JPH09108796A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPH09108796A
JPH09108796A JP26962695A JP26962695A JPH09108796A JP H09108796 A JPH09108796 A JP H09108796A JP 26962695 A JP26962695 A JP 26962695A JP 26962695 A JP26962695 A JP 26962695A JP H09108796 A JPH09108796 A JP H09108796A
Authority
JP
Japan
Prior art keywords
slab
casting
molten steel
solidification
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26962695A
Other languages
Japanese (ja)
Other versions
JP3077572B2 (en
Inventor
Yoshinori Tanizawa
好徳 谷澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP07269626A priority Critical patent/JP3077572B2/en
Publication of JPH09108796A publication Critical patent/JPH09108796A/en
Application granted granted Critical
Publication of JP3077572B2 publication Critical patent/JP3077572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a cast slab without center segregation by executing casting while controlling fluid of supplied molten steel in a mold with electromagnetic force and executing continuous rolling reduction to unsolidified range of the cast slab to form the optimum unsolidified range, i.e., a crater end shape. SOLUTION: In the case of using two pieces of immersion nozzles 1, each one side hole immersion nozzle 1-1 having one molten steel spouting hole 1a is used and also, arranged so that each of the spouting holes 1a mutually faces to the inside. In the fluid pattern of the molten steel 5 at the time of supplying the electromagnetic force is exerted on the downward stream F1, and the patterns becomes the comparatively intensive descending stream F1 at the center part in the width direction of the cast slab 6 and the ascending stream f1 near the short wall sides. Then the casting is executed so as to obtain the velocity distribution V1, in which the solidified range at the center part in the width direction of the cast slab 6 projects in the projection state toward the casting direction. Therefore, the casting is executed so as not to form such nonuniform solidification completion points as to be recessed toward the casting upstream side at the center part in the width direction of the cast slab and projects toward the downstream side of the casting at both end parts.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶鋼の連続鋳造方
法に関する。
TECHNICAL FIELD The present invention relates to a continuous casting method for molten steel.

【0002】[0002]

【従来の技術】連続鋳造法で鋳片を製造する場合には、
しばしば、中心偏析と呼ばれる内部欠陥が問題となる。
この中心偏析は、鋳片の厚み方向中心部(最終凝固部)
でC、S、PおよびMnなどの溶鋼成分が正偏析する現
象である。この現象は厚板素材において特に深刻な問題
であり、偏析部分における靭性の低下や水素誘起割れの
原因となることが知られている。
2. Description of the Related Art When a slab is manufactured by a continuous casting method,
Often an internal defect called central segregation is a problem.
This center segregation is the center of the slab in the thickness direction (final solidification part).
Is a phenomenon in which molten steel components such as C, S, P and Mn are positively segregated. This phenomenon is a particularly serious problem in thick plate materials, and is known to cause deterioration in toughness in the segregated portion and hydrogen-induced cracking.

【0003】このような中心偏析は、凝固末期における
デンドライト(樹枝状晶)樹間の未凝固溶鋼(以下、残
溶鋼という)が、溶鋼の凝固収縮あるいは凝固シェルの
バルジング等の原因により、最終凝固部の凝固完了点に
向かってマクロ的に移動し、かつ、C、S、PおよびM
nなどが濃化した溶鋼が局部的に集積するために起こる
ことがわかっている。
Such center segregation is caused by the fact that unsolidified molten steel (hereinafter referred to as residual molten steel) between dendrite (dendritic) trees at the final stage of solidification is finally solidified due to solidification shrinkage of the molten steel or bulging of the solidified shell. Macroscopically moves toward the solidification completion point of the part, and C, S, P and M
It is known that this occurs due to localized accumulation of molten steel in which n and the like are concentrated.

【0004】従って、中心偏析防止対策としては、凝固
完了点付近をロール、金型などを用いる何らかの方法で
圧下するなどして残溶鋼の移動や濃化溶鋼の集積を阻止
する方法があり、種々の技術思想に基づく方法が提案さ
れてきた。
Therefore, as a countermeasure for preventing the center segregation, there is a method of preventing the movement of the residual molten steel and the accumulation of the concentrated molten steel by reducing the vicinity of the solidification point by some method using a roll, a mold or the like. A method based on the above technical idea has been proposed.

【0005】例えば、特開昭63−252655号公報
では、鋳片表面に噴射される二次冷却水量を増量するこ
とにより、鋳片の最終凝固部の表面温度を700〜80
0℃の範囲とし、凝固シェル厚さを厚くすることにより
ロール間バルジングを抑制し、さらに軽圧下ロール群で
毎分0.2〜0.4%の歪み速度の圧下力を鋳片に加え
ることにより濃化溶鋼の流動を阻止し、中心偏析を防止
する方法が提案されている。
For example, in Japanese Patent Laid-Open No. 63-252655, the surface temperature of the final solidified portion of the cast slab is 700 to 80 by increasing the amount of secondary cooling water sprayed on the surface of the cast slab.
The bulging between rolls is suppressed by increasing the solidification shell thickness within the range of 0 ° C, and a rolling force of a strain rate of 0.2 to 0.4% per minute is applied to the slab with a light rolling roll group. Has proposed a method of preventing the flow of concentrated molten steel and preventing center segregation.

【0006】上記の圧下ロール群による軽圧下では、鋳
片長手方向に対して点状にしか圧下できないので、凝固
収縮やバルジングを十分に防止することができない。ま
た、各圧下が集中荷重として働くので凝固界面に内部割
れが発生し易く、圧下量を大きくとれない欠点がある。
[0006] In the light reduction by the above-mentioned reduction roll group, since it can be reduced only in a dot shape in the longitudinal direction of the slab, solidification shrinkage and bulging cannot be sufficiently prevented. Further, since each reduction acts as a concentrated load, internal cracks are likely to occur at the solidification interface, and there is a drawback that the reduction amount cannot be made large.

【0007】鋳片の凝固完了点近傍を平面上の金型で連
続的に鍛圧加工する方法では、設備コストが非常に高く
なるという欠点がある。これを解消する方法として、特
開昭61−42460号公報の連続鋳造方法が提案され
ている。
The method of continuously forging the slab near the solidification completion point with a flat die has a drawback that the equipment cost becomes very high. As a method for solving this, a continuous casting method has been proposed in JP-A-61-42460.

