JPH09107975A - Pepc-ase gene of monocotyledon cam plant - Google Patents

Pepc-ase gene of monocotyledon cam plant

Info

Publication number
JPH09107975A
JPH09107975A JP7294986A JP29498695A JPH09107975A JP H09107975 A JPH09107975 A JP H09107975A JP 7294986 A JP7294986 A JP 7294986A JP 29498695 A JP29498695 A JP 29498695A JP H09107975 A JPH09107975 A JP H09107975A
Authority
JP
Japan
Prior art keywords
leu
pepcase
aloe
glu
arg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7294986A
Other languages
Japanese (ja)
Inventor
Hiroaki Shimada
浩章 島田
Tomoko Okamoto
知子 岡本
Hideo Honda
秀夫 本田
Tatsuto Fujimura
達人 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP7294986A priority Critical patent/JPH09107975A/en
Publication of JPH09107975A publication Critical patent/JPH09107975A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject new gene reinforcing photosynthetic ability under a high-temperature dry condition, raising drought resistance, having a specific base sequence, coding for a phosphoenolpyruvic acid carboxylase (PEPCase) of aloe. SOLUTION: This new cDNA codes for a phosphoenolpyruvic acid carboxylase (PEPCase) of aloe having a base sequence of the formula. A cDNA of PEPCase is transduced into a cell of a monocotyledon plant such as rice plant so that photosynthetic ability of the plant cell under a high-temperature dry condition can be strengthened and drought resistance of the plant can be raised. The PEPCase gene is obtained by extracting the whole RNA from a green leaf of aloe phosphoenolpyruvic acid Aloe arborescens, separating a mRNA from the whole RNA, preparing a cDNA library using the mRNA, screening the library by hybridization using a probe composed of a part of the PEPCase gene of aloe and recovering the DNA from a positive clone.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、単子葉CAM(ベ
ンケイソウ型有機酸代謝)植物であるアロエのホスホエ
ノールピルビン酸カルボキシラーゼ(以下PEPCas
eと略す)遺伝子に関するものである。
TECHNICAL FIELD The present invention relates to phosphoenolpyruvate carboxylase of aloe, which is a monocotyledonous CAM (Crassulaceae type organic acid metabolism) plant (hereinafter referred to as PEPCas).
(abbreviated as e) gene.

【0002】[0002]

【従来の技術】植物は炭酸固定の仕組みによって、C3
植物、C4植物及びCAM植物に分類される。C3植物は
大気中の二酸化炭素を直接還元的ペントースリン酸回路
に取り込むことによって光合成を行う植物をいい、イネ
やコムギなどの主要な農作物を含め双子葉植物から光合
成細菌に至るまで、大部分の植物がこれに含まれる。C
3植物は、通常太陽光を受ける日中に気孔を開き、二酸
化炭素を吸収して光合成を行なうが、砂漠地域のような
強光、乾燥条件下では、日中の激しい蒸散を抑えるため
に気孔を閉じることがある(宮地重遠編集、現代植物生
理学I、光合成、p89〜p97、朝倉書店、(1992))。しか
し、気孔が閉じることになれば二酸化炭素の吸収が十分
に行われず、光合成能力の低下を来すことになる。C4
植物はC4ジカルボン酸回路を持つ植物をいい、熱帯、
亜熱帯原産のイネ科植物(トウモロコシ、サトウキビ
等)及び一部の双子葉植物もある。CAM植物は夜間炭
酸固定を行って有機酸(主としてリンゴ酸)を蓄積し、
昼間この有機酸を分解して糖を合成する代謝(ベンケイ
ソウ型有機酸代謝:crassulacean acid metabolism)を
行う植物をいい、サボテン、アロエ、ベンケイソウなど
乾燥気候地域に生息する植物である。CAM植物では、
主に夜間に気孔から二酸化炭素を吸収してリンゴ酸を合
成することによって炭酸固定し、これを液胞中に蓄積す
る。蒸散が活発になる昼間には気孔を閉じて大気からの
二酸化炭素の吸収は行わないが、夜間に合成して液胞に
蓄積したリンゴ酸を脱炭酸することによって得られる二
酸化炭素をカルビン回路での炭酸固定反応に利用し、糖
の合成を行なう。この様な代謝による光合成をCAM型
光合成と呼ぶが、PEPCaseはこのCAM型光合成
において、炭酸固定を行ってリンゴ酸を生成する反応を
触媒する酵素である。それ故、PEPCaseはCAM
型光合成における最も重要な鍵酵素である。
2. Description of the Related Art Plants use C 3 to fix C 3
It is classified into plants, C 4 plants and CAM plants. C 3 plants are plants that perform photosynthesis by directly incorporating carbon dioxide in the atmosphere into the reductive pentose phosphate cycle. Most of the C 3 plants, including dicotyledonous plants and photosynthetic bacteria, including major agricultural crops such as rice and wheat. Plants are included in this. C
3 Normally, plants open their stomata during the day when sunlight is received, and absorb carbon dioxide to perform photosynthesis, but under strong light and dry conditions such as in desert areas, stomata are used to suppress severe transpiration during the day. May be closed (edited by Shigeto Miyaji, Contemporary Plant Physiology I, Photosynthesis, p89-p97, Asakura Shoten, (1992)). However, if the pores are closed, the absorption of carbon dioxide will not be carried out sufficiently, resulting in a decrease in photosynthetic ability. C 4
A plant is a plant with a C 4 dicarboxylic acid cycle, which is tropical,
There are also subtropical gramineous plants (corn, sugar cane, etc.) and some dicotyledonous plants. CAM plants perform nighttime carbonic acid fixation to accumulate organic acids (mainly malic acid),
Metabolites that synthesize sugars by decomposing these organic acids during the daytime (crassulacean acid metabolism: crassulacean acid metabolism) are plants that live in arid climate areas such as cacti, aloe, and crassulaceae. In CAM plants,
Mainly at night, carbon dioxide is fixed by absorbing carbon dioxide from stomata and synthesizing malic acid, which accumulates in vacuoles. During the day when transpiration becomes active, the pores are closed and carbon dioxide is not absorbed from the atmosphere, but carbon dioxide obtained by decarboxylating malic acid that was synthesized at night and accumulated in vacuoles is used in the Calvin cycle. It is used for the carbonic acid fixation reaction of to synthesize sugar. Although photosynthesis by such metabolism is called CAM-type photosynthesis, PEPCase is an enzyme that catalyzes a reaction of fixing carbonic acid to produce malic acid in the CAM-type photosynthesis. Therefore, PEPCase is CAM
Type is the most important key enzyme in photosynthesis.

【0003】PEPCaseはC3植物においてはカル
ビン回路におけるオギザロ酢酸の補完反応などの機能
を、C4植物においてはこれに加えてC4型光合成におけ
る炭酸固定の初期反応を触媒するため、これらの植物で
もPEPCaseの存在が知られている。これらに関す
る研究例が知られていて、C3植物ではタバコ( N. Koi
zumiら,Plant Mol.Biol.,vol.17, pp.535-539, (199
1))、ジャガイモ(S. Merkelbachら, Plant Mol.Bio
l.,vol.23,pp.881-888, (1993))、ダイズ(T. Sugimot
oら,Plant Mol.Biol.,vol.20, pp.743-747, (1992))、
アブラナ(Y. Yanaiら, Biosci. Biotech. Biochem.,
vol.58, pp.950-953, (1994))、C4植物ではトウモロ
コシ(K. Izuiら,Nucl. Acids Res.,vol.14, pp.1615-
1628, (1986))、ソルガム(L. Lepiniecら,Plant Mo
l. Biol., vol.19, pp.339-342, (1992))、フラベリア
(J. HermansとP. Westhoff, Mol. Gen. Genet.,vol.23
4, pp.234-284,(1992))などで遺伝子の単離と構造解析
が報告されている。これらの植物のPEPCase蛋白
は相互の構造の類似性が指摘されている。CAM型のP
EPCaseについてはその生化学的な研究は多数知ら
れているが(H.G.Nimmoら,Enviroment and Plant Matab
olism;N.Smirnoff編,pp.35-44,BIOS Scientific Publis
hers,Ltd.,1995)、本酵素の遺伝子に関する研究はあま
り行なわれていない。とは言えその中でも双子葉植物で
あるアイスプラントのPEPCase遺伝子の研究例が
知られている(J. C. CushimanとH. J. Bohnert, Nucl.
Acids Res. 17, 6745-6746 (1989))。単子葉植物の中
でCAM光合成を行なうものはいくつか知られている
(M.クルーゲ、IP.ティン著、野瀬昭博訳、砂漠植
物の生理・生態。第一章、九州大学出版会)が、これら
の植物のPEPCaseに関する研究例はほとんどな
い。以上述べたことから明らかなように、ライフサイク
ルを通じてCAM型光合成を行なう単子葉植物のPEP
Case及びその遺伝子に関する研究はこれまでなされ
ておらず、単子葉CAM植物のPEPCase遺伝子の
クローニングに関してもこれまで全く報告されていな
い。
PEPCase functions in C 3 plants such as a complementary reaction of oxaloacetate in the Calvin cycle, and in C 4 plants, in addition to this, catalyzes the initial reaction of carbon dioxide fixation in C 4 type photosynthesis. However, the existence of PEPCase is known. Research examples are known of these, the C 3 plants Tobacco (N. Koi
Izumi et al., Plant Mol. Biol., vol.17, pp.535-539, (199
1)), potato (S. Merkelbach et al., Plant Mol. Bio
l., vol.23, pp.881-888, (1993)), soybean (T. Sugimot)
o, et al., Plant Mol. Biol., vol. 20, pp. 743-747, (1992)),
Oilseed rape (Y. Yanai et al., Biosci. Biotech. Biochem.,
vol.58, pp.950-953, (1994)), corn (K. Izui et al., Nucl. Acids Res., vol.14, pp.1615-) in C 4 plants.
1628, (1986)), Sorghum (L. Lepiniec et al., Plant Mo.
l. Biol., vol.19, pp.339-342, (1992)), flaveria (J. Hermans and P. Westhoff, Mol. Gen. Genet., vol.23.
4, pp.234-284, (1992)) and the like have been reported for gene isolation and structural analysis. It has been pointed out that the PEPCase proteins of these plants are similar in structure to each other. CAM type P
Many biochemical studies on EPCase are known (HG Nimmo et al., Enviroment and Plant Matab
olism; N. Smirnoff, pp.35-44, BIOS Scientific Publis
hers, Ltd., 1995), the gene of this enzyme has not been studied so much. However, among them, research examples of the PEPCase gene of the dicotyledonous ice plant are known (JC Cushiman and HJ Bohnert, Nucl.
Acids Res. 17, 6745-6746 (1989)). Some monocotyledons that perform CAM photosynthesis are known (M. Kluge, IP Ting, translated by Akihiro Nose, Physiology and Ecology of Desert Plants, Chapter 1, Kyushu University Press). There are few studies on PEPCase in these plants. As is clear from the above description, the PEP of a monocotyledonous plant that performs CAM-type photosynthesis throughout its life cycle
No studies have been conducted on Case and its gene, and no report has been made on the cloning of PEPCase gene of monocotyledonous CAM plants.

【0004】ところで、植物の生育には至適環境条件が
あり、極端な高・低温、乾燥、高塩などのストレスを受
けるとその生育が阻害される。これまでに、砂漠地域の
ような乾燥地帯でも植物を栽培するために、灌漑による
水分補給や土壌改良による水分保持能力の向上などの努
力が行われてきた。また、同時に交雑を主体とした育種
による耐乾燥性の強い品種の育成が行われてきた。しか
し、これらの方法は莫大な時間と経費、労力がかかる。
さらに、過剰な灌漑の副産物として土壌への塩の集積が
生じて不毛の地となるなど深刻な問題も生じている。そ
こで、乾燥地域での植物栽培を可能にするために、これ
らの従来の方法とは観点の異なる新たな解決方法が望ま
れていた。高温や乾燥等のストレスに対して耐性を有す
る植物を作出することは、植物として主要穀物を選択し
た場合には食糧の増産および環境保全上重要である。イ
ネ等の主要穀物に耐乾燥性を付与するという観点から鑑
みた場合、これらの主要穀物が単子葉植物に分類される
ことから、単子葉CAM植物のCAM型光合成に関与す
る遺伝子を単離し、得られた遺伝子をイネ等の主要穀物
に導入することが最も効果的であると考えられる。なぜ
ならば、単子葉植物と双子葉植物の間での遺伝子発現の
システムの違いが知られており、双子葉植物由来の遺伝
子が単子葉植物ではしばしば効果的に機能しないことが
知られているからである。とは言え、これまで単子葉植
物の上記のような育種は行われたことがなかった。
There are optimum environmental conditions for the growth of plants, and their growth is hindered when they are subjected to stress such as extreme high and low temperatures, drought and high salt. Up to now, efforts have been made to cultivate plants even in dry areas such as desert areas, such as hydration by irrigation and improvement of water retention capacity by soil improvement. At the same time, breeding mainly on crosses has been carried out to breed varieties with strong drought resistance. However, these methods require enormous amount of time, money and labor.
In addition, there are serious problems such as the accumulation of salt in the soil as a by-product of excessive irrigation, resulting in barren soil. Therefore, in order to enable plant cultivation in a dry area, a new solution from a viewpoint different from these conventional methods has been desired. It is important to increase the production of food and to protect the environment when a main grain is selected as the plant, in order to produce a plant having resistance to stress such as high temperature and drought. From the viewpoint of imparting drought resistance to main grains such as rice, since these main grains are classified as monocotyledonous plants, genes involved in CAM-type photosynthesis of monocotyledonous CAM plants are isolated, It is considered most effective to introduce the obtained gene into major grains such as rice. This is because the difference in the system of gene expression between monocotyledonous plants and dicotyledonous plants is known, and it is known that genes derived from dicotyledonous plants often do not function effectively in monocotyledonous plants. Is. However, the above-described breeding of monocotyledonous plants has never been performed so far.

【0005】[0005]

【発明が解決しようとする課題】本発明において解決す
べき課題は、CAM型単子葉植物のPEPCaseをコ
ードする遺伝子を単離することであり、該遺伝子適当な
発現ベクターに連結して組換えプラスミドを作製し、得
られた組換えプラスミドを植物に導入してPEPCas
eの活性を増大させ、結果的に乾燥条件での光合成能力
の強化と耐乾燥性を高めることにある。
The problem to be solved by the present invention is to isolate a gene encoding PEPCase of a CAM type monocotyledonous plant, which is ligated to an expression vector suitable for the gene and used as a recombinant plasmid. Was prepared, and the obtained recombinant plasmid was introduced into a plant to produce PEPCas.
The purpose is to increase the activity of e, and consequently enhance the photosynthetic ability under dry conditions and enhance the drought resistance.

【0006】本発明の目的は、アロエのPEPCase
及びアロエのPEPCaseをコードするcDNAを提
供することにあり、またアロエのPEPCaseをコー
ドするDNA塩基配列を含むPEPCase発現プラス
ミドを提供することにある。
The object of the present invention is to provide PEPCase for aloe.
And to provide a cDNA encoding aloe PEPCase, and to provide a PEPCase expression plasmid containing a DNA base sequence encoding aloe PEPCase.

【0007】また本発明の別の目的はアロエのPEPC
aseをコードするDNA塩基配列を含むPEPCas
e発現プラスミドを単子葉植物に導入してPEPCas
eの活性を増大させ、乾燥条件での光合成能力の強化と
耐乾燥性を高めること、およびPEPCaseの活性を
増大させた形質転換植物を提供することにある。
Another object of the invention is PEPC of aloe.
PEPCas containing a DNA base sequence encoding ase
PEPCas by introducing the e expression plasmid into monocots
It is intended to enhance the activity of e, enhance the photosynthetic ability under drought conditions and enhance drought resistance, and to provide a transformed plant in which the activity of PEPCase is enhanced.

【0008】[0008]

【課題を解決するための手段】本発明者らは、鋭意検討
の結果、アロエよりPEPCaseのcDNAを単離
し、PEPCaseをコードするDNA塩基配列を含む
PEPCase発現プラスミドを作製することに成功し
た。そして更に本発明者らは、該組換えプラスミドを単
子葉植物に導入すると得られた形質転換植物のPEPC
ase活性が上昇することを見いだし本発明を完成した
ものである。
As a result of intensive studies, the present inventors have succeeded in isolating PEPCase cDNA from aloe and producing a PEPCase expression plasmid containing a DNA base sequence encoding PEPCase. Furthermore, the present inventors further obtained PEPC of transformed plants obtained by introducing the recombinant plasmid into monocotyledonous plants.
The inventors have found that the ase activity is increased and completed the present invention.

【0009】即ち、本発明は、 配列表の配列番号1に
示す塩基配列を有するアロエのPEPCaseのcDN
A、配列表の配列番号1に示すアミノ酸配列をコードす
るDNA塩基配列及び該DNA塩基配列を含むプラスミ
ド、該プラスミドで形質転換された微生物及び細胞、該
プラスミドを単子葉植物に導入して、PEPCase活
性を増大させる方法及び該方法で得られたPEPCas
eの増大した形質転換植物を提供するものである。
That is, the present invention relates to the aloe PEPCase cDNA having the nucleotide sequence shown in SEQ ID NO: 1 in the sequence listing.
A, a DNA base sequence encoding the amino acid sequence shown in SEQ ID NO: 1 of the Sequence Listing and a plasmid containing the DNA base sequence, microorganisms and cells transformed with the plasmid, PEPCase obtained by introducing the plasmid into a monocot plant. Method for increasing activity and PEPCas obtained by the method
The present invention provides a transformed plant having an increased e.

【0010】[0010]

【発明の実施の形態】本発明のPEPCaseのcDN
Aは、アロエ属(Aloe)由来のものであり、少なくとも
アロエのPEPCaseタンパク質の全領域をコードす
るDNA塩基配列を有している。アロエ アルボレスケ
ンス(Aloe arborescens Mill)に由来するものは、配
列表の配列番号1に記載のDNA塩基配列を有してい
る。
BEST MODE FOR CARRYING OUT THE INVENTION cPEN of PEPCase of the present invention
A is derived from the genus Aloe ( Aloe ) and has a DNA base sequence encoding at least the entire region of the PEPCase protein of aloe. Those derived from Aloe arborescens Mill have the DNA base sequence shown in SEQ ID NO: 1 in the sequence listing.

【0011】本発明のPEPCaseのcDNAを得る
方法は概略以下のとおりである。即ち、先ず、アイスプ
ラント、トウモロコシ或いはソルガムのPEPCase
の間で保存されているアミノ酸配列或いはDNA塩基配
列をもとに合成したプライマーを用いるPCR(Primer
Chain Reaction)法によりアロエの全RNAからPE
PCaseのcDNA断片を単離する。PCR法は、鋳
型の変性、鋳型DNAへのプライマーのアニール、プラ
イマーからのDNA伸長という各反応を温度制御して数
十サイクルも行なうことにより、プライマー間のDNA
断片を特異的に多量に増幅する方法である。次に、PC
Rの結果得られたDNA断片の塩基配列を決定し、該塩
基配列によりコードれるアミノ酸配列を既知のPEPC
aseのアミノ酸配列と比較することにより相同性を検
討し、得られたDNA断片がアロエのPEPCase遺
伝子に由来するものであることを確認する。そして、ア
ロエのPEPCase遺伝子に由来することが確認され
たDNA断片をプローブとしたプラークハイブリダイゼ
ーションを行うことにより、アロエの全RNAから逆転
写して得られたcDNAライブラリーからアロエのPE
PCaseのcDNAを単離する。一般に、タンパク質
の遺伝子を構成する塩基配列のうち、一部の塩基が他の
塩基に置換したり、欠失したり、挿入してもタンパク質
の機能、活性が実質的に変化しないことがあることが広
く知られている。特に、タンパク質の活性中心以外の領
域においてはそうである。従って、配列番号1で示され
る塩基配列のうち、少数の塩基の置換、欠失、挿入され
たものでもアロエPEPCaseの活性を有しているも
のは、本発明の範囲に含まれる。
The method for obtaining the PEPCase cDNA of the present invention is roughly as follows. That is, first, PEPCase of ice plant, corn or sorghum.
PCR using primers synthesized based on the amino acid sequence or DNA base sequence conserved between
PE from aloe RNA by the chain reaction method
A PCase cDNA fragment is isolated. The PCR method involves denaturing the template, annealing the primer to the template DNA, and extending the DNA from the primer for several tens of cycles by controlling the temperature, whereby the DNA between the primers is
This is a method for specifically amplifying a large amount of fragments. Next, PC
The nucleotide sequence of the DNA fragment obtained as a result of R was determined, and the amino acid sequence encoded by the nucleotide sequence was determined by known PEPC.
The homology is examined by comparing with the amino acid sequence of ase, and it is confirmed that the obtained DNA fragment is derived from the PEPCase gene of Aloe. Then, by performing plaque hybridization using a DNA fragment confirmed to be derived from the Aloe PEPCase gene as a probe, an Aloe PE was obtained from a cDNA library obtained by reverse transcription from aloe total RNA.
PCase cDNA is isolated. Generally, the function or activity of a protein may not be substantially changed even if some bases in the base sequence that make up the protein gene are replaced with other bases, deleted, or inserted. Is widely known. This is especially true in regions other than the active center of the protein. Therefore, among the nucleotide sequences represented by SEQ ID NO: 1, those having a small number of nucleotide substitutions, deletions, or insertions that have the activity of Aloe PEPCase are included in the scope of the present invention.

【0012】単離されたcDNAは適当なベクターに連
結されて組換えプラスミドの形態で、例えば大腸菌等に
形質転換されることで保存することができる。PEPC
aseのcDNAを含有する組換えプラスミドとして
は、例えばpAP39を挙げることができ、該組換えプ
ラスミドで形質転換された大腸菌としてはpAP39を
含有するMTP−001を挙げることができる。大腸菌
MTP−001は受託番号FERM P−15153と
して、茨城県つくば市東1丁目1番3号の通商産業省工
業技術院生命工学工業技術研究所に、平成7年9月5日
付けにて寄託されている。得られたPEPCaseのc
DNAが完全かつ機能的な配列であることを確認するた
めには、該cDNAの塩基配列を決定し、該cDNAの
植物細胞内での発現様式を検討すればよい。
The isolated cDNA can be preserved in the form of a recombinant plasmid by ligating it with an appropriate vector and transforming it into, for example, Escherichia coli. PEPC
Examples of the recombinant plasmid containing the ase cDNA include pAP39, and examples of Escherichia coli transformed with the recombinant plasmid include MTP-001 containing pAP39. Escherichia coli MTP-001 was deposited under the deposit number FERM P-15153 at the Institute of Biotechnology, Institute of Biotechnology, Ministry of International Trade and Industry, 1-3-1, Higashi, Tsukuba, Ibaraki Prefecture, on September 5, 1995. ing. C of the obtained PEPCase
In order to confirm that the DNA is a complete and functional sequence, the nucleotide sequence of the cDNA may be determined and the expression pattern of the cDNA in plant cells may be examined.

【0013】さらに、当該cDNAを用いて、植物で有
効に発現するプライマーを利用した発現プラスミドを構
築し、イネに導入し、形質転換植物を得ることができ
る。即ち、本発明によって得られたアロエのPEPCa
seのcDNAにカリフラワーモザイクウイルス由来の
プロモーターや光合成関係のプロモーターなどの適当な
プロモーターを連結したものを植物細胞用ベクターに組
み込みPEPCase発現プラスミドを構築する。この
PEPCase発現プラスミドをイネ等の単子葉植物、
タバコなどの植物にエレクトロポーレーション、アグロ
バクテリア或いはパーティクルガンを利用した方法など
によって導入することにより形質転換植物を作出する。
以上のようにして得られた形質転換植物は、細胞内でP
EPCaseが過剰に発現するため、PEPCase活
性が増大している。特に本発明で構築された人工遺伝子
はCAM植物であるアロエのPEPCaseを含有する
ため、単子葉C3植物であるイネなど主要穀物植物にこ
れを導入すると、CAM型PEPCase活性が植物内
で発現することで乾燥条件下での二酸化炭素固定能が高
められるため、対乾燥性が付与され、穀物生産性画向上
する。
Further, by using the cDNA, an expression plasmid utilizing a primer that is effectively expressed in plants can be constructed and introduced into rice to obtain a transformed plant. That is, the PEPCa of aloe obtained by the present invention
SE cDNA is ligated with an appropriate promoter such as a cauliflower mosaic virus-derived promoter or a promoter related to photosynthesis into a plant cell vector to construct a PEPCase expression plasmid. This PEPCase expression plasmid is used for monocots such as rice,
Transformed plants are produced by introducing into plants such as tobacco by electroporation, a method using agrobacterium or particle gun, and the like.
The transformed plant obtained as described above has P intracellular
PEPCase activity is increased because EPCase is overexpressed. In particular, since the artificial gene constructed in the present invention contains PEPCase of aloe, which is a CAM plant, when it is introduced into major grain plants such as rice, which is a monocotyledonous C 3 plant, CAM-type PEPCase activity is expressed in the plant. As a result, the ability to fix carbon dioxide under dry conditions is enhanced, so that drying resistance is imparted and grain productivity is improved.

【0014】[0014]

【発明の効果】本発明により、アロエのPEPCase
のcDNAが提供され、アロエのPEPCaseのアミ
ノ酸配列をコードするDNA塩基配列、該DNA塩基配
列を含有するプラスミドが提供される。
According to the present invention, PEPCase of aloe is prepared.
Is provided, and a DNA base sequence encoding the amino acid sequence of PEPCase of Aloe, and a plasmid containing the DNA base sequence are provided.

【0015】本発明により、アロエのPEPCaseの
cDNAがクローニングされ、その塩基配列が決定され
た。これによりCAM光合成に関与するPEPCase
の構造が初めて明らかとなった。このcDNAを利用す
れば植物、特に単子葉植物にCAM光合成に関与するP
EPCase活性を付与することができる。これにより
得られる形質転換植物は乾燥条件下での二酸化炭素固定
能が高められるため、対乾燥性が付与される。また、形
質転換植物が穀物植物である場合には穀物生産性の向上
が可能となる。
According to the present invention, the cDNA of aloe PEPCase was cloned and its nucleotide sequence was determined. As a result, PEPCase involved in CAM photosynthesis
The structure of was first revealed. Using this cDNA, P, which is involved in CAM photosynthesis in plants, especially monocots
EPCase activity can be imparted. The transformed plant thus obtained has an increased ability to fix carbon dioxide under dry conditions, and thus is imparted with drought resistance. Further, when the transformed plant is a grain plant, grain productivity can be improved.

【0016】[0016]

〔実施例1〕[Example 1]

(1)アロエ緑葉由来のcDNAライブラリーの構築 まず、アロエの全RNAの抽出を行なった。実験手順
は、実験医学,Vol9,No15,pp.99-102,(1991)に記された
AGPC(Acid Guanidium thiocyanate Phenol Chloro
form)法に従い、アロエ アルボレスケンス(Aloe arb
orescens Mill)の緑葉5gより全RNAを抽出した。
次に、得られた全RNAからcDNAを合成するため
に、オリゴテックスdT-30(第一化学薬品製)を用い、
全RNAからmRNAを含むポリ(A)+RNAの精製
を行なった。調製法は、オリゴテックスdT-30の取扱い
説明書に従った。mRNAとして約5μgが得られ、そ
のうちのうち約2μgを用いてストラタジーン社製のZA
P-cDNA Synthesis Kitを使用してcDNAの合成を行な
った。得られたcDNAは、ラムダベクター(UNI-ZAP
XR Vector Arms/ストラタジーン社製)のEcoRI認識部
位とXhoI認識部位の間に挿入した後、GIGAPACK-II Gold
(ストラタジーン社製)を用いてラムダファージのパッ
ケージングを行ない、これを大腸菌XL1-Blue MRF'に感
染させて多数の組換えファージを得た。これをアロエ緑
葉のcDNAライブラリーとした。このcDNAライブ
ラリーの大きさは、ZAP-cDNA Synthesis Kitの取扱い説
明書に述べられている方法に従って、組換えファージを
希釈して大腸菌に感染させ、寒天培地上でプラークを形
成させることによって測定した。その結果、構築された
アロエ緑葉由来のcDNAライブラリーは、独立したク
ローンを1×106個含むことがわかった。この大きさ
は、遺伝子単離のためのライブラリーとしては充分な大
きさであると考えられた。
(1) Construction of aloe green leaf-derived cDNA library First, aloe total RNA was extracted. The experimental procedure is AGPC (Acid Guanidium thiocyanate Phenol Chloro) described in Experimental Medicine, Vol 9, No 15, pp.99-102, (1991).
According to the form method, Aloe arborescens ( Aloe arb
orescens Mill ) and total RNA was extracted from 5 g of green leaves.
Next, Oligotex dT-30 (manufactured by Daiichi Pure Chemicals) was used to synthesize cDNA from the obtained total RNA.
Poly (A) + RNA containing mRNA was purified from total RNA. The preparation method was in accordance with the instruction manual for Oligotex dT-30. About 5 μg of mRNA was obtained, and about 2 μg of it was used to produce ZA from Stratagene.
CDNA was synthesized using the P-cDNA Synthesis Kit. The obtained cDNA is lambda vector (UNI-ZAP
GIGAPACK-II Gold after inserting it between EcoRI recognition site and XhoI recognition site of XR Vector Arms (Stratagene)
(Stratagene) was used to package lambda phage, which was infected with E. coli XL1-Blue MRF 'to obtain a large number of recombinant phages. This was used as an aloe green leaf cDNA library. The size of this cDNA library was measured by diluting the recombinant phage to infect E. coli and forming plaques on an agar medium according to the method described in the ZAP-cDNA Synthesis Kit instruction manual. . As a result, it was found that the constructed aloe green leaf-derived cDNA library contained 1 × 10 6 independent clones. This size was considered to be sufficient for a library for gene isolation.

【0017】(2)プローブの作製 アロエのPEPCasecのDNA断片を増幅すること
を試みた。先ず、情報検索の結果得られたトウモロコ
シ、ソルガム及びアイスプラントのPEPCase遺伝
子の塩基配列およびアミノ酸配列を比較して最も相同性
の高い領域を選び、これに対応するプライマーA(配列
番号2)およびプライマーB(配列番号3)を合成し
た。これらのプライマーを用いて、上記(1)と同様に
してアロエ緑葉から抽出した全RNAを鋳型として逆転
写反応を行ない、対応する一本鎖DNAを合成した。さ
らに耐熱性DNAポリメラーゼを用いてPCRを行なっ
た。これにより、PEPCase遺伝子に相当すると考
えられる特異的なDNA断片が増幅されたため、これを
単離し、末端をDNAポリメラーゼで処理して平滑化
し、プラスミドpUC19のSmaI部位に挿入し、大腸菌
にクローニングした。クローニングされたDNA断片の
DNA塩基配列の決定は、自動DNAシーケンサーを用
いて、サンガー(ダイデオキシ)法に準じたダイプライ
マー法およびダイターミネーター法で決定した。決定さ
れたDNA塩基配列を配列表の配列番号4に示した。こ
のDNA塩基配列によってコードされるアミノ酸配列
は、すでに報告されているアイスプラントのPEPCa
seと約77%の相同性を示したことから、該DNA断
片がPEPCaseに由来すると考えられた。そこで該
DNA断片をプローブとして、アロエのPEPCase
のcDNAの単離を行なうことにした。
(2) Preparation of probe An attempt was made to amplify the DNA fragment of PEPCasec of Aloe. First, a region having the highest homology is selected by comparing the nucleotide sequences and amino acid sequences of PEPCase genes of corn, sorghum and ice plant obtained as a result of information retrieval, and the corresponding primer A (SEQ ID NO: 2) and primer B (SEQ ID NO: 3) was synthesized. Using these primers, a reverse transcription reaction was performed using the total RNA extracted from Aloe green leaves as a template in the same manner as in (1) above to synthesize the corresponding single-stranded DNA. Further, PCR was performed using a thermostable DNA polymerase. As a result, a specific DNA fragment considered to correspond to the PEPCase gene was amplified, and this was isolated, the ends were treated with DNA polymerase for blunting, inserted into the SmaI site of plasmid pUC19, and cloned into E. coli. The DNA base sequence of the cloned DNA fragment was determined by the dye primer method and the dye terminator method according to the Sanger (dideoxy) method using an automatic DNA sequencer. The determined DNA base sequence is shown in SEQ ID NO: 4 in the sequence listing. The amino acid sequence encoded by this DNA base sequence is the PEPCa of the ice plant that has already been reported.
Since it showed about 77% homology with se, it was considered that the DNA fragment was derived from PEPCase. Therefore, using this DNA fragment as a probe, PEPCase of Aloe
It was decided to isolate the cDNA of.

【0018】(3)アロエPEPCaseのcDNAの
単離 上記(1)で構築したアロエのcDNAライブラリーの
中からアロエのPEPCaseのcDNAを単離するた
めに、以下の実験を行なった。まず、上記(1)で得ら
れたアロエ緑葉cDNAライブラリーに含まれるファー
ジ由来のプラークを寒天培地上に形成させ、それをナイ
ロン膜(アマシャム社製ハイボンドN)に転写した。ナ
イロン膜に転写されたファージのプラークに含まれてい
るファージDNAは、アルカリ変性液(1.5M NaCl, 2.0
M NaOH)および中和液(1.0M Tris-HCl pH5.0, 2.0M Na
Cl)でそれぞれ10分間処理した後、UV照射を行なっ
てナイロン膜上に固定した。次に、上記(2)で得られ
たDNA断片を非放射性のDIGでラベルしてプローブと
し、先述したファージDNAを固定したナイロン膜とプ
ラークハイブリダイゼーションを行なった。なお、プロ
ーブのラベリングはDIG-ELISA DNA Labeling & Detect
ion Kit(ベーリンガー・マンハイム社製)を使用し、
ハイブリダイゼーションの実験は、その取扱い説明書に
書かれている方法に従って行なった。プラークハイブリ
ダイゼーションの結果、104個のプラークがプローブ
に対し強いシグナルを示したため、これらのプラークに
含まれる組換えファージがPEPCaseのcDNAを
含む可能性が強く示唆された。そこでこれらのファージ
を集め、ラムダファージよりcDNAを含むDNA断片
を抽出し、プラスミドベクターであるpBluescriptに移
した。この操作によって得られた104個のプラスミド
DNAをそれぞれpAP1〜pAP104と命名した。
(3) Isolation of aloe PEPCase cDNA The following experiment was carried out to isolate the aloe PEPCase cDNA from the aloe cDNA library constructed in (1) above. First, a plaque derived from a phage contained in the aloe green leaf cDNA library obtained in (1) above was formed on an agar medium and transferred to a nylon membrane (Hibond N manufactured by Amersham). The phage DNA contained in the plaques of the phage transferred to the nylon membrane was treated with an alkaline denaturing solution (1.5M NaCl, 2.0M).
M NaOH) and neutralizing solution (1.0M Tris-HCl pH5.0, 2.0M Na
Cl) was treated for 10 minutes each, and then UV irradiation was performed to fix it on the nylon membrane. Next, the DNA fragment obtained in (2) above was labeled with a nonradioactive DIG to serve as a probe, and plaque hybridization was performed with the above-described nylon membrane having the phage DNA immobilized thereon. In addition, the labeling of the probe is DIG-ELISA DNA Labeling & Detect.
Ion Kit (Boehringer Mannheim)
Hybridization experiments were performed according to the method described in the instruction manual. As a result of plaque hybridization, 104 plaques showed a strong signal to the probe, strongly suggesting that the recombinant phage contained in these plaques may contain PEPCase cDNA. Then, these phages were collected, a DNA fragment containing cDNA was extracted from lambda phage, and transferred to a plasmid vector pBluescript. The 104 plasmid DNAs obtained by this operation were designated as pAP1 to pAP104, respectively.

【0019】(4)サザンハイブリダイゼーション pAP1からpA104までの104個のプラスミドク
ローンを制限酵素EcoRIとXhoIで同時に切断した後、ア
ガロースゲル電気泳動によって分離した。次に、減圧ブ
ロティング装置(ファルマシアLKB社製/Vacugene B
lotting System)によってDNA断片をナイロン膜に転
写した後、上記(3)に示した方法で変性、中和処理を
行ない、(3)で用いたプローブを利用してサザンハイ
ブリダイゼーションを行なった。その結果、すべてのク
ローンが陽性のシグナルを示した。
(4) Southern hybridization 104 plasmid clones from pAP1 to pA104 were simultaneously digested with restriction enzymes EcoRI and XhoI, and then separated by agarose gel electrophoresis. Next, a vacuum blotting device (Pharmacia LKB / Vacugene B
After the DNA fragment was transferred to a nylon membrane by the (lotting system), denaturation and neutralization treatments were performed by the method described in (3) above, and Southern hybridization was performed using the probe used in (3) above. As a result, all clones showed a positive signal.

【0020】(5)制限酵素地図の作成と3’領域の構
造の比較 上記(4)で得られたクローンについて制限酵素地図を
作成した。これらのクローンの制限酵素地図は互いによ
く似ていたため、類似なcDNAであると考えられた。
そこでこれらのクローンのうち1kb以上の比較的大き
な挿入断片を有する17クローンについて、上記(2)
で述べた方法に従って、それらの3’領域の塩基配列を
調べた。その結果、12クローンの塩基配列は同一であ
ることとがわかった。残りの5クローンはそれぞれ塩基
配列が異なっていた。同一な塩基配列を有する12クロ
ーンのうち最も長い挿入断片を有する組換えプラスミド
pAP39を有する大腸菌MTP−001は受託番号F
ERM P−15153として、通商産業省工業技術院
生命工学工業技術研究所に寄託した。図1に組換えプラ
スミドpAP39の制限酵素切断点地図を示す。
(5) Creation of restriction enzyme map and comparison of structure of 3'region A restriction enzyme map was prepared for the clone obtained in (4) above. The restriction enzyme maps of these clones were so similar to each other that they were considered to be similar cDNAs.
Therefore, among these clones, 17 clones having a relatively large insert fragment of 1 kb or more were subjected to the above (2)
The nucleotide sequences of those 3'regions were examined according to the method described in 1. As a result, it was found that the nucleotide sequences of 12 clones were the same. The remaining 5 clones had different nucleotide sequences. The Escherichia coli MTP-001 having the recombinant plasmid pAP39 having the longest insertion fragment among the 12 clones having the same nucleotide sequence was designated by the accession number F.
ERM P-15153 was deposited at the Institute of Biotechnology, Institute of Biotechnology, Ministry of International Trade and Industry. FIG. 1 shows a restriction enzyme map of the recombinant plasmid pAP39.

【0021】(6)PEPCaseのcDNAの発現の
解析 組換えプラスミドpAP39に対応するPEPCase
のcDNAの発現様式を調べた。一般に植物のPEPC
ase遺伝子は多重遺伝子族を形成しているため(Y.Ya
naiら,Biosci.Biotech.Biochem., Vol.58, pp.950-953,
(1994))、それぞれの遺伝子の区別は3’非翻訳領域
を利用して組換えプラスミドpAP39に特異的なプロ
ーブを調製した。このプローブを用いて、アロエの緑
葉、茎、根からそれぞれ調製した全RNAについてのノ
−ザン分析を行なった。RNAの調製は上記(1)と同
様の方法で行った。アロエは実験開始前およそ2週間の
間、乾燥状態に保持しCMA型光合成が活発に行なわれ
ている状態の植物体を用いた。ノ−ザン分析はそれぞれ
3.5μgのRNAを用いてホルムアルデヒド含有のアガ
ロースゲル電気泳動で分離したサンプルを、ナイロン膜
に転写後、常法に従って(野村慎太郎、稲沢譲治、脱ア
イソトープ実験プロトコール1DIGハイブリダイゼー
ション、秀潤社(1994))実施した。プローブと親和性の
あるバンドは発光基質としてCDP-STAR(TROPIX社製)を
用いたDIG Nucleic Acid Detectionキット(ベーリンガ
ー・マンハイム社製)により検出した。ノ−ザン分析の
結果、rRNAはすべての組織から検出されたが、PE
PCaseのmRNAはこの遺伝子の発現が見られる組
織である緑葉から得られたRNAサンプルでのみ、PE
PCaseのmRNAに対応する位置にバンドが検出さ
れた。即ち、pAP39に対応するPEPCase遺伝
子は葉において特異的に発現することが確認された(図
2)。茎および根では全く発現が確認されず、この遺伝
子発現がCAM型光合成を行なっている緑葉でのみ特異
的であることが明らかとなった。以上のことより、pA
P39にコードされているPEPCaseはCAM型光
合成に関与する酵素であることが強く示唆された。
(6) Analysis of expression of PEPCase cDNA PEPCase corresponding to recombinant plasmid pAP39
The expression pattern of the cDNA was examined. Plant PEPC in general
Since the ase gene forms a multigene family (Y.Ya
nai et al., Biosci.Biotech.Biochem., Vol.58, pp.950-953,
(1994)), a gene specific for the recombinant plasmid pAP39 was prepared by utilizing the 3'untranslated region to distinguish each gene. Using this probe, Northern analysis was carried out on total RNA prepared from green leaves, stems and roots of Aloe. RNA was prepared in the same manner as in (1) above. As the aloe, a plant body was used in which it was kept in a dry state and CMA-type photosynthesis was actively performed for about 2 weeks before the start of the experiment. Northern analysis
A sample separated by formaldehyde-containing agarose gel electrophoresis using 3.5 μg of RNA was transferred to a nylon membrane and then transferred in accordance with a conventional method (Shintaro Nomura, Joji Inazawa, Deisotope Experimental Protocol 1 DIG Hybridization, Shujunsha (1994). )Carried out. A band having an affinity for the probe was detected by a DIG Nucleic Acid Detection kit (manufactured by Boehringer Mannheim) using CDP-STAR (manufactured by TROPIX) as a luminescent substrate. As a result of Northern analysis, rRNA was detected in all tissues.
PCase mRNA was detected only in RNA samples obtained from green leaves, which is the tissue in which the expression of this gene is observed.
A band was detected at a position corresponding to PCase mRNA. That is, it was confirmed that the PEPCase gene corresponding to pAP39 was specifically expressed in leaves (Fig. 2). No expression was confirmed in the stems and roots, and it was revealed that this gene expression was specific only in the green leaves undergoing CAM-type photosynthesis. From the above, pA
It was strongly suggested that PEPCase encoded by P39 is an enzyme involved in CAM-type photosynthesis.

【0022】(7)cDNAの塩基配列の解析 塩基配列の決定は、上記(2)で述べた方法で行なっ
た。これにより決定されたpAP39のcDNAの塩基
配列を配列番号1に示す。配列番号1の塩基配列は96
4アミノ酸残基からなるタンパク質をコードしていた。
これらの塩基配列から規定されるタンパクのアミノ酸配
列を、アイスプラント、ソルガム、トウモロコシのPE
PCaseのアミノ酸配列と比較したところ、74.5%〜
85.0%の相同性がみられた。従って、pAP39に含ま
れるcDNAは、アロエのCAM型光合成に関与するP
EPCaseをコードしていると考えられた。そこでこ
のタンパク質をAPPC1と命名した。
(7) Analysis of base sequence of cDNA The base sequence was determined by the method described in (2) above. The nucleotide sequence of the pAP39 cDNA thus determined is shown in SEQ ID NO: 1. The nucleotide sequence of SEQ ID NO: 1 is 96
It encoded a protein consisting of 4 amino acid residues.
The amino acid sequences of the proteins defined by these base sequences are used for the PE of ice plant, sorghum, and corn.
When compared with the amino acid sequence of PCase, 74.5% ~
There was 85.0% homology. Therefore, the cDNA contained in pAP39 is a P that is involved in CAM-type photosynthesis of aloe.
It was thought to encode EPCase. Therefore, this protein was named APPC1.

【0023】〔実施例2〕 (1)PEPCase発現プラスミドpPPC1の構築 タンパク質APPC1をカリフラワーモザイクウイルス
由来の35Sプロモーターとクロロフィルa/b結合タ
ンパク(Cab)のプロモーター(cabプロモータ
ー)で発現するようなプラスミドの構築を試みた。35
SのプロモーターとNOS(ノパリン合成酵素)のター
ミネーター(Nosターミネーター)を利用してアロエ
PEPCaseの発現のために、プラスミドpAP39
をKpnIで切断後、BamHIを用いて部分分解を行ない全長
のPEPCasecDNA断片を得た。次に、pBI2
21(東洋紡績より購入)をBamHIとSacIで切断した
後、SacI突出末端に合成リンカー1(配列番号5)を結
合してKpnI認識部位を導入し、最後にKpnIで切断した。
このようにして得られた35Sのプロモーターを含むP
EPCase発現プラスミドと、組換えプラスミドpA
P39由来のcDNA含む断片を結合した。ここで得ら
れたPEPCase発現プラスミドをpPPC1と命名
した。構築した発現プラスミドの挿入断片の構造を図3
に示す。
[Example 2] (1) Construction of PEPCase expression plasmid pPPC1 A plasmid expressing the protein APPC1 with the 35S promoter derived from cauliflower mosaic virus and the chlorophyll a / b binding protein (Cab) promoter (cab promoter) was prepared. Tried to build. 35
The plasmid pAP39 is used for the expression of Aloe PEPCase using the S promoter and NOS (nopaline synthase) terminator (Nos terminator).
Was digested with KpnI and partially digested with BamHI to obtain a full-length PEPCasec DNA fragment. Next, pBI2
21 (purchased from Toyobo) was digested with BamHI and SacI, synthetic linker 1 (SEQ ID NO: 5) was ligated to the SacI protruding end to introduce a KpnI recognition site, and finally, it was digested with KpnI.
The P containing the 35S promoter thus obtained
EPCase expression plasmid and recombinant plasmid pA
The fragment containing the cDNA from P39 was ligated. The PEPCase expression plasmid obtained here was named pPPC1. The structure of the insert of the constructed expression plasmid is shown in FIG.
Shown in

【0024】(2)PEPCase発現プラスミドpP
PC101の構築 CabプロモーターとNOSのターミネーターを利用し
てアロエのPEPCaseを発現させるために、同様に
してpAP39から全長のcDNAに対応するBamH
I−KpnI断片を調製し、これを、発現ベクターpL
HC4.4(Y.Tada et al., EMBO J. vol.10, pp1803-
1808, 1991)のBamHIおよびKpnI部位に挿入した。この
結果、得られたPEPCase発現プラスミドをpPP
C101と命名した。構築した発現プラスミドの挿入断
片の構造を図4に示す。
(2) PEPCase expression plasmid pP
Construction of PC101 In order to express Aloe PEPCase using the Cab promoter and the NOS terminator, BamH corresponding to full-length cDNA from pAP39 was similarly prepared.
An I-KpnI fragment was prepared and used as an expression vector pL.
HC4.4 (Y. Tada et al., EMBO J. vol.10, pp1803-
1808, 1991) at the BamHI and KpnI sites. As a result, the resulting PEPCase expression plasmid was transformed into pPP
It was named C101. The structure of the constructed insert fragment of the expression plasmid is shown in FIG.

【0025】(3)イネの形質転換 上記で構築された発現プラスミドを多田らの方法(Tada
et al., Theor.Appl.Genet. Vol.80, pp.475-480, (19
90))に従い、イネ(キヌヒカリ)のプロトプラストに
エレクトロポーレーション法によって導入した。得られ
た細胞は、藤村らの方法(Fujimura et al. Plant Tiss
ue Culture Lett., vol.2, p.74, (1985))に従い、植
物体に再生した。これらの細胞よりDNAを抽出し、導
入した遺伝子をプローブとしてサザンハイブリダイゼー
ションターを行ったところ、発現プラスミドpPPC1
およびpPPC101に由来すると思われるDNAがそ
れぞれ8株、12株から検出された。
(3) Transformation of rice The expression plasmid constructed above was used for the method of Tada et al.
et al., Theor. Appl. Genet. Vol. 80, pp. 475-480, (19
90)), and introduced into rice (Kinuhikari) protoplasts by electroporation. The obtained cells were prepared according to the method of Fujimura et al. (Fujimura et al. Plant Tiss
ue Culture Lett., vol.2, p.74, (1985)). When DNA was extracted from these cells and Southern hybridization was performed using the introduced gene as a probe, expression plasmid pPPC1 was obtained.
DNAs that were considered to be derived from pPPC101 and pPPC101 were detected from 8 strains and 12 strains, respectively.

【0026】[0026]

【配列表】[Sequence list]

【0027】配列番号:1 配列の長さ:3443 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起源: 生物名:アロエ アルボレスケンス (Aloe arborescens
Mill) 組織の種類:緑葉 配列の特徴 1-255 E 5'UTR 256-3147 S CDS 3149-3443 E 3'UTR 配列 CACGAGTTCC TTCTTCGCTC GCTCGCTCGC TCGCTCTCCC TCCCTGCTCT CTCTTTCTCT 60 TGTCTTCATC ACGGACATAT CCTCACTCAA AATTTTAGGG TTTGTGGTTT TGATTCTGTG 120 CCCCTCGAGC TAACTACCCT TTCAATTCGA GAAGAGGCGG GATTCTCGTG TCTCGATTCA 180 AATATCTCTT TTGGATTTTC AATTTAGCCA GAACAAGTTC TCTTATTCTG AGAGAAGCGA 240 GGAGTTTTGA AGGAG ATG GCG ACT CGA GTG GAG AAG TTG GCG TCG ATC GAC 291 Met Ala Thr Arg Val Glu Lys Leu Ala Ser Ile Asp 1 5 10 GCG CAG CTG AGG GCG TTG GCG CCG AAG AAA GTG TCG GAG GAT GAC AAA 339 Ala Gln Leu Arg Ala Leu Ala Pro Lys Lys Val Ser Glu Asp Asp Lys 15 20 25 TTG GTC GAG TAC GAC GCG CTC CTC TTG GAT CGG TTC CTC GAA ATC CTT 387 Leu Val Glu Tyr Asp Ala Leu Leu Leu Asp Arg Phe Leu Glu Ile Leu 30 35 40 GAA GAT TTG CAC GGC GAG GAC ATT CGA GAG ACG GTT CAA GCT TGC TAT 435 Glu Asp Leu His Gly Glu Asp Ile Arg Glu Thr Val Gln Ala Cys Tyr 45 50 55 60 GAG TTA TCT GCT GAG TAC GAG GCG AAG CAC GAC CCC AAG AAG CTA GAT 483 Glu Leu Ser Ala Glu Tyr Glu Ala Lys His Asp Pro Lys Lys Leu Asp 65 70 75 GAA CTG GGG AAT GTG CTG ACG AGT TTG GAT CCG GGG GAT TCT ATC GTT 531 Glu Leu Gly Asn Val Leu Thr Ser Leu Asp Pro Gly Asp Ser Ile Val 80 85 90 GTT GCG AGC TCA TTC TCG CAC ATG CTC AAC CTC GCC AAC TTG GCT GAG 579 Val Ala Ser Ser Phe Ser His Met Leu Asn Leu Ala Asn Leu Ala Glu 95 100 105 GAG GTT CAA ACT GCT TAC AGG AGG AAG ATC AAG CTG AAT AAG AAG GGA 627 Glu Val Gln Thr Ala Tyr Arg Arg Lys Ile Lys Leu Asn Lys Lys Gly 110 115 120 GAT TTC CTC GAT GAG GCT TGT GCG ACG ACT GAG TCG GAC ATT GAG GAG 675 Asp Phe Leu Asp Glu Ala Cys Ala Thr Thr Glu Ser Asp Ile Glu Glu 125 130 135 140 ACT TTG AAA AAG CTT TTG TTG ATG AAG AAG TCG AAG GAG GAG ATT TTC 723 Thr Leu Lys Lys Leu Leu Leu Met Lys Lys Ser Lys Glu Glu Ile Phe 145 150 155 GAT GCT CTG AAG AAC CAA ACT GTG GAT CTT GTT TTT ACT GCA CAT CCA 771 Asp Ala Leu Lys Asn Gln Thr Val Asp Leu Val Phe Thr Ala His Pro 160 165 170 ACT CAG TCG GTC AGG AGG TCA CTG CTT CAG AAG CAT GGA AGG ATA AGG 819 Thr Gln Ser Val Arg Arg Ser Leu Leu Gln Lys His Gly Arg Ile Arg 175 180 185 AAT TGT TTA GCT CAG TTG TAT GCC CAC GAT ATA ACA CCT GAT GAT AAG 867 Asn Cys Leu Ala Gln Leu Tyr Ala His Asp Ile Thr Pro Asp Asp Lys 190 195 200 CAA GAA CTT GAT GAA GCT CTC CAG AGA GAG ATT CAA GCA GCC TTT AGA 915 Gln Glu Leu Asp Glu Ala Leu Gln Arg Glu Ile Gln Ala Ala Phe Arg 205 210 215 220 ACC GAT GAA ATT CGT AGA ACT CCT CCA GCT CCA CAA GAT GAA ATG AGG 963 Thr Asp Glu Ile Arg Arg Thr Pro Pro Ala Pro Gln Asp Glu Met Arg 225 230 235 GCT GGT ATG AGT TAT TTC CAT GAA ACT ATA TGG AAG GGT GTT CCC AAG 1011 Ala Gly Met Ser Tyr Phe His Glu Thr Ile Trp Lys Gly Val Pro Lys 240 245 250 TTT TTG CGT CGT GTT GAT ACA GCT CTG AAA AAC ATT GGG ATT AAT GAG 1059 Phe Leu Arg Arg Val Asp Thr Ala Leu Lys Asn Ile Gly Ile Asn Glu 255 260 265 CGT TTT CCA TAC AAT GCT CCT CTT ATT CAG TTC TCT TCG TGG ATG GGG 1107 Arg Phe Pro Tyr Asn Ala Pro Leu Ile Gln Phe Ser Ser Trp Met Gly 270 275 280 GGT GAC CGT GAT GGA AAT CCT AGA GTC ACG CCA GAG GTT ACA AGG GAT 1155 Gly Asp Arg Asp Gly Asn Pro Arg Val Thr Pro Glu Val Thr Arg Asp 285 290 295 300 GTA TGC TTG TTA GCC AGA ATG ATG GCT GCT AAT TTG TAC TTT TCA CAA 1203 Val Cys Leu Leu Ala Arg Met Met Ala Ala Asn Leu Tyr Phe Ser Gln 305 310 315 ATT GAT GAT CTC ATG TTT GAG CTC TCT ATG TGG CGC TGC AGT GAT GAG 1251 Ile Asp Asp Leu Met Phe Glu Leu Ser Met Trp Arg Cys Ser Asp Glu 320 325 330 CTT CGT GTC CGA GCA GAT ATA TTA CAT CGC TCT TTA AAG AAG GAT GCA 1299 Leu Arg Val Arg Ala Asp Ile Leu His Arg Ser Leu Lys Lys Asp Ala 335 340 345 AAA CAT TAT ATT GAA TTC TGG AAA CAA ATT CCT CCA AGT GAA CCA TAT 1347 Lys His Tyr Ile Glu Phe Trp Lys Gln Ile Pro Pro Ser Glu Pro Tyr 350 355 360 CGT GTT ATA CTT TCT GAT GTG AGA GAT AAG CTA TAT TAT ACA CGT GAA 1395 Arg Val Ile Leu Ser Asp Val Arg Asp Lys Leu Tyr Tyr Thr Arg Glu 365 370 375 380 AGA GCC AGA CAT TTG TTG TCA AAT GGG TAT TCT GAC ATT CCT GAG GAA 1443 Arg Ala Arg His Leu Leu Ser Asn Gly Tyr Ser Asp Ile Pro Glu Glu 385 390 395 GCA GCT TTC ACA AAT ATT GAG CAG TTC CTA GAA CCC CTT GAA CTT TGC 1491 Ala Ala Phe Thr Asn Ile Glu Gln Phe Leu Glu Pro Leu Glu Leu Cys 400 405 410 TAT CGC TCG CTT TGT GAT TGC GGC GAT AGA CCA ATA GCA GAT GGT AGC 1539 Tyr Arg Ser Leu Cys Asp Cys Gly Asp Arg Pro Ile Ala Asp Gly Ser 415 420 425 CTT CTT GAC TTT CTG CGC CAA GTC TCA ACC TTT GGC CTC TCT CTT GTA 1587 Leu Leu Asp Phe Leu Arg Gln Val Ser Thr Phe Gly Leu Ser Leu Val 430 435 440 AGA CTC GAC ATC AGG CAA GAA TCC GAG AGG CAC ACC GAC GTC ATG GAT 1635 Arg Leu Asp Ile Arg Gln Glu Ser Glu Arg His Thr Asp Val Met Asp 445 450 455 460 GCC ATC ACC AGG CAT CTA GAG CTT GGG TCC TAC CGT GAG TGG TCT GAG 1683 Ala Ile Thr Arg His Leu Glu Leu Gly Ser Tyr Arg Glu Trp Ser Glu 465 470 475 GAG CGC CGC CAA GAA TGG CTG CTG TCC GAA CTC AGT GGA AAA CGC CCT 1731 Glu Arg Arg Gln Glu Trp Leu Leu Ser Glu Leu Ser Gly Lys Arg Pro 480 485 490 CTT TTC GGT CCT GAC CTC CCT AAA ACC GAA GAA ATT GCC GAC GTC TTA 1779 Leu Phe Gly Pro Asp Leu Pro Lys Thr Glu Glu Ile Ala Asp Val Leu 495 500 505 GGT GCG TTC CAC GTC ATC TCC GAG CTC CCC TAC GAT TGT TTC GGA GCA 1827 Gly Ala Phe His Val Ile Ser Glu Leu Pro Tyr Asp Cys Phe Gly Ala 510 515 520 TAC ATA ATC TCG ATG GCG ACC TCC TCG TCT GAC GTC CTC GCC GTC GAG 1875 Tyr Ile Ile Ser Met Ala Thr Ser Ser Ser Asp Val Leu Ala Val Glu 525 530 535 540 CTC TTG CAG CGA GCG TGT GGG GTG AAG AAA CCT TTA AGA GTC GCA CCT 1923 Leu Leu Gln Arg Ala Cys Gly Val Lys Lys Pro Leu Arg Val Ala Pro 545 550 555 CTT TTT GAA AAG CTC GCA GAT CTT GAG GCT GCT CCT GCT GCA ATG GAG 1971 Leu Phe Glu Lys Leu Ala Asp Leu Glu Ala Ala Pro Ala Ala Met Glu 560 565 570 AGG CTC TTC TCG ATC GAC TGG TAC AGG GAC CGG ATC AAC GGA AAA CAA 2019 Arg Leu Phe Ser Ile Asp Trp Tyr Arg Asp Arg Ile Asn Gly Lys Gln 575 580 585 GAA GTC ATG ATC GGA TAC TCA GAT TCC GGC AAG GAC GCG GGC CGT CTC 2067 Glu Val Met Ile Gly Tyr Ser Asp Ser Gly Lys Asp Ala Gly Arg Leu 590 595 600 TCA GCG GCT TGG CAG TTG TAT AAA GCT CAG GAG GAT ATG GTG AAG GTC 2115 Ser Ala Ala Trp Gln Leu Tyr Lys Ala Gln Glu Asp Met Val Lys Val 605 610 615 620 GCG AAG GAG TAT GGG GTG AAG CTG ACT ATG TTT CAT GGA CGA GGG GGG 2163 Ala Lys Glu Tyr Gly Val Lys Leu Thr Met Phe His Gly Arg Gly Gly 625 630 635 ACT GTT GGG AGA GGA GGC GGA CCT ACT CAC CTG GCT CTT CTG TCT CAG 2211 Thr Val Gly Arg Gly Gly Gly Pro Thr His Leu Ala Leu Leu Ser Gln 640 645 650 CCG CCT GAC ACA ATT AAT GGA TCA ATT CGC GTT ACA GTT CAG GGA GAG 2259 Pro Pro Asp Thr Ile Asn Gly Ser Ile Arg Val Thr Val Gln Gly Glu 655 660 665 GTT ATT GAG CAG TCC TTC GGT GAG GAG CGC TTG TGC TTC AGA ACT CTG 2307 Val Ile Glu Gln Ser Phe Gly Glu Glu Arg Leu Cys Phe Arg Thr Leu 670 675 680 CAG CGG TAC ACA GCG GCT ACT CTC GAG CAT GGG ATG AAC CCC CCG ATT 2355 Gln Arg Tyr Thr Ala Ala Thr Leu Glu His Gly Met Asn Pro Pro Ile 685 690 695 700 TCT CCG AAG CCT GAG TGG CGC GCT CTG CTG GAT GAG ATG GCT GTC GTG 2403 Ser Pro Lys Pro Glu Trp Arg Ala Leu Leu Asp Glu Met Ala Val Val 705 710 715 GCT ACA AAG GAG TAC CGA TCG ATT GTC TTT CAG GAG CCG CGG TTT GTT 2451 Ala Thr Lys Glu Tyr Arg Ser Ile Val Phe Gln Glu Pro Arg Phe Val 720 725 730 GAG TAC TTC CGC CTG GCA ACA CCC GAG ACA GAA TAT GGC AGG ATG AAC 2499 Glu Tyr Phe Arg Leu Ala Thr Pro Glu Thr Glu Tyr Gly Arg Met Asn 735 740 745 ATC GGG AGT AGG CCA TCA AAA AGG AAG CCT AGC GGG GGG ATA GAG AGT 2547 Ile Gly Ser Arg Pro Ser Lys Arg Lys Pro Ser Gly Gly Ile Glu Ser 750 755 760 TTA CGT GCA ATT CCG TGG ATA TTT GCG TGG ACC CAG ACG AGG TTC CAT 2595 Leu Arg Ala Ile Pro Trp Ile Phe Ala Trp Thr Gln Thr Arg Phe His 765 770 775 780 CTT CCT GTC TGG CTC GGT TTT GGT GCA GCA TTT AAG CAT ATC ATG GAA 2643 Leu Pro Val Trp Leu Gly Phe Gly Ala Ala Phe Lys His Ile Met Glu 785 790 795 AAG GAT AAG AAA AAT TTC CAG ACA CTC AGA GAG ATG TAC AAT GTG TGG 2691 Lys Asp Lys Lys Asn Phe Gln Thr Leu Arg Glu Met Tyr Asn Val Trp 800 805 810 CCG TTC TTT AGG GTC ACA ATT GAT TTG CTT GAG ATG GTT TTC GCA AAG 2739 Pro Phe Phe Arg Val Thr Ile Asp Leu Leu Glu Met Val Phe Ala Lys 815 820 825 GGA GAC CCT GGC ATA GCT GCT CTG TAT GAC AAA CTG CTG GTC TCC GAA 2787 Gly Asp Pro Gly Ile Ala Ala Leu Tyr Asp Lys Leu Leu Val Ser Glu 830 835 840 GAT TTA CTG CCA TTT GGT GAG CGA CTC AGA AAC AAC TAT GTT GAA ACA 2835 Asp Leu Leu Pro Phe Gly Glu Arg Leu Arg Asn Asn Tyr Val Glu Thr 845 850 855 860 AAG CGC CTC CTT CTG CAG GTC GCC GGG CAC AGG GAT CTC CTT GAA GGG 2883 Lys Arg Leu Leu Leu Gln Val Ala Gly His Arg Asp Leu Leu Glu Gly 865 870 875 GAC CCG TAT CTA AAG CAG AGA CTT CGC CTG CGT GAC GCC TAC ATA ACA 2931 Asp Pro Tyr Leu Lys Gln Arg Leu Arg Leu Arg Asp Ala Tyr Ile Thr 880 885 890 ACC CTG AAT GTG TGC CAA GCA TAC ACT CTG AAA CGC ATC AAA GAT CCC 2979 Thr Leu Asn Val Cys Gln Ala Tyr Thr Leu Lys Arg Ile Lys Asp Pro 895 900 905 ACC TAC AAC GTG AAC CTG AGG CCC CGC CTC TCC AAG GAC GTG ACC CAG 3027 Thr Tyr Asn Val Asn Leu Arg Pro Arg Leu Ser Lys Asp Val Thr Gln 910 915 920 CCG AGA AAG CCG GCT GCT GAG TTC CTG ACG CTG AAC CCA ACC AGC GAG 3075 Pro Arg Lys Pro Ala Ala Glu Phe Leu Thr Leu Asn Pro Thr Ser Glu 925 930 935 940 TAC GCG CCT GGG CTT GAG GAC ACG TTG ATC CTC ACC ATG AAG GGA ATC 3123 Tyr Ala Pro Gly Leu Glu Asp Thr Leu Ile Leu Thr Met Lys Gly Ile 945 950 955 GCT GCA GGC CTG CAA AAC ACG GGC TAGGTGTCGT ATCTATAAGT TTCTTTCTTC 3177 Ala Ala Gly Leu Gln Asn Thr Gly 960 964 ATATATGGTG ATGAAGACCT TATTAATGAA TAAATAAATG GAAGTGTATT TAAACTTAGA 3237 GAAGAGAACC TCTTGTTTCG AGAGGAGAGA GAGAAATAAA GGAGGGGGGG GGGGGCGGTT 3297 GTTGGTTGGG TTACATTAAG CTGCTTTTTG TGTTGTCCAT GTACTTATGA ACTTATGATA 3357 AATGTGCAAC TGGGCCTTGA GGTCTTCTAG CTTAAGAATA AATAATGAAA AGAGGATTGC 3417 AACAAAAAAA AAAAAAAAAA AAAAAA 3443
SEQ ID NO: 1 Sequence length: 3443 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Sequence type: cDNA to mRNA Origin: Organism name: Aloe arborescens
Mill) Tissue type: Green leaf Sequence features 1-255 E 5'UTR 256-3147 S CDS 3149-3443 E 3'UTR sequence CACGAGTTCC TTCTTCGCTC GCTCGCTCGC TCGCTCTCCCTCCCTGCTCT CTCTTTCTCT 60 TGTCTTCATC ACGGACATAT CCTCTTTCGACTCTCCTTTCGACTCT CCTTTCGACTCT CCTTTCGACTCT CCTTTCGACTCT TACCTGCTTGCCTT TTGATGCTTT 180 AATATCTCTT TTGGATTTTC AATTTAGCCA GAACAAGTTC TCTTATTCTG AGAGAAGCGA 240 GGAGTTTTGA AGGAG ATG GCG ACT CGA GTG GAG AAG TTG GCG TCG ATC GAC 291 Met Ala Thr Arg Val Glu Lys Leu Ala Ser Ile Asp 1 5 10 GCG GCG CAG CTG CTG GAG GAT GAC AAA 339 Ala Gln Leu Arg Ala Leu Ala Pro Lys Lys Val Ser Glu Asp Asp Lys 15 20 25 TTG GTC GAG TAC GAC GCG CTC CTC TTG GAT CGG TTC CTC GAA ATC CTT 387 Leu Val Glu Tyr Asp Ala Leu Leu Leu Asp Arg Phe Leu Glu Ile Leu 30 35 40 GAA GAT TTG CAC GGC GAG GAC ATT CGA GAG ACG GTT CAA GCT TGC TAT 435 Glu Asp Leu His Gly Glu Asp Ile Arg Glu Thr Val Gln Ala Cys Tyr 45 50 55 60 GAG TTA TCT GCT GAG TAC GAG GCG AAG CAC GAC CCC AAG AAG CTA GAT 483 Gl u Leu Ser Ala Glu Tyr Glu Ala Lys His Asp Pro Lys Lys Leu Asp 65 70 75 GAA CTG GGG AAT GTG CTG ACG AGT TTG GAT CCG GGG GAT TCT ATC GTT 531 Glu Leu Gly Asn Val Leu Thr Ser Leu Asp Pro Gly Asp Ser Ile Val 80 85 90 GTT GCG AGC TCA TTC TCG CAC ATG CTC AAC CTC GCC AAC TTG GCT GAG 579 Val Ala Ser Ser Phe Ser His Met Leu Asn Leu Ala Asn Leu Ala Glu 95 100 105 GAG GTT CAA ACT GCT TAC AGG AGG AAG ATC AAG CTG AAT AAG AAG GGA 627 Glu Val Gln Thr Ala Tyr Arg Arg Lys Ile Lys Leu Asn Lys Lys Gly 110 115 120 GAT TTC CTC GAT GAG GCT TGT GCG ACG ACT GAG TCG GAC ATT GAG GAG 675 Asp Phe Leu Asp Glu Ala Cys Ala Thr Thr Glu Ser Asp Ile Glu Glu 125 130 135 140 ACT TTG AAA AAG CTT TTG TTG ATG AAG AAG TCG AAG GAG GAG ATT TTC 723 Thr Leu Lys Lys Leu Leu Leu Met Lys Lys Ser Lys Glu Glu Ile Phe 145 150 155 GAT GCT CTG AAG AAC CAA ACT GTG GAT CTT GTT TTT ACT GCA CAT CCA 771 Asp Ala Leu Lys Asn Gln Thr Val Asp Leu Val Phe Thr Ala His Pro 160 165 170 ACT CAG TCG GTC AGG AGG TCA CTG CTT CAG AAG CAT GGA AGG ATA AGG 8 19 Thr Gln Ser Val Arg Arg Ser Leu Leu Gln Lys His Gly Arg Ile Arg 175 180 185 AAT TGT TTA GCT CAG TTG TAT GCC CAC GAT ATA ACA CCT GAT GAT AAG 867 Asn Cys Leu Ala Gln Leu Tyr Ala His Asp Ile Thr Pro Asp Asp Lys 190 195 200 CAA GAA CTT GAT GAA GCT CTC CAG AGA GAG ATT CAA GCA GCC TTT AGA 915 Gln Glu Leu Asp Glu Ala Leu Gln Arg Glu Ile Gln Ala Ala Phe Arg 205 210 215 220 ACC GAT GAA ATT CGT AGA ACT CCT CCA GCT CCA CAA GAT GAA ATG AGG 963 Thr Asp Glu Ile Arg Arg Thr Pro Pro Ala Pro Gln Asp Glu Met Arg 225 230 235 GCT GGT ATG AGT TAT TTC CAT GAA ACT ATA TGG AAG GGT GTT CCC AAG 1011 Ala Gly Met Ser Tyr Phe His Glu Thr Ile Trp Lys Gly Val Pro Lys 240 245 250 TTT TTG CGT CGT GTT GAT ACA GCT CTG AAA AAC ATT GGG ATT AAT GAG 1059 Phe Leu Arg Arg Val Asp Thr Ala Leu Lys Asn Ile Gly Ile Asn Glu 255 260 265 CGT TTT CCA TAC AAT GCT CCT CTT ATT CAG TTC TCT TCG TGG ATG GGG 1107 Arg Phe Pro Tyr Asn Ala Pro Leu Ile Gln Phe Ser Ser Trp Met Gly 270 275 280 GGT GAC CGT GAT GGA AAT CCT AGA GTC ACG CCA GAG GT T ACA AGG GAT 1155 Gly Asp Arg Asp Gly Asn Pro Arg Val Thr Pro Glu Val Thr Arg Asp 285 290 295 300 GTA TGC TTG TTA GCC AGA ATG ATG GCT GCT AAT TTG TAC TTT TCA CAA 1203 Val Cys Leu Leu Ala Arg Met Met Ala Ala Asn Leu Tyr Phe Ser Gln 305 310 315 ATT GAT GAT CTC ATG TTT GAG CTC TCT ATG TGG CGC TGC AGT GAT GAG 1251 Ile Asp Asp Leu Met Phe Glu Leu Ser Met Trp Arg Cys Ser Asp Glu 320 325 330 CTT CGT GTC CGA GCA GAT ATA TTA CAT CGC TCT TTA AAG AAG GAT GCA 1299 Leu Arg Val Arg Ala Asp Ile Leu His Arg Ser Leu Lys Lys Asp Ala 335 340 345 AAA CAT TAT ATT GAA TTC TGG AAA CAA ATT CCT CCA AGT GAA CCA TAT 1347 Lys His Tyr Ile Glu Phe Trp Lys Gln Ile Pro Pro Ser Glu Pro Tyr 350 355 360 CGT GTT ATA CTT TCT GAT GTG AGA GAT AAG CTA TAT TAT ACA CGT GAA 1395 Arg Val Ile Leu Ser Asp Val Arg Asp Lys Leu Tyr Tyr Thr Arg Glu 365 370 375 380 AGA GCC AGA CAT TTG TTG TCA AAT GGG TAT TCT GAC ATT CCT GAG GAA 1443 Arg Ala Arg His Leu Leu Ser Asn Gly Tyr Ser Asp Ile Pro Glu Glu 385 390 395 GCA GCT TTC ACA AAT ATT GAG CAG TTC CTA GAA CCC CTT GAA CTT TGC 1491 Ala Ala Phe Thr Asn Ile Glu Gln Phe Leu Glu Pro Leu Glu Leu Cys 400 405 410 TAT CGC TCG CTT TGT GAT TGC GGC GAT AGA CCA ATA GCA GAT GGT AGC 1539 Tyr Arg Ser Leu Cys Asp Cys Gly Asp Arg Pro Ile Ala Asp Gly Ser 415 420 425 CTT CTT GAC TTT CTG CGC CAA GTC TCA ACC TTT GGC CTC TCT CTT GTA 1587 Leu Leu Asp Phe Leu Arg Gln Val Ser Thr Phe Gly Leu Ser Leu Val 430 435 440 AGA CTC GAC ATC AGG CAA GAA TCC GAG AGG CAC ACC GAC GTC ATG GAT 1635 Arg Leu Asp Ile Arg Gln Glu Ser Glu Arg His Thr Asp Val Met Asp 445 450 455 460 GCC ATC ACC AGG CAT CTA GAG CTT GGG TCC TAC CGT GAG TGG TCT GAG 1683 Ala Ile Thr Arg His Leu Glu Leu Gly Ser Tyr Arg Glu Trp Ser Glu 465 470 475 GAG CGC CGC CAA GAA TGG CTG CTG TCC GAA CTC AGT GGA AAA CGC CCT 1731 Glu Arg Arg Gln Glu Trp Leu Leu Leu Ser Glu Leu Ser Gly Lys Arg Pro 480 485 490 CTT TTC GGT CCT GAC CTC CCT AAA ACC GAA GAA ATT GCC GAC GTC TTA 1779 Leu Phe Gly Pro Asp Leu Pro Lys Thr Glu Glu Ile Ala Asp Val Leu 495 500 505 GGT GCG TTC CAC GTC ATC TCC GAG CTC CCC TAC GAT TGT TTC GGA GCA 1827 Gly Ala Phe His Val Ile Ser Glu Leu Pro Tyr Asp Cys Phe Gly Ala 510 515 520 TAC ATA ATC TCG ATG GCG ACC TCC TCG TCT GAC GTC CTC GCC GTC GAG 1875 Tyr Ile Ile Ser Met Ala Thr Ser Ser Ser Asp Val Leu Ala Val Glu 525 530 535 540 CTC TTG CAG CGA GCG TGT GGG GTG AAG AAA CCT TTA AGA GTC GCA CCT 1923 Leu Leu Gln Arg Ala Cys Gly Val Lys Lys Pro Leu Arg Val Ala Pro 545 550 555 CTT TTT GAA AAG CTC GCA GAT CTT GAG GCT GCT CCT GCT GCA ATG GAG 1971 Leu Phe Glu Lys Leu Ala Asp Leu Glu Ala Ala Pro Ala Ala Met Glu 560 565 570 AGG CTC TTC TCG ATC GAC TGG TAC AGG GAC CGG ATC AAC GGA AAA CAA 2019 Arg Leu Phe Ser Ile Asp Trp Tyr Arg Asp Arg Ile Asn Gly Lys Gln 575 580 585 GAA GTC ATG ATC GGA TAC TCA GAT TCC GGC AAG GAC GCG GGC CGT CTC 2067 Glu Val Met Ile Gly Tyr Ser Asp Ser Gly Lys Asp Ala Gly Arg Leu 590 595 600 TCA GCG GCT TGG CAG TTG TAT AAA GCT CAG GAG GAT ATG GTG AAG GTC 2115 Ser Ala Ala Trp Gln Leu Tyr Lys Ala Gln Glu Asp Met Val Lys Val 6 05 610 615 620 GCG AAG GAG TAT GGG GTG AAG CTG ACT ATG TTT CAT GGA CGA GGG GGG 2163 Ala Lys Glu Tyr Gly Val Lys Leu Thr Met Phe His Gly Arg Gly Gly 625 630 635 ACT GTT GGG AGA GGA GGC GGA CCT ACT CAC CTG GCT CTT CTG TCT CAG 2211 Thr Val Gly Arg Gly Gly Gly Pro Thr His Leu Ala Leu Leu Ser Gln 640 645 650 CCG CCT GAC ACA ATT AAT GGA TCA ATT CGC GTT ACA GTT CAG GGA GAG 2259 Pro Pro Asp Thr Ile Asn Gly Ser Ile Arg Val Thr Val Gln Gly Glu 655 660 665 GTT ATT GAG CAG TCC TTC GGT GAG GAG CGC TTG TGC TTC AGA ACT CTG 2307 Val Ile Glu Gln Ser Phe Gly Glu Glu Arg Leu Cys Phe Arg Thr Leu 670 675 680 CAG CGG TAC ACA GCG GCT ACT CTC GAG CAT GGG ATG AAC CCC CCG ATT 2355 Gln Arg Tyr Thr Ala Ala Thr Leu Glu His Gly Met Asn Pro Pro Ile 685 690 695 700 TCT CCG AAG CCT GAG TGG CGC GCT CTG CTG GAT GAG ATG GCT GTC GTG 2403 Ser Pro Lys Pro Glu Trp Arg Ala Leu Leu Asp Glu Met Ala Val Val 705 710 715 GCT ACA AAG GAG TAC CGA TCG ATT GTC TTT CAG GAG CCG CGG TTT GTT 2451 Ala Thr Lys Glu Tyr Arg Ser Ile Val Phe Gl n Glu Pro Arg Phe Val 720 725 730 GAG TAC TTC CGC CTG GCA ACA CCC GAG ACA GAA TAT GGC AGG ATG AAC 2499 Glu Tyr Phe Arg Leu Ala Thr Pro Glu Thr Glu Tyr Gly Arg Met Asn 735 740 745 ATC GGG AGT AGG CCA TCA AAA AGG AAG CCT AGC GGG GGG ATA GAG AGT 2547 Ile Gly Ser Arg Pro Ser Lys Arg Lys Pro Ser Gly Gly Ile Glu Ser 750 755 760 TTA CGT GCA ATT CCG TGG ATA TTT GCG TGG ACC CAG ACG AGG TTC CAT 2595 Leu Arg Ala Ile Pro Trp Ile Phe Ala Trp Thr Gln Thr Arg Phe His 765 770 775 780 CTT CCT GTC TGG CTC GGT TTT GGT GCA GCA TTT AAG CAT ATC ATG GAA 2643 Leu Pro Val Trp Leu Gly Phe Gly Ala Ala Phe Lys His Ile Met Glu 785 790 795 AAG GAT AAG AAA AAT TTC CAG ACA CTC AGA GAG ATG TAC AAT GTG TGG 2691 Lys Asp Lys Lys Asn Phe Gln Thr Leu Arg Glu Met Tyr Asn Val Trp 800 805 810 CCG TTC TTT AGG GTC ACA ATT GAT TTG CTT GAG ATG GTT TTC GCA AAG 2739 Pro Phe Phe Arg Val Thr Ile Asp Leu Leu Glu Met Val Phe Ala Lys 815 820 825 GGA GAC CCT GGC ATA GCT GCT CTG TAT GAC AAA CTG CTG GTC TCC GAA 2787 Gly Asp Pro Gly Ile Ala Ala Leu Tyr Asp Lys Leu Leu Val Ser Glu 830 835 840 GAT TTA CTG CCA TTT GGT GAG CGA CTC AGA AAC AAC TAT GTT GAA ACA 2835 Asp Leu Leu Pro Phe Gly Glu Arg Leu Arg Asn Asn Tyr Val Glu Thr 845 850 855 860 AAG CGC CTC CTT CTG CAG GTC GCC GGG CAC AGG GAT CTC CTT GAA GGG 2883 Lys Arg Leu Leu Leu Gln Val Ala Gly His Arg Asp Leu Leu Glu Gly 865 870 875 GAC CCG TAT CTA AAG CAG AGA CTT CGC CTG CGT GAC GCC GCC GCC GCC ATA ACA 2931 Asp Pro Tyr Leu Lys Gln Arg Leu Arg Leu Arg Asp Ala Tyr Ile Thr 880 885 890 ACC CTG AAT GTG TGC CAA GCA TAC ACT CTG AAA CGC ATC AAA GAT CCC 2979 Thr Leu Asn Val Cys Gln Ala Tyr Thr Leu Lys Arg Ile Lys Asp Pro 895 900 905 ACC TAC AAC GTG AAC CTG AGG CCC CGC CTC TCC AAG GAC GTG ACC CAG 3027 Thr Tyr Asn Val Asn Leu Arg Pro Arg Leu Ser Lys Asp Val Thr Gln 910 915 920 CCG AGA AAG CCG GCT GCT GAG TTC CTG ACG CTG AAC CCA ACC AGC GAG 3075 Pro Arg Lys Pro Ala Ala Glu Phe Leu Thr Leu Asn Pro Thr Ser Glu 925 930 935 940 TAC GCG CCT GGG CTT GAG GAC ACG TTG ATC CTC ACC ATG AAG GGA ATC 3123 Tyr Ala Pro Gly Leu Glu Asp Thr Leu Ile Leu Thr Met Lys Gly Ile 945 950 955 GCT GCA GGC CTG CAA AAC ACG GGC TAGGTGTCGT ATCTATAAGT TTCTTTCTTC 3177 AlaGTlaGALY GAu Leu Gln Asn Thrn Gly 960 964 ATATAA AGAGGAGAGA GAGAAATAAA GGAGGGGGGG GGGGGCGGTT 3297 GTTGGTTGGG TTACATTAAG CTGCTTTTTG TGTTGTCCAT GTACTTATGA ACTTATGATA 3357 AATGTGCAAC TGGGCCTTGA GGTCTTCTAG CTTAAGAATA AATAATGAAA AGAGGATTGC 3417 AACAAAAAAAAAAAAAAAAAAAAAAAA

【0028】配列番号:2 配列の長さ:23 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:その他の核酸 配列 GGGAAGCAGG AGGTCATGAT CGGSEQ ID NO: 2 Sequence length: 23 Sequence type: Nucleic acid Number of strands: Single strand Topology: Linear Sequence type: Other nucleic acid Sequence GGGAAGCAGG AGGTCATGAT CGG

【0029】配列番号:3 配列の長さ:24 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:その他の核酸 配列 GAAGTACTCG ACAAATCGAG GCTCSEQ ID NO: 3 Sequence length: 24 Sequence type: Nucleic acid Number of strands: Single strand Topology: Linear Sequence type: Other nucleic acid Sequence GAAGTACTCG ACAAATCGAG GCTC

【0030】配列番号:4 配列の長さ:450 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA 起源: 生物名:アロエ アルホ゛レッセンス (Aloe arborescens) 組織の種類:緑葉 配列: GGGAAGCAGG AGGTCATGAT CGGATACTCA GATTCCGGCA AGGACGCGGG CCGTCTCTCA 60 GCGGCTTGGC AGTTGTATAA AGCTCAGGAG GATATGGTGA AGGTCGCGAA GGAGTATGGG 120 GTGAAGCTGA CTATGTTTCA TGGACGAGGG GGGACTGTTG GGAGAGGAGG CGGACCTACT 180 CACCTGGCTC TTCTGTCTCA GCCGCCTGAC ACAATTAATG GATCAATTCG CGTTACAGTT 240 CAGGGAGAGG TTATTGAGCA GTCCTTCGGT GAGGAGCGCT TGTGCTTCAG AACTCTGCAG 300 CGGTACACAG CGGCTACTCT CGAGCATGGG ATGAACCCCC CGATTTCTCC GAAGCCTGAG 360 TGGCGCGCTC TGCTGGATGA GATGGCTGTC GTGGCTACAA AGGAGTACCG ATCGATTGTC 420 TTTCAGGAGC CTCGATTTGT CGAGTACTTC 450SEQ ID NO: 4 Sequence length: 450 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Sequence type: cDNA Origin: Organism name: Aloe arborescens Tissue type : green leaves sequence: GGGAAGCAGG AGGTCATGAT CGGATACTCA GATTCCGGCA AGGACGCGGG CCGTCTCTCA 60 GCGGCTTGGC AGTTGTATAA AGCTCAGGAG GATATGGTGA AGGTCGCGAA GGAGTATGGG 120 GTGAAGCTGA CTATGTTTCA TGGACGAGGG GGGACTGTTG GGAGAGGAGG CGGACCTACT 180 CACCTGGCTC TTCTGTCTCA GCCGCCTGAC ACAATTAATG GATCAATTCG CGTTACAGTT 240 CAGGGAGAGG TTATTGAGCA GTCCTTCGGT GAGGAGCGCT TGTGCTTCAG AACTCTGCAG 300 CGGTACACAG CGGCTACTCT CGAGCATGGG ATGAACCCCC CGATTTCTCC GAAGCCTGAG 360 TGGCGCGCTC TGCTGGATGA GATGGCTGTC GTGGCTACAA AGGAGTACCG ATCGATTGTC 420 TTTCAGGAGC CTCGATTTGT CGAGTACTTC 450

【0031】配列番号:5 配列の長さ:15 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:その他の核酸 配列 CCCGGGTACC GAGCTSEQ ID NO: 5 Sequence length: 15 Sequence type: Nucleic acid Number of strands: Single strand Topology: Linear Sequence type: Other nucleic acid Sequence CCCGGGTACC GAGCT

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1で得られた組換えプラスミド
pAP39の制限酵素切断点地図を示す図である。
FIG. 1 is a diagram showing a restriction enzyme cleavage point map of the recombinant plasmid pAP39 obtained in Example 1 of the present invention.

【図2】アロエの緑葉、茎、根の全RNAのノーザン分
析の結果を示す電気泳動写真である。図中、「Leaf」は
葉から抽出したRNAサンプルを、「Shoot」は茎か
ら、「Root」は根からそれぞれ抽出したRNAサンプル
について分析した結果を示す。図中、Aで示すものはP
EPCaseのcDNAの発現を検出したもの、図中、
Bで示すものは対照として用いた25SrRNAおよび
18SrRNAを検出するプローブを用いて得られた結
果を示す。図中に示す25S rRNAおよび18S rRNAは図中の
Bで検出されたそれぞれのrRNAの大きさに対応する
位置を示し、サイズマーカーである。
FIG. 2 is an electrophoretic photograph showing the results of Northern analysis of total RNA of aloe green leaves, stems, and roots. In the figure, "Leaf" indicates the results of analysis of RNA samples extracted from leaves, "Shoot" indicates the analysis of RNA samples extracted from the stem, and "Root" indicates the analysis results of RNA samples extracted from the root. In the figure, the one indicated by A is P
Detected expression of EPCase cDNA, in the figure,
The one indicated by B shows the results obtained using the probes that detect 25S rRNA and 18S rRNA used as controls. The 25S rRNA and 18S rRNA shown in the figure indicate the positions corresponding to the sizes of the respective rRNAs detected in B in the figure and are size markers.

【図3】本発明の実施例で得られたPEPCase発現
プラスミドpPPC1の挿入断片の構造を示す図であ
る。
FIG. 3 is a diagram showing the structure of an insert fragment of PEPCase expression plasmid pPPC1 obtained in the example of the present invention.

【図4】本発明の実施例で得られたPEPCase発現
プラスミドpPPC101の挿入断片の構造を示す図で
ある。
FIG. 4 is a diagram showing the structure of an insert fragment of PEPCase expression plasmid pPPC101 obtained in the example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12N 9/88 C12N 5/00 C //(C12N 1/21 C12R 1:19) (C12N 5/10 C12R 1:91) (72)発明者 藤村 達人 千葉県茂原市東郷1144番地 三井東圧化学 株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C12N 9/88 C12N 5/00 C // (C12N 1/21 C12R 1:19) (C12N 5 / 10 C12R 1:91) (72) Inventor Tatsuto Fujimura 1144, Togo, Mobara-shi, Chiba Mitsui Toatsu Chemical Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 配列表の配列番号1に示す塩基配列を有
するアロエのPEPCaseのcDNA。
1. An aloe PEPCase cDNA having the nucleotide sequence shown in SEQ ID NO: 1 in the sequence listing.
【請求項2】 配列表の配列番号1に示すアミノ酸配列
をコードするDNA塩基配列。
2. A DNA base sequence encoding the amino acid sequence shown in SEQ ID NO: 1 of the Sequence Listing.
【請求項3】 請求項2に記載のDNA塩基配列を含む
プラスミド。
3. A plasmid containing the DNA base sequence according to claim 2.
【請求項4】 請求項3記載のプラスミドで形質転換さ
れた微生物及び細胞。
4. Microorganisms and cells transformed with the plasmid according to claim 3.
【請求項5】 請求項3記載のプラスミドを単子葉植物
に導入してPEPCase活性を増大させる方法。
5. A method for increasing the PEPCase activity by introducing the plasmid according to claim 3 into a monocotyledonous plant.
【請求項6】 請求項3記載のプラスミドを単子葉植物
に導入して得られた、PEPCaseの増大した形質転
換植物。
6. A transformed plant having an increased PEPCase obtained by introducing the plasmid according to claim 3 into a monocotyledonous plant.
JP7294986A 1995-10-19 1995-10-19 Pepc-ase gene of monocotyledon cam plant Pending JPH09107975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7294986A JPH09107975A (en) 1995-10-19 1995-10-19 Pepc-ase gene of monocotyledon cam plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7294986A JPH09107975A (en) 1995-10-19 1995-10-19 Pepc-ase gene of monocotyledon cam plant

Publications (1)

Publication Number Publication Date
JPH09107975A true JPH09107975A (en) 1997-04-28

Family

ID=17814873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7294986A Pending JPH09107975A (en) 1995-10-19 1995-10-19 Pepc-ase gene of monocotyledon cam plant

Country Status (1)

Country Link
JP (1) JPH09107975A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001055412A1 (en) * 2000-01-26 2001-08-02 Biodoor Gene Technology Ltd. Shanghai Novel polypeptide---human phosphoenol pyruvate carboxylase 81 and polynucleotide encoding it
WO2002081714A2 (en) 2001-04-04 2002-10-17 Biogemma Overexpression of phosphoenolpyruvate carboxylase

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001055412A1 (en) * 2000-01-26 2001-08-02 Biodoor Gene Technology Ltd. Shanghai Novel polypeptide---human phosphoenol pyruvate carboxylase 81 and polynucleotide encoding it
WO2002081714A2 (en) 2001-04-04 2002-10-17 Biogemma Overexpression of phosphoenolpyruvate carboxylase
EP1383902B1 (en) * 2001-04-04 2011-03-02 Biogemma Overexpression of phosphoenolpyruvate carboxylase

Similar Documents

Publication Publication Date Title
ES2326515T3 (en) DNA CODIFYING A PLANT DETOXYHIPUSINE PLANT, TRANSGENIC PLANTS AND A PROCEDURE TO CONTROL THE SENESCENCE AND PROGRAMMED CELL DEATH IN PLANTS.
CN102174560B (en) The delay senility of plant and adverse circumstance endurance
JPH0662870A (en) Promoter region of soybean phosphoenolpyruvate carboxylase gene and 5'-nontranslating region
US5837545A (en) Genes, polypeptides, and compositions for cold tolerance in plants
CN114958903B (en) Method for enhancing soybean fragrance
CN102719451B (en) Poncirus trifoliata basic helix-loop-helix (PtrbHLH) and application in improving cold resistance of plant
CN110804090A (en) Protein CkWRKY33 and coding gene and application thereof
CN101280007A (en) Protein related to cold resistance of plant, coding genes and application thereof
AU697450B2 (en) Processes for inhibiting and for inducing flower formation in plants
CN102477435A (en) Method for improving plant drought resistance using Poncirus trifoliata transcription factor gene PtrABF
JP5787413B2 (en) A method for producing a toothpick-forming plant in which the ability to produce tubers or the ability to form a toothpick is improved compared to a wild strain, and a toothpick-forming plant produced by the method
CN110656118A (en) Geranium strictipes inulin degrading enzyme gene Tk1-FEH and application thereof
JPH09107975A (en) Pepc-ase gene of monocotyledon cam plant
KR100795372B1 (en) 7 Lodging-Resistant Rice Plant Transformed Using Novel Rice Functional Gene RAP7
CN108948162B (en) Peanut adversity stress gene AhDOG1L and application thereof
CN104561040B (en) Genes For Plant Tolerance hot radical is because of HTT3 and its application
JPH0889250A (en) Malic acid enzyme gene of aloe
CN117535342B (en) Method for increasing alfalfa yield and/or branch number, protein used by method and related biological material
US6316697B1 (en) Constitutive disease resistance(CDR1) gene and methods of use thereof
CN114717245B (en) MsbHLH35 gene and application of encoding protein thereof in regulation and control of alfalfa yield and stain resistance
CN110499322B (en) Peanut gene AhYP for improving disease resistance of peanuts and application thereof
JPH08103267A (en) Betaine aldehyde dehydrogenase and gene capable of coding the same
CN111424040B (en) Cymbidium CgWRKY21 gene and application thereof
CN104497114B (en) Plant heat-resistant genes HTT2 and applications thereof
EP1934351B1 (en) Abiotic stress tolerant gene from avicennia marina encoding a protein

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees