検出列を通過する際に共分散値が
介在物性ブレイクアウト発生限界値1000よりも高く
なり、介在物性ブレイクアウト発生予知と判定されたも
のである。
FIG. 17 is a time-series transition when the inclusion of an inclusion was detected and the inclusion was actually involved, but since it was mild, it was dealt with by deceleration of the withdrawal.
At about 9.0 seconds, the temperature at the temperature detection point 3a has a deviation of about 68 degrees Celsius from the normal temperature (about 219 degrees Celsius) at 151 degrees Celsius, and the time delay due to the drawing temperature is 7.0 seconds. .0
At the temperature detection point 3b in the vicinity of 176.0 seconds which is delayed by 2 seconds, the temperature is 105 ° C., and there is a deviation of about 40 ° C. from the normal temperature (about 145 ° C.). The value of about 2720, which is obtained by multiplying the difference between the two by about 68 ° C. and about 40 ° C., is the covariance value, and the covariance value is maximum around 176.0 seconds. This temperature change is due to the inclusions caught in the solidified shell, and the covariance value becomes higher than the inclusion physical property breakout occurrence limit value 1000 when passing through the temperature detection series, and it is judged that the occurrence of the inclusion property breakout is predicted. It is a thing.

【0065】そして引抜速度の指示に注目すると、従来
の判定では180.0秒にて介在物が初めて検知され速
度低下の指示が出されているが、本発明では共分散値の
推移が1000(T0)を超える168.5秒に0.8
2m/分(W1)、2000(T1)を超える171.
5秒に0.55m/分(W2)の速度指示を出力するの
で、約11.5秒早くに適正な速度指示を出すことがで
き、シェルの成長をより促進させることができる。
Focusing on the drawing speed instruction, in the conventional judgment, the inclusion was detected for the first time at 180.0 seconds and an instruction to decrease the speed was issued. However, in the present invention, the transition of the covariance value is 1000 ( 0.8 at 168.5 seconds exceeding T0)
2 m / min (W1), exceeding 2000 (T1) 171.
Since the speed instruction of 0.55 m / min (W2) is output in 5 seconds, an appropriate speed instruction can be issued about 11.5 seconds earlier, and the growth of the shell can be further promoted.

【0066】図18は介在物の巻き込みが検知され、実
際に介在物が巻き込まれ、重度なため引き抜きの停止に
て対処したが、間に合わずブレイクアウトが発生した際
の時系列推移であり、図中、171.5秒付近で温度検
出点3aの温度が、185℃で正常時の温度(約261
℃)と約76℃の偏差を生じており、引抜速度による時
間遅れが7.0秒なので、7.0秒遅らせた178.5
秒付近の温度検出点3bにおける温度が、133℃で正
常時の温度(約191℃)と約58℃の偏差が生じてい
る。この両者の偏差約68℃と約40℃を掛け合わせた
約4408程度の値が共分散値であり、この178.5
秒付近でこの共分散値が最大となっている。この温度変
化は凝固殻に巻き込まれた介在物によるもので、温度検
出列を通過する際に共分散値が介在物性ブレイクアウト
発生限界値1000よりも高くなり、介在物性ブレイク
アウト発生予知と判定されたものである。
FIG. 18 is a time-series transition when the inclusion is detected, the inclusion is actually involved, and the extraction is stopped because it is severe, but a breakout occurs when it is not in time. The temperature of the temperature detection point 3a is 185 ° C. in the vicinity of 171.5 seconds, which is the normal temperature (about 261
℃) and the deviation of about 76 ℃, and the time delay due to the drawing speed is 7.0 seconds, so it was delayed by 7.0 seconds 178.5.
The temperature at the temperature detection point 3b near the second is 133 ° C., which is a deviation of about 58 ° C. from the normal temperature (about 191 ° C.). The covariance value is a value of about 4408, which is obtained by multiplying the deviation of about 68 ° C. and the deviation of about 40 ° C. from each other.
This covariance value is maximum around the second. This temperature change is due to the inclusions caught in the solidified shell, and the covariance value becomes higher than the inclusion physical property breakout occurrence limit value 1000 when passing through the temperature detection series, and it is judged that the occurrence of the inclusion property breakout is predicted. It is a thing.

【0067】そして引抜速度の指示に注目すると、従来
の判定では182.0秒にて介在物が初めて検知され停
止の指示が出されているが、共分散値の推移が1000
(T0)を超える175.0秒に0.82m/分(W
1)、2000(T1)を超える171.5秒に0.5
5m/分(W2)、3000(T2)を超える172.
0秒に0.20m/分(W3)の速度指示を出力し、4
000(T3)を超える178.0秒に停止を指示する
ので、停止の場合で約4.0秒早く指示を出すことがで
き、シェルの成長をより促進させることができるので、
あるいはブレイクアウトの発生を防止することが可能で
あったかもしれない。
Focusing on the drawing speed instruction, in the conventional judgment, the inclusion was detected for the first time at 182.0 seconds and an instruction to stop was issued, but the transition of the covariance value was 1000.
0.82 m / min (W at 175.0 seconds exceeding (T0)
1), 0.5 over 171.5 seconds exceeding 2000 (T1)
5 m / min (W2), exceeding 3000 (T2) 172.
Output 0.20 m / min (W3) speed instruction at 0 seconds, and
Since the stop is instructed at 178.0 seconds exceeding 000 (T3), it is possible to give an instruction about 4.0 seconds earlier in the case of stop, and it is possible to further promote the growth of the shell.
Or it could have been possible to prevent the occurrence of breakouts.

【0068】また、引抜速度の指示についてであるが、
従来の判定方法においては、図17を検知した引き抜き
の速度低下を指示するロジックと、図18を検知した引
き抜きの停止を指示するロジックの、二重の判定を用い
ていたが、本発明の場合は先述したように共分散値の大
きさにより引き抜きの速度低下および停止を指示するこ
とができるので、ただ一つのロジックで充分となり、計
算機の演算負荷を下げることが可能となる。また、引き
抜きの速度低下の指示についてもただ一つのロジックに
て、多段階に設定することが可能である。
Regarding the drawing speed instruction,
In the conventional determination method, the double determination of the logic for instructing the pulling speed reduction detected in FIG. 17 and the logic for instructing the stop of the extraction detected in FIG. 18 is used. As described above, since it is possible to instruct to reduce the speed of pulling out and to stop the pulling out according to the magnitude of the covariance value, only one logic is sufficient, and the calculation load of the computer can be reduced. Further, it is possible to set the pulling speed reduction instruction in multiple stages with only one logic.

【0069】以上は拘束性および介在物性ブレイクアウ
トについて、温度検出列1列に温度検出点が2点ある場
合の予知方法について説明したが、温度検出点がいった
い何点あればよいのかについて考察する。1点の場合に
は、その温度検出点での正常時の温度からの偏差だけで
予知することになるが、検出点が湯面に近い場合は湯面
変動による誤検知、湯面から遠い場合には凝固殻と鋳型
の間の凝固収縮により生じる空隙による誤検知を避ける
ことが困難となり、充分な検知精度が確保できない。
In the above, regarding the break-out property and the inclusion property breakout, the prediction method in the case where there are two temperature detection points in one temperature detection row has been described, but it is considered how many temperature detection points should be. . In the case of one point, it will be predicted only by the deviation from the normal temperature at the temperature detection point, but if the detection point is close to the molten metal surface, false detection due to fluctuations in the molten metal surface, if it is far from the molten metal surface In this case, it becomes difficult to avoid erroneous detection due to voids caused by solidification shrinkage between the solidified shell and the mold, and sufficient detection accuracy cannot be ensured.

【0070】また、3点以上ある場合には、引抜速度に
よる時間遅れを補正して1次遅れを用いて算出した3点
目、4点目等の温度検出点の正常時の温度からの偏差
を、共分散値の算出式に第3項、第4項として新たにか
けるだけでよい。この時は2点の場合よりも正確に検知
できる。しかし、多数の温度検出点の整備費用の増加と
いう問題点がある。実操業において温度検出点が1点、
2点、3点の場合について調査したところ、1点の場合
には上記のような精度の問題があったが、2点と3点の
間に精度上の相違点はなかった。従ってこの予知方法で
は、温度検出列1列につき温度検出点が最低限2点あれ
ばよいことが判った。他にも指標を算出する際に偏差の
積でなく和をとる方法もあるが、この場合は湯面変動と
凝固殻破断および介在物の識別が困難なので、こちらも
あまり適した方法とはいえない。
When there are three or more points, the deviation from the normal temperature of the third and fourth temperature detection points calculated by correcting the time delay due to the drawing speed and using the primary delay. It is only necessary to newly multiply the equation for calculating the covariance value as the third term and the fourth term. At this time, it can be detected more accurately than in the case of two points. However, there is a problem that the maintenance cost of many temperature detection points increases. In actual operation, one temperature detection point,
When the case of 2 points and 3 points was investigated, there was a problem of accuracy as described above in the case of 1 point, but there was no difference in accuracy between 2 points and 3 points. Therefore, in this predicting method, it has been found that the number of temperature detection points should be at least two for each temperature detection row. There is another method to calculate the sum of the indices instead of the product of the deviations, but in this case it is difficult to identify changes in the molten metal surface, fracture of the solidified shell and inclusions, so this method is not very suitable. Absent.

【0071】[0071]

【発明の効果】本発明の実施により、凝固殻破断に起因
する拘束性ブレイクアウトおよび介在物に起因する介在
物性ブレイクアウトを確実に予知し、かつ防止すること
ができる。
By carrying out the present invention, it is possible to reliably predict and prevent the restrictive breakout due to solidified shell rupture and the inclusion breakout due to inclusions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)凝固殻破断部通過時の鋳型温度変化を示
した図、(b)鋳型温度の時間遅れを補正して示した
図、(c)温度変化を共分散値で示した図
FIG. 1 (a) is a diagram showing a change in mold temperature when passing through a fractured portion of a solidified shell, (b) is a diagram showing a time delay of the mold temperature corrected, and (c) is a covariance value showing the temperature change. Figure

【図2】鋳型に設置した温度検出点を示す図FIG. 2 is a diagram showing temperature detection points installed in a mold.

【図3】拘束性ブレイクアウト予知装置例のブロック図FIG. 3 is a block diagram of an example of a constrained breakout prediction device.

【図4】拘束性ブレイクアウト予知に用いる共分散値算
出部の動作フローを示す図
FIG. 4 is a diagram showing an operation flow of a covariance value calculation unit used for restrictive breakout prediction.

【図5】拘束性ブレイクアウト発生予知判定部の動作フ
ローを示す図
FIG. 5 is a diagram showing an operation flow of a predictive determination unit for occurrence of restrictive breakout.

【図6】拘束性ブレイクアウト防止制御部の動作フロー
を示す図
FIG. 6 is a diagram showing an operation flow of a restrictive breakout prevention control unit.

【図7】図1(c)の時系列拡大図で、拘束性ブレイク
アウト防止方法の説明図
FIG. 7 is an enlarged view of the time series of FIG. 1 (c) and is an explanatory view of the method for preventing the breakout of restraint.

【図8】実施例での鋳型温度、凝固殻破断の指標、引抜
速度の変化を示す図
FIG. 8 is a diagram showing changes in mold temperature, solidified shell rupture index, and drawing speed in Examples.

【図9】実施例での鋳型温度、凝固殻破断の指標、引抜
速度の変化を示す図
FIG. 9 is a diagram showing changes in mold temperature, solidified shell rupture index, and drawing speed in Examples.

【図10】(a)介在物通過時の鋳型温度変化を示した
図、(b)鋳型温度の時間遅れを補正して示した図、
(c)温度変化を共分散値で示した図
FIG. 10 (a) is a diagram showing a mold temperature change when passing through inclusions, and (b) is a diagram showing a mold temperature with a time delay corrected.
(C) Diagram showing temperature change by covariance value

【図11】鋳型に設置した温度検出点を示す図FIG. 11 is a diagram showing temperature detection points installed in a mold.

【図12】介在物性ブレイクアウト予知装置例のブロッ
ク図
FIG. 12 is a block diagram of an example of a breakout prediction device for inclusions.

【図13】介在物性ブレイクアウト予知に用いる共分散
値算出部の動作フローを示す図
FIG. 13 is a diagram showing an operation flow of a covariance value calculation unit used for predicting an inclusion physical property breakout.

【図14】介在物性ブレイクアウト発生予知判定部の動
作フローを示す図
FIG. 14 is a diagram showing an operation flow of an inclusion property breakout occurrence prediction determination unit.

【図15】介在物性ブレイクアウト防止制御部の動作フ
ローを示す図
FIG. 15 is a diagram showing an operation flow of an inclusion property breakout prevention control unit.

【図16】図10(c)の時系列拡大図で、介在物性ブ
レイクアウト防止方法の説明図
FIG. 16 is an enlarged view of the time series of FIG. 10 (c) and is an explanatory diagram of a method for preventing the breakout of inclusions.

【図17】実施例での鋳型温度、介在物の指標、引抜速
度の変化を示す図
FIG. 17 is a diagram showing changes in mold temperature, index of inclusions, and drawing speed in Examples.

【図18】実施例での鋳型温度、介在物の指標、引抜速
度の変化を示す図
FIG. 18 is a graph showing changes in mold temperature, index of inclusions, and drawing speed in Examples.

【符号の説明】[Explanation of symbols]

1 鋳型 2a 鋳型温度検出列(鋳型短辺中央部) 2b 鋳型温度検出列(鋳型長辺縁部) 2c 鋳型温度検出列(鋳型長辺中央部) 2d 鋳型温度検出列(鋳型長辺縁部) 3a 鋳型上方部温度検出点 3b 鋳型下方部温度検出点 4 凝固殻破断部 5 凝固殻に巻き込まれた介在物 1 Mold 2a Mold temperature detection row (center of short side of mold) 2b Mold temperature detection row (edge of long edge of mold) 2c Mold temperature detection row (center of long edge of mold) 2d Mold temperature detection row (edge of long edge of mold) 3a Upper mold temperature detection point 3b Lower mold temperature detection point 4 Broken portion of solidified shell 5 Inclusion caught in solidified shell

───────────────────────────────────────────────────── フロントページの続き (72)発明者 波多野 今佐由 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 (72)発明者 土橋 浩一 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hatano Imasayu, Oita City, Oita Prefecture, Oita City, Nishinosu 1st Nippon Steel Co., Ltd. Oita Steel Works (72) Inventor, Koichi Dobashi, Oita City, Oita City, Nishinozu Made in Japan Oita Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造機の鋳型に、その鋳造方向に複
数の温度測定素子を設置して鋳型温度を測定し、その測
定値が上昇した際、その上昇開始点からの1次遅れ温度
を求め、前記測定した鋳型温度とこの1次遅れ温度から
温度差を鋳造方向の温度測定素子別に求め、該鋳造方向
上流側の温度測定素子位置における前記温度差と、該上
流側温度測定素子位置と下流側温度測定素子位置間の距
離および鋳片の引抜速度から求めた鋳片の移動時間後の
該下流側温度測定素子位置における前記温度差との積算
値を算出し、この積算値が所定値以上になったときに凝
固殻破断に起因するブレイクアウトの発生とすることを
特徴とする連続鋳造における拘束性ブレイクアウトの予
知方法。
1. A mold of a continuous casting machine is provided with a plurality of temperature measuring elements in the casting direction to measure the mold temperature, and when the measured value rises, the first-order lag temperature from the rising start point is measured. The temperature difference is determined for each temperature measuring element in the casting direction from the measured mold temperature and the first-order lag temperature, and the temperature difference at the temperature measuring element position on the upstream side in the casting direction and the upstream temperature measuring element position The integrated value with the temperature difference at the downstream temperature measuring element position after the moving time of the slab obtained from the distance between the downstream temperature measuring element positions and the withdrawing speed of the slab is calculated, and this integrated value is a predetermined value. A predictive method of a constrained breakout in continuous casting, characterized in that when the above is reached, breakout due to solidified shell rupture occurs.
【請求項2】 連続鋳造機の鋳型に、その鋳造方向に複
数の温度測定素子を設置して鋳型温度を測定し、その測
定値が降下した際、その降下開始点からの1次遅れ温度
を求め、この1次遅れ温度と前記測定した鋳型温度から
温度差を鋳造方向の温度測定素子別に求め、該鋳造方向
上流側の温度測定素子位置における前記温度差と、該上
流側温度測定素子位置と下流側温度測定素子位置間の距
離および鋳片の引抜速度から求めた鋳片の移動時間後の
該下流側温度測定素子位置における前記温度差との積算
値を算出し、この積算値が所定値以上になったときに介
在物に起因するブレイクアウトの発生とすることを特徴
とする連続鋳造における介在物性ブレイクアウトの予知
方法。
2. A continuous casting machine mold is provided with a plurality of temperature measuring elements in the casting direction to measure the mold temperature, and when the measured value drops, the first-order lag temperature from the starting point of the drop is measured. The temperature difference is obtained for each temperature measuring element in the casting direction from the first-order lag temperature and the measured mold temperature, and the temperature difference at the temperature measuring element position on the upstream side in the casting direction and the upstream temperature measuring element position The integrated value with the temperature difference at the downstream temperature measuring element position after the moving time of the slab obtained from the distance between the downstream temperature measuring element positions and the withdrawing speed of the slab is calculated, and this integrated value is a predetermined value. A method of predicting a breakout of inclusion physical properties in continuous casting, characterized in that when the above is reached, breakout due to inclusions is generated.
【請求項3】 上記積算値が所定値以上になったとき
に、この積算値の大きさに応じて鋳片の引抜速度を調整
することを特徴とする請求項1または請求項2記載の連
続鋳造における凝固殻破断および介在物に起因するブレ
イクアウトの防止方法。
3. The continuous process according to claim 1, wherein when the integrated value exceeds a predetermined value, the withdrawal speed of the slab is adjusted according to the size of the integrated value. A method for preventing breakout due to solidified shell rupture and inclusions in casting.
JP07290558A 1995-10-13 1995-10-13 Predicting and preventing breakouts in continuous casting. Expired - Fee Related JP3103498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07290558A JP3103498B2 (en) 1995-10-13 1995-10-13 Predicting and preventing breakouts in continuous casting.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07290558A JP3103498B2 (en) 1995-10-13 1995-10-13 Predicting and preventing breakouts in continuous casting.

Publications (2)

Publication Number Publication Date
JPH09108801A true JPH09108801A (en) 1997-04-28
JP3103498B2 JP3103498B2 (en) 2000-10-30

Family

ID=17757589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07290558A Expired - Fee Related JP3103498B2 (en) 1995-10-13 1995-10-13 Predicting and preventing breakouts in continuous casting.

Country Status (1)

Country Link
JP (1) JP3103498B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078298A (en) * 2007-09-27 2009-04-16 Sumitomo Metal Ind Ltd Method and apparatus for measuring temperature of mold copper plate for continuous casting
WO2010106633A1 (en) * 2009-03-17 2010-09-23 住友金属工業株式会社 Temperature measuring method and device for continuous-casting mold copper plate
TWI391193B (en) * 2009-03-20 2013-04-01 Sumitomo Metal Ind Method and apparatus for measuring temperature of cast copper plate for continuous casting

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1079111C (en) * 1999-01-25 2002-02-13 李政兆 Additive composition of lubricating oil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078298A (en) * 2007-09-27 2009-04-16 Sumitomo Metal Ind Ltd Method and apparatus for measuring temperature of mold copper plate for continuous casting
WO2010106633A1 (en) * 2009-03-17 2010-09-23 住友金属工業株式会社 Temperature measuring method and device for continuous-casting mold copper plate
TWI391193B (en) * 2009-03-20 2013-04-01 Sumitomo Metal Ind Method and apparatus for measuring temperature of cast copper plate for continuous casting

Also Published As

Publication number Publication date
JP3103498B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
EP1428598B1 (en) Method and online system for monitoring continuous caster start-up operation and predicting start cast breakouts
EP0196746B1 (en) Method and apparatus for preventing cast defects in continuous casting plant
JP5673100B2 (en) Breakout prediction method
JP6950860B1 (en) Breakout prediction method, continuous casting machine operation method, and breakout prediction device
JP5154997B2 (en) Breakout prediction method in continuous casting.
JPH09108801A (en) Method for predicting and preventing breakout in continuous casting
JP7115240B2 (en) Breakout prediction method in continuous casting
Lee et al. Development of healing control technology for reducing breakout in thin slab casters
JP6337848B2 (en) Method and apparatus for predicting constrained breakout
JP3093586B2 (en) Vertical crack detection method for continuous cast slab
JP6079670B2 (en) Breakout prediction method in continuous casting equipment.
JP6435988B2 (en) Breakout prediction method, breakout prevention method, solidified shell thickness measurement method, breakout prediction device and breakout prevention device in continuous casting
JPH0790343B2 (en) Breakout prediction method in continuous casting
JP5593801B2 (en) Breakout prediction method for continuous casting
WO2023145786A1 (en) Continuous casting start timing determination method, continuous casting facility operation method, slab manufacturing method, determining device, continuous casting start determination system, and display terminal device
JP3506195B2 (en) Continuous casting method
Moon et al. Re-start technology for reducing sticking-type breakout in thin slab caster
JP2004276050A (en) Method for starting continuous casting
JPS61279350A (en) Method for controlling continuous casting of steel
JPH04294850A (en) Detection of break-out in multi-strand continuous caster
JPH0126791B2 (en)
JP3062723B2 (en) Measurement method of slab surface dent shape due to solidification shrinkage in mold
JPH07232251A (en) Method for predicting breakout
JPH0694061B2 (en) Cutting method of continuous casting slab
JP2007136480A (en) Method for detecting unsteady bulging in continuously cast slab

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000725

LAPS Cancellation because of no payment of annual fees