【0008】上記特開昭61−42460号公報の方法
は、凝固完了点の上流側に設置した電磁撹拌装置あるい
は超音波印加装置を用いて溶鋼流動によりデンドライト
を切断し、凝固完了点付近に等軸晶域が形成されるよう
にした上で、凝固完了点直前に配置した圧下ロール対に
より3mm以上の大圧下を与えて強制的に凝固完了点を
形成し、内部割れを発生させることなく中心偏析を解消
するようにしたものである。
In the method disclosed in the above-mentioned JP-A-61-42460, the dendrite is cut by the flow of molten steel by using an electromagnetic stirrer or an ultrasonic wave applying device installed on the upstream side of the solidification completion point, and the like near the solidification completion point. After the axial crystal zone is formed, a large reduction of 3 mm or more is given by the pair of reduction rolls arranged immediately before the solidification completion point to forcibly form the solidification completion point and the center is formed without causing internal cracking. It is intended to eliminate segregation.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上述の
従来の中心偏析改善方法は、ロール圧下または金型圧下
のいずれの手段を採用しても、鋳片の幅方向の凝固不均
一がある場合、鋳片幅方向で均一な圧下ができないた
め、凝固が遅れた鋳片幅方向両端部で中心偏析が悪化す
るという欠点を有している。図4により、この問題を詳
述する。
However, in the conventional center segregation improving method described above, no matter whether roll rolling or die rolling is adopted, when there is uneven solidification in the width direction of the slab, Since there is no uniform reduction in the width direction of the slab, there is a drawback that the center segregation deteriorates at both ends in the width direction of the slab where the solidification is delayed. This problem will be described in detail with reference to FIG.

【0010】図4は、鋳型内への溶鋼の供給箇所が1箇
所であり、かつ溶鋼流動の方向制御装置を設けない従来
の湾曲型連続鋳造装置における凝固の進行状況を説明す
る図である。図4(a) は鋳型およびその周辺部の要部の
縦断面図、図4(b) は浸漬ノズル、鋳片およびその凝固
の進行を示す斜視図、図4(c) は図4(b) に示す〔C〕
位置での鋳片の横断面図、図4(d) は鋳片の凝固が完了
した後の鋳片の横断面図である。
FIG. 4 is a view for explaining the progress of solidification in a conventional curved type continuous casting apparatus in which the molten steel is supplied to one place in the mold and a molten steel flow direction control device is not provided. 4 (a) is a vertical cross-sectional view of the main part of the mold and its peripheral portion, FIG. 4 (b) is a perspective view showing the immersion nozzle, the slab and the progress of solidification thereof, and FIG. ) [C]
FIG. 4D is a cross-sectional view of the slab at the position, and FIG. 4D is a cross-sectional view of the slab after the solidification of the slab is completed.

【0011】図4において、1’−2は2孔浸漬ノズ
ル、1’aは溶鋼吐出孔、2は鋳型、5は溶鋼、6’は
鋳片、Wは鋳型幅、Aは中心偏析、Bは未凝固領域(残
溶鋼部)、SHは凝固シェル、CE’は凝固完了点、F
odは溶鋼下降流、Fouは鋳片6’の中心を上昇する
溶鋼上昇流、Foは大きな溶鋼循環下降流である。
In FIG. 4, 1'-2 is a two-hole immersion nozzle, 1'a is a molten steel discharge hole, 2 is a mold, 5 is molten steel, 6'is a slab, W is a mold width, A is a center segregation, and B. Is an unsolidified region (residual molten steel part), SH is a solidified shell, CE 'is a solidification completion point, F
od is a molten steel downflow, Fou is a molten steel upflow that rises in the center of the slab 6 ', and Fo is a large molten steel circulation downflow.

【0012】図4(b) において、矢印をつけた波状の線
は、鋳片6’の該当部における厚み方向中央部での凝固
速度分布を示すものである。
In FIG. 4 (b), the wavy line with an arrow shows the solidification rate distribution at the central portion in the thickness direction of the corresponding portion of the cast slab 6 '.

【0013】溶鋼5の凝固は、鋳片6’の幅方向に冷却
が均一であっても、図4(b) に示すような残溶鋼の流動
が上昇流(Fou)となっている幅方向中央部では速
く、下降流(Fod)となっている幅方向端部では遅
く、幅方向で不均一に進行する。
The solidification of the molten steel 5 is such that the flow of the residual molten steel is an upward flow (Fou) as shown in FIG. 4 (b) even if cooling is uniform in the widthwise direction of the slab 6 '. It is fast in the central part, slow in the width direction end part which is a down flow (Fod), and progresses unevenly in the width direction.

【0014】このように鋳片6’の幅方向に凝固不均一
があるとき、図4(c) に示すように、幅中心部(1/4
幅〜3/4幅)に比較して幅端部(1/4幅〜エッジ
側、3/4幅〜エッジ側)において凝固の進行が遅い場
合、鋳片6’の幅方向で均一な圧下ができないため、凝
固が遅れた鋳片幅方向の両端部で図4(d) に示す中心偏
析Aが悪化する。
When there is uneven solidification in the width direction of the slab 6 ', as shown in FIG. 4 (c), the width center portion (1/4
When the solidification progresses slowly at the width end (1/4 width to edge side, 3/4 width to edge side) compared to (width to 3/4 width), uniform reduction in the width direction of the slab 6 '. Therefore, the center segregation A shown in FIG. 4 (d) becomes worse at both ends in the width direction of the slab where the solidification is delayed.

【0015】この鋳片6’の幅方向の凝固不均一は、図
4(a) に示す従来の方法において、通常、二つの溶鋼吐
出孔1’aを鋳片6’の幅方向の外側に向けて若干下向
きに形成した2孔浸漬ノズル1’−2を使用しているた
めに生ずる。すなわち、この2孔浸漬ノズル1’−2か
ら鋳型2内に溶鋼5を吐出すると、鋳片6’の短辺に沿
って下降する下降流Fod(図4(b))と鋳片6’の中心
を上昇する上昇流Fou(図4(b))からなる大きな循環
下降流Fo(図4(a))が未凝固領域B内に形成され、こ
の循環下降流Foにより鋳片6’内の均一な冷却が不可
能になることによる。
The uneven solidification in the width direction of the cast slab 6'is usually caused by the two molten steel discharge holes 1'a located outside in the width direction of the cast slab 6'in the conventional method shown in FIG. 4 (a). It occurs because the two-hole immersion nozzle 1'-2 formed slightly downward is used. That is, when the molten steel 5 is discharged from the two-hole immersion nozzle 1′-2 into the mold 2, the downflow Fod (FIG. 4 (b)) descending along the short side of the cast piece 6 ′ and the cast piece 6 ′. A large circulating downward flow Fo (FIG. 4 (a)) composed of an upward flow Fou (FIG. 4 (b)) rising in the center is formed in the unsolidified region B, and this circulating downward flow Fo causes the slab 6 ' This is because uniform cooling becomes impossible.

【0016】これにより、未凝固領域Bの最終凝固部に
おける凝固シェルSHの厚さが、図4(c) に示すように
鋳片6’の幅方向の中央部では厚く、両端部では薄くな
る。
As a result, the thickness of the solidified shell SH in the final solidified portion of the unsolidified region B becomes thicker in the widthwise central portion of the cast slab 6'and thinner in both end portions as shown in FIG. 4 (c). .

【0017】このため、凝固完了点CE’の形状が、図
4(b) に示すように鋳片6’の幅方向の中央部で鋳込上
流側に凹み、両端部で鋳込下降流側に突出して不均一と
なる。
Therefore, as shown in FIG. 4 (b), the shape of the solidification completion point CE 'is recessed in the casting upstream side at the widthwise center of the cast piece 6', and at the casting downflow side at both ends. And it becomes uneven.

【0018】この状態で、鋳片6’が未凝固圧下を受け
ると、鋳片6’の幅方向両端部で凝固収縮に見合った圧
下量が得られず、この両端部に濃化溶鋼が流入、集積し
て、図4(d) に示す中心偏析Aが生ずることになるので
ある。
In this state, if the cast piece 6'is subjected to unsolidified rolling, the amount of reduction corresponding to the solidification shrinkage cannot be obtained at both widthwise end portions of the cast piece 6 ', and the concentrated molten steel flows into both end portions. , The central segregation A shown in FIG. 4 (d) is generated.

【0019】特開平5−185186号公報には、この
ような鋳片幅方向の凝固不均一を解消して中心偏析を改
善する方法が提案されている。これを図5により説明す
る。
Japanese Unexamined Patent Publication (Kokai) No. 5-185186 proposes a method of eliminating such nonuniform solidification in the width direction of the cast piece to improve center segregation. This will be described with reference to FIG.

【0020】図5は鋳片および鋳型の横断面図である。
図示するように、鋳型2の長辺2aの鋳片6’の幅方向
中央部に長辺2aの長さの50〜80%の範囲にわた
り、深さ1.0〜5.0mmの凹部2bを形成し、鋳片
6’の幅方向中央部に形成された凸部により、鋳片6’
の幅方向にわたって均等な残溶鋼部Bの厚みを確保する
ものである。
FIG. 5 is a cross-sectional view of the slab and the mold.
As shown in the drawing, a concave portion 2b having a depth of 1.0 to 5.0 mm is formed in the widthwise center of the slab 6'of the long side 2a of the mold 2 over a range of 50 to 80% of the length of the long side 2a. The slab 6 ′ is formed by the convex portion formed in the widthwise center of the slab 6 ′.
The thickness of the residual molten steel portion B is ensured evenly across the width direction of the.

【0021】しかし、この方法で十分な効果を得るため
には、鋳片凸部を3mm以上に設定することが必要であ
るため、鋳片のパスラインの設定が困難となり、また段
差部での鋳片バルジングにより鋳片の内部割れが誘発さ
れやすい。
However, in order to obtain a sufficient effect by this method, it is necessary to set the projection of the cast slab to 3 mm or more, which makes it difficult to set the pass line of the cast slab, and also, in the step portion. Internal cracking of the slab is likely to be induced by slab bulging.

【0022】その他の中心偏析改善方法として、電磁撹
拌を特定範囲で加える方法(特開昭63−157749
号公報)や超音波振動を鋳片に印加する方法(特開平1
−113157号公報)があるが、いずれも鋳片幅方向
に凝固不均一がある場合には根本的な解決には至らなか
った。
Another method for improving center segregation is to add electromagnetic stirring within a specific range (Japanese Patent Laid-Open No. 63-157749).
Japanese Patent Application Publication) or a method of applying ultrasonic vibration to a slab (Japanese Patent Laid-Open No. HEI-1)
No. 113,157), but in any case, there was no fundamental solution when there was uneven solidification in the width direction of the slab.

【0023】本発明は、上述のような問題点を解決すべ
くなされたものである。本発明の目的は、溶融金属の流
動(方向および流速)、特に鋳片両短辺に沿う下降流に
起因する鋳片幅方向の凝固不均一を解消し、最適な未凝
固領域、すなわちクレータエンド形状を形成させること
により、中心偏析のない鋳片を得ることができる連続鋳
造方法を提供することにある。
The present invention has been made to solve the above problems. The object of the present invention is to eliminate the flow of molten metal (direction and flow velocity), in particular, the uneven solidification in the width direction of the slab due to the downward flow along both short sides of the slab, and to optimize the unsolidified region, that is, the crater end. An object of the present invention is to provide a continuous casting method capable of obtaining a slab without center segregation by forming a shape.

【0024】[0024]

【課題を解決するための手段】本発明の要旨は、次の連
続鋳造方法にある。
The gist of the present invention resides in the following continuous casting method.

【0025】鋳型内に供給した溶鋼を冷却しつつ引き抜
いて鋳片を連続的に製造するに際し、溶鋼の鋳型内への
供給箇所を鋳片幅方向に2箇所以上設け、供給された溶
鋼の鋳型内流動を電磁気力で制御しつつ鋳造し、鋳片の
未凝固領域を連続的に圧下することを特徴とする連続鋳
造方法。
When continuously producing cast slabs by cooling the molten steel supplied into the mold while cooling, the molten steel is supplied to the mold at two or more positions in the width direction of the slab, and the molten steel is supplied into the mold. A continuous casting method, characterized in that casting is performed while controlling the internal flow with an electromagnetic force, and the unsolidified region of the slab is continuously rolled down.

【0026】溶鋼の鋳型内への供給箇所の望ましい上限
は10箇所程度である。
A desirable upper limit of the supply location of the molten steel into the mold is about 10 locations.

【0027】この発明は、鋳片の中心に見られる微量元
素の偏析を防止して均質な製品を得るために、溶鋼の鋳
型内への供給箇所を鋳片幅方向に2箇所以上設け、電磁
気力を用いて溶鋼流動(方向および流速)を制御するこ
とにより、凝固完了点の形状を適切にするとともに、鋳
片の未凝固領域における凝固シェル厚みを鋳片幅方向に
均一化しつつ、この未凝固領域を連続的に圧下するもの
である。
According to the present invention, in order to prevent the segregation of trace elements found in the center of the cast slab and obtain a homogeneous product, two or more supply locations of the molten steel into the mold are provided in the width direction of the cast slab, and an electromagnetic field is provided. By controlling the molten steel flow (direction and flow velocity) using force, the shape of the solidification completion point is made appropriate, and the thickness of the solidified shell in the unsolidified region of the slab is made uniform in the slab width direction while The solidification region is continuously rolled down.

【0028】[0028]

【発明の実施の形態】図1に基づいて、本発明方法を実
施するための装置の構成例を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A configuration example of an apparatus for carrying out the method of the present invention will be described with reference to FIG.

【0029】図1は、本発明方法を実施する湾曲型連続
鋳造装置の構成例を示す図である。
FIG. 1 is a diagram showing an example of the construction of a bending type continuous casting apparatus for carrying out the method of the present invention.

【0030】図1(a) は側面方向の縦断面概略図、図1
(b) は鋳型周辺部のみの正面方向の縦断面概略図であ
る。この例では図示するように、二つの溶鋼供給箇所
(2本の浸漬ノズル1)、鋳型2、鋳型2内の溶鋼5の
メニスカス近傍の電磁ブレーキ3、鋳型2直下の電磁ブ
レーキ4、サポートロール群7、圧下ロール群8および
ピンチロール9を備えている。電磁ブレーキ3および4
は、2本の浸漬ノズル1から鋳型2内に供給された溶鋼
5の流動の方向および流速を制御するために設ける装置
である。
FIG. 1 (a) is a schematic vertical cross-sectional view in the side direction, FIG.
(b) is a schematic vertical cross-sectional view in the front direction of only the peripheral portion of the mold. In this example, as shown in the drawing, two molten steel supply points (two dipping nozzles 1), a mold 2, an electromagnetic brake 3 near the meniscus of the molten steel 5 in the mold 2, an electromagnetic brake 4 immediately below the mold 2, and a support roll group. 7, a reduction roll group 8 and a pinch roll 9. Electromagnetic brakes 3 and 4
Is a device provided to control the flow direction and flow velocity of the molten steel 5 supplied into the mold 2 from the two immersion nozzles 1.

【0031】この装置では、溶鋼5が浸漬ノズル1によ
り鋳型内に供給され、鋳型2内の一次冷却により凝固シ
ェルSHが形成される。鋳片6は続くサポートロール群
7でのスプレー水等による二次冷却により凝固が促進さ
れ、圧下ロール群8の範囲内で完全凝固し、ピンチロー
ル9で引き出される。
In this apparatus, the molten steel 5 is supplied into the mold by the immersion nozzle 1 and the solidified shell SH is formed by the primary cooling of the mold 2. Solidification of the cast slab 6 is promoted by secondary cooling with spray water or the like in the subsequent support roll group 7, complete solidification within the range of the reduction roll group 8, and pulled out by the pinch roll 9.

【0032】このとき、凝固末期において未凝固領域B
を持つ鋳片6を圧下ロール群8で圧下し、その凝固収縮
量に応じた圧下を加えことにより、濃化溶鋼の流入およ
び集積を阻止し、中心偏析を防止する。
At this time, in the final stage of coagulation, the uncoagulated region B
The cast slabs 6 having No. 1 are pressed by the pressing roll group 8 and a pressing amount corresponding to the solidification shrinkage amount is applied to prevent inflow and accumulation of the concentrated molten steel and prevent center segregation.

【0033】以下、図2および図3により本発明方法を
詳細に説明する。
The method of the present invention will be described in detail below with reference to FIGS.

【0034】図2は、図1に示す連続鋳造装置の場合に
おける凝固の進行状況を説明する図である。図2(a) は
鋳型およびその周辺部の要部の縦断面図、図2(b) は浸
漬ノズル、鋳片およびその凝固の進行を示す斜視図、図
2(c) は図2(b) に示す〔C〕位置での鋳片の横断面図
である。
FIG. 2 is a diagram for explaining the progress of solidification in the case of the continuous casting apparatus shown in FIG. Fig. 2 (a) is a vertical cross-sectional view of the main part of the mold and its peripheral portion, Fig. 2 (b) is a perspective view showing the dipping nozzle, the slab and the progress of its solidification, and Fig. 2 (c) is Fig. 2 (b FIG. 7B is a transverse cross-sectional view of the cast piece at the position [C] shown in FIG.

【0035】図2(a) に示すように、浸漬ノズル1を2
本使用する場合には、それぞれ1つの溶鋼吐出孔1aを
有する片孔浸漬ノズル1−1とすると共に、各吐出孔1
aが内側に向いて対向するように配設する。符号3およ
び4は、図1に示す電磁ブレーキである。
As shown in FIG. 2 (a), the immersion nozzle 1 is
In the case of this use, the single-hole immersion nozzle 1-1 having one molten steel discharge hole 1a is provided, and each discharge hole 1 is provided.
It is arranged so that a faces inward and faces each other. Reference numerals 3 and 4 are the electromagnetic brakes shown in FIG.

【0036】図2(a) および図2(b) において、f1 は
鋳片6の幅方向端部(短辺近傍)での溶鋼上昇流、F1
は鋳片6の幅方向中央部での比較的強い下降流、f3 は
下降流F1 とは反対のメニスカスに向かう上昇流、V1
は鋳片6の幅方向中央部の凝固が鋳込方向(下流)に向
かって凸状に進む速度分布を意味する。
In FIGS. 2 (a) and 2 (b), f1 is the molten steel upflow at the widthwise end (near the short side) of the cast slab 6, F1
Is a relatively strong downward flow in the widthwise central portion of the slab 6, f3 is an upward flow toward the meniscus opposite to the downward flow F1, V1
Means a velocity distribution in which solidification at the widthwise center of the slab 6 proceeds in a convex shape in the casting direction (downstream).

【0037】本発明方法では図2(a) に示すように、供
給時の溶鋼5の流動パターンは、鋳片6の幅方向中央部
で比較的強い下降流F1、短辺近傍で上昇流f1とな
り、鋳片6の幅方向中央部の凝固が鋳込方向(下流)に
向かって凸状に進む速度分布V1を得ることができるよ
うに鋳造する。
In the method of the present invention, as shown in FIG. 2 (a), the flow pattern of the molten steel 5 at the time of supply is such that a relatively strong downward flow F1 at the widthwise central portion of the slab 6 and an upward flow f1 near the short side. Therefore, casting is performed so that the solidification of the widthwise central portion of the slab 6 proceeds in a convex shape in the casting direction (downstream) to obtain a velocity distribution V1.

【0038】すなわち、鋳片6の幅方向中央部での比較
的強い下降流F1 の作用によって、図2(b) に示すよう
に、幅方向中央部で下流側に向かって1つの凸状を有す
る凝固完了点CEが形成され、図4(b) に示すような、
鋳片幅方向の中央部で鋳込上流側に凹み、両端部で鋳込
下流側に突出して不均一となるような凝固完了点CE’
が形成されないように鋳造するのである。
That is, due to the action of the relatively strong downward flow F1 in the widthwise central portion of the slab 6, as shown in FIG. 2 (b), one convex shape is formed in the widthwise central portion toward the downstream side. A solidification completion point CE having is formed, and as shown in FIG. 4 (b),
Solidification completion point CE 'where the center of the slab width direction is recessed upstream of casting and both ends are projected downstream of casting to be uneven
The casting is performed so that no pits are formed.

【0039】図2(c) は、上記の効果により、鋳片6の
最終凝固部において凝固シェルSHの厚さが鋳片幅方向
中央部で薄く、両端部で厚くなる状況を示す鋳片6の横
断面図である。
FIG. 2 (c) shows the situation in which the thickness of the solidified shell SH in the final solidification portion of the slab 6 is thin at the central portion in the width direction of the slab and thick at both ends due to the above effects. FIG.

【0040】本発明方法では、いろいろな鋳込条件下で
も、上記のような鋳込状況を効果的に達成するために電
磁気力を用いる。
In the method of the present invention, the electromagnetic force is used to effectively achieve the above-mentioned casting condition even under various casting conditions.

【0041】すなわち、スループット(スループット=
鋳型幅×鋳型厚み×鋳込速度)が大きくなると、浸漬ノ
ズル1からの吐出流速が大きくなり、各吐出流が衝突し
た後に形成される下降流F1 が大きくなりすぎ、鋳片幅
方向の中央部で鋳込下流側に極端に突出して不均一とな
るような凝固完了点が形成されてしまう。また、図2
(b) に示す鋳造状況の場合、下降流F1 が凝固シェルS
Hの下(地)側に衝突し、凝固シェルSHの再溶解によ
りブレークアウト等のトラブルも生じる。
That is, the throughput (throughput =
(Mold width × mold thickness × casting speed) increases, the discharge flow rate from the dipping nozzle 1 increases, and the downward flow F1 formed after each discharge flow collides with each other becomes too large. As a result, a solidification completion point is formed which is extremely uneven and protrudes downstream of the casting. FIG.
In the case of the casting condition shown in (b), the downward flow F1 is the solidified shell S.
A collision such as a breakout occurs due to the collision with the lower (ground) side of H and remelting of the solidified shell SH.

【0042】上記の問題を解決するために下降流F1 に
電磁気力を作用させ、下降流F1 が或る値以上の流速に
ならないよう制御する。望ましいF1 の流速範囲は鋳造
速度の0.3〜2.5倍程度である。
In order to solve the above problem, an electromagnetic force is applied to the downward flow F1 to control the downward flow F1 so that the flow velocity does not exceed a certain value. The desirable flow rate range of F1 is about 0.3 to 2.5 times the casting speed.

【0043】直流磁場による電磁ブレーキを利用する場
合、静磁場と下降流F1 との相互作用により渦電流が誘
起され、この誘起された渦電流と印加磁場との相互作用
により、下降流F1 と反対向きにローレンツ力が作用
し、下降流F1 に制動力を与えることになる。
When an electromagnetic brake using a DC magnetic field is used, an eddy current is induced by the interaction between the static magnetic field and the downward flow F1, and the interaction between the induced eddy current and the applied magnetic field is opposite to the downward flow F1. The Lorentz force acts in the direction to give a braking force to the downward flow F1.

【0044】交流による移動磁場を電磁ブレーキとして
利用する場合、移動磁場の方向に電磁力が働き、下降流
F1 に対し駆動と制動とを選択できる。
When a moving magnetic field by alternating current is used as an electromagnetic brake, an electromagnetic force acts in the direction of the moving magnetic field, and driving or braking can be selected for the downward flow F1.

【0045】このように下降流F1 の流速を電磁気力に
よって制御することにより、図2(c) に示すように、未
凝固領域Bの最終凝固部における凝固シェルSHの厚さ
が鋳片6の幅方向中央部で薄く、両端部で厚くなり、未
凝固領域Bの横断面形状は最適な紡錘型となる。
By controlling the flow velocity of the downward flow F1 by the electromagnetic force in this manner, the thickness of the solidified shell SH in the final solidified portion of the unsolidified region B is equal to that of the slab 6 as shown in FIG. 2 (c). It becomes thinner at the center in the width direction and thicker at both ends, and the cross-sectional shape of the unsolidified region B becomes an optimal spindle type.

【0046】また、下降流F1 とは反対のメニスカスに
向かう上昇流f3(図2(a) .図2(b) 参照)が大きくな
ると、上昇流f3 起因の局所的な凝固遅れによる縦割れ
の発生または湯面変動によるパウダーの巻き込み等の操
業トラブルが発生する。これらの操業トラブルを防止す
るため、メニスカス近傍にも電磁気力を作用させること
も重要である。
When the upward flow f3 (see FIG. 2 (a) and FIG. 2 (b)) toward the meniscus opposite to the downward flow F1 becomes large, longitudinal cracking due to local solidification delay due to the upward flow f3 occurs. Occurrence or operation troubles such as powder entrainment due to fluctuations in the molten metal level occur. In order to prevent these operational troubles, it is also important to apply an electromagnetic force near the meniscus.

【0047】電磁気力を作用させる最適位置は、浸漬ノ
ズルの本数、浸漬深さ、吐出孔形状および吐出角度等に
より、メニスカスから凝固が完了する凝固完了点までの
所定位置に決められる。
The optimum position for applying the electromagnetic force is determined at a predetermined position from the meniscus to the solidification completion point where solidification is completed, depending on the number of dipping nozzles, dipping depth, discharge hole shape, discharge angle and the like.

【0048】次に、本発明方法において、浸漬ノズルを
3本以上使用する場合の例を説明する。
Next, an example of using three or more immersion nozzles in the method of the present invention will be described.

【0049】図3は浸漬ノズルを5本使用する場合の凝
固の進行状況を説明する図である。
FIG. 3 is a diagram for explaining the progress of coagulation when five dipping nozzles are used.

【0050】図3(a) は鋳型およびその周辺部の要部の
縦断面図、図3(b) は浸漬ノズル、鋳片およびその凝固
の進行を示す斜視図である。このように浸漬ノズルを3
本以上使用する場合、鋳片6の幅方向両端部の2本のみ
を片孔浸漬ノズル1−1とし、その各吐出孔1aは内側
に向けて配設する。一方、中間部の他の浸漬ノズルは通
常の2孔浸漬ノズル1’−2とし、吐出孔1’aの方向
は鋳型2の幅方向と一致させるように配設する。
FIG. 3 (a) is a vertical cross-sectional view of the main part of the mold and its peripheral portion, and FIG. 3 (b) is a perspective view showing the immersion nozzle, the slab, and the progress of solidification thereof. In this way, dip nozzle 3
In the case of using more than one pipe, only two pipes at both end portions in the width direction of the cast slab 6 are used as the single-hole dipping nozzles 1-1, and the respective discharge holes 1a are arranged toward the inside. On the other hand, the other submerged nozzle in the middle part is a normal two-hole submerged nozzle 1'-2, and the ejection holes 1'a are arranged so that the direction thereof matches the width direction of the mold 2.

【0051】図3において、f2 は鋳片6の幅方向端部
での溶鋼上昇流、F2 は鋳片6の幅方向中央部で比較的
均一化された下降流、V2 は鋳片6の幅方向中央部の凝
固が鋳込方向に向かって滑らかな凸状で進む速度分布を
意味する。
In FIG. 3, f2 is an ascending flow of molten steel at the widthwise end of the slab 6, F2 is a relatively uniform downward flow at the widthwise center of the slab 6, and V2 is the width of the slab 6. It means a velocity distribution in which solidification at the center of the direction proceeds in a smooth convex shape in the casting direction.

【0052】図3(a) に示すように、この場合の溶鋼流
動パターンでは、複数の対向する吐出孔1aおよび1′
aからの吐出流が衝突し、図2の場合よりも流速が減速
され、下降流F2 は鋳片幅方向に比較的均一化された下
降流となり、鋳片6の幅方向中央部の凝固が下流に向か
って滑らかな凸状で進む速度分布V2 が得られる。鋳片
6の幅方向中央部での比較的均一化された下降流F2 の
作用によって、図3(b) に示すように、鋳片幅方向中央
部で下降流に向かって滑らかな凸状の凝固完了点CEが
形成される。したがってこの場合も同様に、図4(b) に
示すような、鋳片幅方向の中央部で鋳込上流側に凹み、
両端部で鋳込下流側に突出して不均一となるような凝固
完了点CE’は形成されない。
As shown in FIG. 3 (a), in the molten steel flow pattern in this case, a plurality of opposed discharge holes 1a and 1'are provided.
The discharge flow from a collides, the flow velocity is reduced more than in the case of FIG. 2, and the descending flow F2 becomes a descending flow that is relatively uniform in the width direction of the slab, and the solidification of the width direction central portion of the slab 6 occurs. A velocity distribution V2 is obtained which progresses in a smooth convex shape downstream. Due to the action of the relatively uniform downward flow F2 in the widthwise central portion of the slab 6, as shown in FIG. 3 (b), a smooth convex shape toward the downward flow in the widthwise central portion of the slab 6 is obtained. A solidification completion point CE is formed. Therefore, also in this case, similarly, as shown in FIG. 4 (b), a dent is formed at the center in the width direction of the slab toward the casting upstream side,
The solidification completion points CE ′ that project to the casting downstream side at both ends and become uneven are not formed.

【0053】溶鋼の鋳型内への供給箇所、すなわち浸漬
ノズルを複数とする場合の望ましい上限は10箇所程度
である。
A desired upper limit of the molten steel supply position into the mold, that is, when there are a plurality of dipping nozzles, is about 10 positions.

【0054】電磁気力利用の理由は前述と同じである
が、使用する浸漬ノズルの本数が多ければ下降流F2 は
より均一化されるため、必要な電磁気力は小さくなる。
この理由で電磁場発生装置は比較的小設備となるため、
作業性向上や製造コスト低下が図れる。
The reason for utilizing the electromagnetic force is the same as that described above, but the more the number of immersion nozzles used, the more uniform the downflow F2, and the smaller the electromagnetic force required.
For this reason, the electromagnetic field generator is a relatively small facility,
Workability can be improved and manufacturing cost can be reduced.

【0055】本発明方法では、前記の図1のような構成
からなる装置であれば、湾曲型連続鋳造装置だけでな
く、垂直型に適用しても上記と同じ効果を得ることがで
きる。
In the method of the present invention, the same effect as described above can be obtained not only by the curved continuous casting apparatus but also by the vertical type as long as the apparatus has the structure as shown in FIG.

【0056】さらに本発明方法では、次の条件を満たす
ことが望ましい。
Furthermore, in the method of the present invention, it is desirable that the following conditions be satisfied.

【0057】〔浸漬ノズル〕 本体内径:30〜150 mmφ 吐出孔形状:2孔および片孔の場合 20〜150mm ×20〜150 mm角 吐出角:2孔および片孔の場合 下向き15°〜上向き15° ノズル間距離: 100〜2000mm 〔電磁ブレーキ〕 メニスカス近傍:範囲 50mm×200mm〜300mm ×3000mm 磁場強度 0.15〜0.50Tesla 鋳型直下:範囲 50mm×200mm〜300mm ×3000mm 磁場強度 0.15〜1.0Tesla 〔鋳型〕 鋳型幅: 400〜3000mm 鋳型厚み:90〜350mm 〔鋳造速度〕 0.4〜3.0 m/min 〔未凝固圧下〕 圧下ゾーン長さ: 1.0〜10m 圧下勾配: 0.2〜30mm/m[Immersion Nozzle] Body inner diameter: 30 to 150 mmφ Discharge hole shape: 20 to 150 mm × 20 to 150 mm square for two holes and one hole Discharge angle: 15 ° to 15 downward for two holes and one hole ° Nozzle distance: 100 to 2000 mm [Electromagnetic brake] Near meniscus: Range 50 mm × 200 mm to 300 mm × 3000 mm Magnetic field strength 0.15 to 0.50 Tesla Directly below the mold: Range 50 mm × 200 mm to 300 mm × 3000 mm Magnetic field strength 0.15 to 1.0 Tesla [Mold] Mold Width: 400 to 3000 mm Mold thickness: 90 to 350 mm [Casting speed] 0.4 to 3.0 m / min [Unsolidified reduction] Reduction zone length: 1.0 to 10 m Reduction gradient: 0.2 to 30 mm / m

【0058】[0058]

【実施例】図1および図2のように浸漬ノズルを2本と
した方法ならびに図1に示す装置において図3のように
浸漬ノズルを5本とした方法を用いて、厚板用の炭素鋼
鋳片を鋳造した。
EXAMPLE Carbon steel for thick plates was prepared by using the method of using two dipping nozzles as shown in FIGS. 1 and 2 and the method of using five dipping nozzles as shown in FIG. 3 in the apparatus shown in FIG. A slab was cast.

【0059】上記試験の具体的鋳造条件を次に示す。Specific casting conditions for the above test are shown below.

【0060】(1)装置仕様、鋳造条件 連続鋳造機:湾曲型連鋳機(湾曲半径:12.5 m) 鋳片サイズ:厚み250 mm×幅2000mm 鋼種:〔C〕=0.15〜0.20% 厚板用40キロ鋼 溶鋼過熱度:20℃ 鋳造速度: 1.0 m/min 凝固末期未凝固圧下:圧下ゾーン長5m 圧下勾配 1.0mm/m (2)溶鋼供給系の仕様 (イ)本発明例1(図2(a) に示す構造の場合) ノズル本体内径:85mmφ 吐出孔形状:80×80mm角 吐出角:下向き5゜ ノズル間距離:1500mm (ロ)本発明例2(図3(a) に示す構造の場合) ノズル本体内径:85mmφ 吐出孔形状:80×80mm角 吐出角:下向き5゜ ノズル間距離:400mm (3)電磁ブレーキの仕様 (イ)本発明例1(図2(a) に示す構造の場合) メニスカス近傍:範囲 200mm×2300mm 磁場強度 0.3Tesla 鋳型直下:範囲 500mm×2300mm 磁場強度 0.4Tesla (ロ)本発明例2(図3(a) に示す構造の場合) メニスカス近傍:範囲 200mm×2300mm 磁場強度 0.15Tesla 鋳型直下:範囲 500mm×2300mm 磁場強度 0.25Tesla 比較例として、下記構造の従来の2孔浸漬ノズル1本に
よる連続鋳造を行い、この場合も圧下ロール群により、
本発明例と同じ条件で凝固末期の未凝固軽圧下を行っ
た。
(1) Equipment specifications, casting conditions Continuous casting machine: Curved continuous casting machine (curving radius: 12.5 m) Slab size: thickness 250 mm x width 2000 mm Steel type: [C] = 0.15 to 0.20% For thick plate 40 kg steel Molten steel Superheat: 20 ° C Casting speed: 1.0 m / min Unsolidified final stage of solidification Rolling down: Length of rolling zone 5 m Rolling down gradient 1.0 mm / m (2) Specifications of molten steel supply system (a) Inventive Example 1 (Fig. 2) In the case of the structure shown in (a)) Nozzle body inner diameter: 85 mmφ Discharge hole shape: 80 × 80 mm square Discharge angle: 5 ° downward Nozzle distance: 1500 mm (b) Inventive Example 2 (of the structure shown in FIG. 3 (a)) Case) Nozzle body inner diameter: 85 mmφ Discharge hole shape: 80 × 80 mm square Discharge angle: 5 ° downward Nozzle distance: 400 mm (3) Electromagnetic brake specifications (a) Inventive example 1 (of the structure shown in FIG. 2 (a)) Case) Near the meniscus: Range 200 mm × 2300 mm Magnetic field strength 0.3 Tesla Directly under the mold: Range 500 mm × 2300 mm Magnetic field strength 0.4 Tesla (b) Inventive Example 2 (Figure) In the case of the structure shown in 3 (a)) Near the meniscus: Range 200 mm × 2300 mm Magnetic field strength 0.15 Tesla Directly under the mold: Range 500 mm × 2300 mm Magnetic field strength 0.25 Tesla As a comparative example, continuous casting with one conventional two-hole immersion nozzle with the following structure And in this case as well, by the group of rolling rolls,
Under the same conditions as in the examples of the present invention, uncoagulated light reduction at the final stage of coagulation was performed.

【0061】ノズル本体内径:85mmφ 吐出孔形状:80×80mm角 評価は、得られたスラブを鋳込方向に直角な断面で切断
し、厚み方向中心部より試験片を採取し、このサンプル
の表面を200μmメッシュの粗さに分け、おのおのの
メッシュの中での〔P〕の平均濃度Pを調べ、母溶鋼の
〔P〕濃度P0と比較し、偏析度分布を調査した。表1
にこの結果を示す。
Nozzle body inner diameter: 85 mmφ Discharge hole shape: 80 × 80 mm square Evaluation was carried out by cutting the obtained slab in a cross section perpendicular to the casting direction, collecting a test piece from the center in the thickness direction, and measuring the surface of this sample. Was divided into coarseness of 200 μm mesh, the average concentration P of [P] in each mesh was examined, and compared with the [P] concentration P 0 of the mother molten steel to investigate the segregation degree distribution. Table 1
The results are shown in FIG.

【0062】[0062]

【表1】 [Table 1]

【0063】本発明例では、鋳型内へ供給された溶鋼流
動を制御することにより鋳片の凝固完了点形状を改善
し、鋳片の未凝固領域における圧下を効果的に行い、表
1から明らかなように、比較例と比べて鋳片エッジに近
い部分の中心偏析が大幅に改善され、幅方向に均一な組
成の鋳片を製造することができた。
In the example of the present invention, by controlling the flow of molten steel supplied into the mold, the shape of the solidification completion point of the slab is improved, and the rolling in the non-solidified region of the slab is effectively performed. As described above, the center segregation of the portion close to the slab edge was significantly improved as compared with the comparative example, and the slab having a uniform composition in the width direction could be manufactured.

【0064】[0064]

【発明の効果】本発明方法によれば、鋳片の未凝固領域
における鋳片幅方向中央部に適正な下降流を形成するこ
とにより、鋳片の凝固完了点形状を制御して最適に改善
し、鋳片の未凝固領域における圧下を効果的に行うこと
ができる。この結果、鋳片幅方向全域において均一組成
で、かつ中心偏析のない鋳片の製造が達成可能である。
According to the method of the present invention, the shape of the solidification completion point of the slab is controlled and optimally improved by forming an appropriate downward flow in the central portion of the slab in the unsolidified region in the width direction of the slab. However, reduction in the unsolidified region of the cast piece can be effectively performed. As a result, it is possible to manufacture a slab with a uniform composition in the entire width direction of the slab and without center segregation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を実施するための湾曲型連続鋳造装
置の構成例を示す図である。(a) は側面方向の縦断面概
略図、(b) は鋳型周辺部のみの正面方向の縦断面概略図
である。
FIG. 1 is a diagram showing a configuration example of a curved continuous casting apparatus for carrying out the method of the present invention. (a) is a schematic vertical cross-sectional view in the side direction, and (b) is a schematic vertical cross-sectional view in the front direction only around the mold.

【図2】図1に示す連続鋳造装置の場合における凝固の
進行状況を説明する図である。(a) は鋳型およびその周
辺部の要部の縦断面図、(b) は浸漬ノズル、鋳片および
その凝固の進行を示す斜視図、(c) は(b) に示す〔C〕
位置での鋳片の横断面図である。
FIG. 2 is a diagram for explaining the progress of solidification in the case of the continuous casting device shown in FIG. (a) is a vertical cross-sectional view of the mold and the main part of its periphery, (b) is a perspective view showing the immersion nozzle, the cast piece and the progress of its solidification, (c) is shown in (b) [C]
It is a cross-sectional view of the slab at the position.

【図3】浸漬ノズルを5本使用する場合の凝固の進行状
況を説明する図である。(a) は鋳型およびその周辺部の
要部の縦断面図、(b) は浸漬ノズル、鋳片およびその凝
固の進行を示す斜視図である。
FIG. 3 is a diagram for explaining the progress of solidification when five immersion nozzles are used. (a) is a vertical cross-sectional view of the mold and its peripheral part, and (b) is a perspective view showing an immersion nozzle, a slab, and progress of solidification thereof.

【図4】従来の湾曲型連続鋳造装置における凝固の進行
状況を説明する図である。(a)は鋳型およびその周辺部
の要部の縦断面図、(b) は浸漬ノズル、鋳片およびその
凝固の進行を示す斜視図、(c) は(b) に示す〔C〕位置
での鋳片の横断面図、(d) は鋳片の凝固が完了した後の
鋳片の横断面図である。
FIG. 4 is a diagram for explaining the progress of solidification in a conventional curved continuous casting apparatus. (a) is a vertical cross-sectional view of the main part of the mold and its peripheral portion, (b) is a perspective view showing the immersion nozzle, the slab and the progress of its solidification, (c) is the [C] position shown in (b). FIG. 3 (d) is a cross-sectional view of the slab after the solidification of the slab is completed.

【図5】鋳片幅方向の凝固不均一を解消する従来方法を
示す鋳片および鋳型の横断面図である。
FIG. 5 is a cross-sectional view of a cast product and a mold showing a conventional method for eliminating uneven solidification in the cast product width direction.

【符号の説明】[Explanation of symbols]

1:浸漬ノズル、1−1:片孔浸漬ノズル、1’−2:
2孔浸漬ノズル、1a,1’a :溶鋼吐出孔、2:鋳
型、 2a:鋳型長辺、 2b:凹部、3:メニスカス
近傍に設置した電磁ブレーキ、4:鋳型直下に設置した
電磁ブレーキ、5:溶鋼、 6,6’:鋳片、7:サポ
ートロール群、 8:圧下ロール群、9:ピンチロー
ル、 A:中心偏析、B:未凝固領域(残溶鋼
部)、CE,CE’:凝固完了点、SH:凝固シェル、
W:鋳型幅、f1 ,f2 ,f3 ,Fou:溶鋼上
昇流、F1 ,F2 ,Fod:溶鋼下降流、Fo:溶鋼循
環下降流、V1 ,V2 :凝固速度分布
1: Immersion nozzle, 1-1: Single hole immersion nozzle, 1'-2:
2-hole immersion nozzle, 1a, 1'a: Molten steel discharge hole, 2: Mold, 2a: Mold long side, 2b: Recessed part, 3: Electromagnetic brake installed near the meniscus, 4: Electromagnetic brake installed directly under the mold, 5 : Molten Steel, 6, 6 ': Cast Piece, 7: Support Roll Group, 8: Rolling Roll Group, 9: Pinch Roll, A: Center Segregation, B: Unsolidified Region (Residual Molten Steel Part), CE, CE': Solidified Completion point, SH: solidified shell,
W: Mold width, f1, f2, f3, Fou: Molten steel upflow, F1, F2, Fod: Molten steel downflow, Fo: Molten steel circulation downflow, V1, V2: Solidification velocity distribution

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鋳型内に供給した溶鋼を冷却しつつ引き抜
いて鋳片を連続的に製造するに際し、溶鋼の鋳型内への
供給箇所を鋳片幅方向に2箇所以上設け、供給された溶
鋼の鋳型内流動を電磁気力で制御しつつ鋳造し、鋳片の
未凝固領域を連続的に圧下することを特徴とする連続鋳
造方法。
1. When continuously producing cast slabs by cooling the molten steel fed into the mold while cooling, the molten steel is fed into the mold at two or more locations in the width direction of the cast slab. The continuous casting method is characterized in that casting is performed while controlling the flow in the mold by electromagnetic force, and the unsolidified region of the slab is continuously pressed.
JP07269626A 1995-10-18 1995-10-18 Continuous casting method Expired - Fee Related JP3077572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07269626A JP3077572B2 (en) 1995-10-18 1995-10-18 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07269626A JP3077572B2 (en) 1995-10-18 1995-10-18 Continuous casting method

Publications (2)

Publication Number Publication Date
JPH09108796A true JPH09108796A (en) 1997-04-28
JP3077572B2 JP3077572B2 (en) 2000-08-14

Family

ID=17474977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07269626A Expired - Fee Related JP3077572B2 (en) 1995-10-18 1995-10-18 Continuous casting method

Country Status (1)

Country Link
JP (1) JP3077572B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347701A (en) * 1998-06-12 1999-12-21 Sumitomo Metal Ind Ltd Continuous casting method and continuous caster

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347701A (en) * 1998-06-12 1999-12-21 Sumitomo Metal Ind Ltd Continuous casting method and continuous caster

Also Published As

Publication number Publication date
JP3077572B2 (en) 2000-08-14

Similar Documents

Publication Publication Date Title
TWI290071B (en) Steel continuous casting plant for billet and cogged ingot formats
KR100208699B1 (en) Continuous casting of thin cast pieces
CN111194247B (en) Casting mould equipment
US3931848A (en) Method and apparatus for cooling a strand cast in an oscillating mold during continuous casting of metals, especially steel
JP6561822B2 (en) Steel continuous casting method
JPH09108796A (en) Continuous casting method
KR100352535B1 (en) Continuous casting machine and casting method using the same
JP2867894B2 (en) Continuous casting method
CS216925B2 (en) Method of continuous casting of the steel product
JPH1080749A (en) Method for continuously casting high carbon steel
KR101320357B1 (en) Device for processing short side plate of slab and method therefor
JP3267545B2 (en) Continuous casting method
JP2002028761A (en) Electromagnetic stirring method in mold for continuous casting
JP6904132B2 (en) Tandish for continuous casting
JP2000015404A (en) Production of continuously cast slab having little inclusion defect
JPH08243696A (en) Continuous casting method
JPH0890182A (en) Method for continuously casting wide and thin cast slab
JP2001321901A (en) Method for continuously casting steel
JPH0947852A (en) Continuous casting method and immersion nozzle
JP7127484B2 (en) Metal plate manufacturing method and metal plate manufacturing equipment
JP5825215B2 (en) Steel continuous casting method
JPH05237621A (en) Continuous casting method
JP4330518B2 (en) Continuous casting method
JP6287901B2 (en) Steel continuous casting method
JP3538967B2 (en) Continuous casting method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees