JPH09106784A - Enclosure for small-diameter fluorescent lamp and small-diameter fluorescent lamp - Google Patents

Enclosure for small-diameter fluorescent lamp and small-diameter fluorescent lamp

Info

Publication number
JPH09106784A
JPH09106784A JP7287940A JP28794095A JPH09106784A JP H09106784 A JPH09106784 A JP H09106784A JP 7287940 A JP7287940 A JP 7287940A JP 28794095 A JP28794095 A JP 28794095A JP H09106784 A JPH09106784 A JP H09106784A
Authority
JP
Japan
Prior art keywords
fluorescent lamp
small
glass
diameter
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7287940A
Other languages
Japanese (ja)
Other versions
JP3899538B2 (en
Inventor
Hiroyuki Kosokabe
裕幸 香曽我部
Koichi Hashimoto
幸市 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP28794095A priority Critical patent/JP3899538B2/en
Publication of JPH09106784A publication Critical patent/JPH09106784A/en
Application granted granted Critical
Publication of JP3899538B2 publication Critical patent/JP3899538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an enclosure which makes it possible to manufacture a small-diameter fluorescent lamp exceeding in solarization-resistant property with a Kovar used for a lead metal and a small-diameter fluorescent lamp manufactured by the use thereof. SOLUTION: An enclosure for a fluorescent lamp is structured with a boro- silicate glass including in its glass composition at least one kind among TiO2 , PbO, and Sb2 O3 and having a linear expansion coefficient of 43 to 55×10<-7> / deg.C at 30 to 380 deg.C. A material made of tube-shaped glass having an outer diameter of 5.2mm or less and a thickness of 0.6mm or less is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する分野】本発明は、コバール(=Westingh
ouse Ele.Corp.社の商標名でFe−Ni−Co系合金。
本願においては、住友特殊金属社製KV−2、東芝社製
KOVなど、他社の同等製品も含む。)を導入金属とす
る細径蛍光ランプの外囲器とこれを用いた細径蛍光ラン
プに関するものである。
FIELD OF THE INVENTION The present invention relates to Kovar (= Westingh
Fe-Ni-Co alloy under the trade name of ouse Ele. Corp.
In the present application, equivalent products of other companies such as KV-2 manufactured by Sumitomo Special Metals Co., Ltd. and KOV manufactured by Toshiba Corporation are also included. ) Is a metal for introducing a small-diameter fluorescent lamp and a small-diameter fluorescent lamp using the same.

【0002】[0002]

【従来の技術】液晶表示素子は、光源の利用法によって
自然光や室内照明の光を利用する反射型液晶表示素子
と、専用の照明装置、例えばバックライトの光を用いる
透過型液晶表示素子とに大別される。腕時計や、小型の
電子卓上計算機等の特に低消費電力タイプのものには反
射型液晶表示素子が用いられるが、TFT液晶表示素子
等によるカラー表示や、車載用計器等の高品位な表示が
要求される用途には、蛍光ランプを光源とするバックラ
イトを用いた透過型液晶表示素子が主として使用されて
いる。
2. Description of the Related Art Liquid crystal display elements are classified into reflection type liquid crystal display elements that utilize natural light and room illumination light depending on how the light source is used, and transmission type liquid crystal display elements that use a dedicated illumination device, such as backlight light. Broadly divided. Reflective liquid crystal display elements are used for wristwatches and small electronic desk calculators, especially those with low power consumption, but color display by TFT liquid crystal display elements and high-quality display of in-vehicle instruments are required. For such applications, a transmissive liquid crystal display device using a backlight having a fluorescent lamp as a light source is mainly used.

【0003】バックライト用蛍光ランプの発光原理は、
一般の照明用蛍光ランプと同様で、電極間の放電によっ
て封入された水銀ガス等が励起し、励起したガスから放
射される紫外線によって管状ガラスからなる外囲器の内
壁面に塗布された蛍光体が可視光線を発光するというも
のである。しかし、一般用の蛍光ランプとの大きな違い
は、外囲器の外径が小さく、肉厚が薄いところにある。
従来、この蛍光ランプの外囲器には、加工の容易さや照
明用ガラスとしてのこれまでの実績から鉛ソーダ系の軟
質ガラスが使用され、導入金属としては安価なジュメッ
トが使われていた。
The principle of light emission of a fluorescent lamp for a backlight is as follows.
Similar to general fluorescent lamps for illumination, the phosphor coated on the inner wall surface of the envelope made of tubular glass is excited by the mercury gas enclosed by the discharge between the electrodes and the ultraviolet rays emitted from the excited gas. Emits visible light. However, the major difference from the general-purpose fluorescent lamp is that the outer diameter of the envelope is small and the wall thickness is thin.
Conventionally, lead-soda-type soft glass has been used for the envelope of this fluorescent lamp because of its ease of processing and past results as lighting glass, and cheap Dumet has been used as the introduced metal.

【0004】ところで液晶表示素子の薄型化、軽量化、
低消費電力化に伴い、バックライト用の蛍光ランプにも
より一層の細径化、薄肉化が要求されているが、蛍光ラ
ンプの細径化は構造的に機械的強度の低下やランプの発
熱の増加を伴うため、外囲器である管状ガラスにはより
高強度、且つ低膨張であることが必要となってきてい
る。また発光効率向上のために点灯回路の高周波化が進
められており、これに伴って絶縁体である管状ガラスに
は低誘電損失化が求められている。ところが、従来の鉛
ソーダ系の軟質ガラス材質では、これらの要求を満足さ
せることができなくなってきている。
By the way, thinning and lightening of the liquid crystal display element,
With the reduction of power consumption, fluorescent lamps for backlights are required to have a further smaller diameter and thinner wall thickness. However, the smaller diameter of fluorescent lamps structurally reduces the mechanical strength and heat of the lamp. Therefore, the tubular glass, which is the envelope, is required to have higher strength and lower expansion. Further, in order to improve the luminous efficiency, the frequency of the lighting circuit is being increased, and along with this, the tubular glass as an insulator is required to have a low dielectric loss. However, the conventional lead-soda-based soft glass material cannot satisfy these requirements.

【0005】そこで、鉛ソーダ系の軟質ガラスよりも熱
的、機械的に強度が高く、低誘電損失の点でも有利なホ
ウケイ酸系の硬質ガラスを用いて蛍光ランプの外囲器を
作製することが検討された。その結果、気密封止可能な
硬質ガラスと金属の組合せとして、外囲器に従来より知
られているコバール封着用ガラス、導入金属にコバール
を用いた蛍光ランプが開発され、商品化されている。
Therefore, an envelope for a fluorescent lamp should be manufactured using borosilicate hard glass, which has higher thermal and mechanical strength than lead soda soft glass and is advantageous in terms of low dielectric loss. Was considered. As a result, as a combination of hard glass and metal that can be hermetically sealed, a conventionally known glass for Kovar sealing as an envelope and a fluorescent lamp using Kovar as an introduced metal have been developed and commercialized.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記し
た蛍光ランプの外囲器は、従来からある電子管やフォト
キャップ等の電子部品の気密封止やレンズとして一般に
使われているホウケイ酸系のコバール封着用ガラス材質
をそのまま使用し、これを単に細管状に成形、加工した
ものであるため、長時間点灯すると、励起された水銀ガ
スから放出される紫外線によってガラスが変色(いわゆ
る、紫外線ソラリゼーション)するという問題が生じて
しまう。ガラスが変色すると、輝度の低下や発光色のず
れが起こり、液晶表示素子に表示の暗さや演色性の劣化
といった品質の劣化を与えることになる。
However, the envelope of the fluorescent lamp described above is a borosilicate-based Kovar seal that is generally used as a lens for hermetically sealing electronic parts such as electron tubes and photocaps that have been conventionally used. It is said that the worn glass material is used as it is, and it is simply shaped and processed into a thin tube, so when it is lit for a long time, the glass is discolored by the ultraviolet rays emitted from the excited mercury gas (so-called ultraviolet solarization). There will be problems. When the glass is discolored, the brightness is lowered and the emission color is shifted, which causes the liquid crystal display element to be deteriorated in quality such as darkness of display and deterioration of color rendering.

【0007】この対策として、ガラス管内面に紫外線を
反射又は吸収する成分であるAl23 やTiO2 のコ
ーティングを行い、その上に蛍光体を塗布して多層膜を
形成し、ガラスに達する紫外線の強度を弱めるといった
方法が一部では実施されているが、この方法において
は、生産コストの上昇を伴うばかりか、例えば外径5.
2mm以下、肉厚が0.6mm以下といった細径で薄肉
の管状ガラスについては均質な多層膜を形成することが
困難になる。このような事情から、耐紫外線ソラリゼー
ション性を持った細径蛍光ランプ用外囲器の開発が強く
求められている。
As a countermeasure against this, the inner surface of the glass tube is coated with Al 2 O 3 or TiO 2 , which is a component that reflects or absorbs ultraviolet rays, and a phosphor is applied on top of this to form a multilayer film, which reaches the glass. Although a method of weakening the intensity of ultraviolet rays is partially implemented, this method not only causes an increase in production cost, but also has, for example, an outer diameter of 5.
It is difficult to form a homogeneous multilayer film for a thin tubular glass having a small diameter of 2 mm or less and a wall thickness of 0.6 mm or less. Under such circumstances, there is a strong demand for the development of an envelope for a small-diameter fluorescent lamp, which has resistance to UV solarization.

【0008】本発明は上記事情に鑑みなされたものであ
り、コバールを導入金属とし、耐ソラリゼーション性に
優れた細径蛍光ランプを作製することが可能な細径蛍光
ランプ用外囲器と、これを用いて作製した細径蛍光ラン
プを提供することを目的とする。
The present invention has been made in view of the above circumstances, and an envelope for a small-diameter fluorescent lamp, which uses Kovar as an introduced metal and is capable of producing a small-diameter fluorescent lamp excellent in solarization resistance, and An object of the present invention is to provide a small-diameter fluorescent lamp manufactured by using.

【0009】[0009]

【課題を解決するための手段】本発明の細径蛍光ランプ
用外囲器は、TiO2 、PbO、Sb23 の少なくと
も1種をガラス組成中に含有し、30〜380℃におけ
る線膨張係数が43〜55×10-7/℃であるホウケイ
酸ガラスで構成された外径5.2mm以下、肉厚0.6
mm以下の管状ガラスからなることを特徴とする。
The envelope for a small-diameter fluorescent lamp of the present invention contains at least one of TiO 2 , PbO and Sb 2 O 3 in its glass composition and has a linear expansion at 30 to 380 ° C. Borosilicate glass having a coefficient of 43 to 55 × 10 −7 / ° C., an outer diameter of 5.2 mm or less, and a wall thickness of 0.6
It is characterized by being made of a tubular glass having a diameter of not more than mm.

【0010】また本発明の細径蛍光ランプは、コバール
を導入金属とする細径蛍光ランプにおいて、外囲器とし
て、TiO2 、PbO、Sb23 の少なくとも1種を
ガラス組成中に含有し30〜380℃における線膨張係
数が43〜55×10-7/℃であるホウケイ酸ガラスで
構成された外径5.2mm以下、肉厚0.6mm以下の
管状ガラスを使用してなることを特徴とする。
Further, the small-diameter fluorescent lamp of the present invention is a small-diameter fluorescent lamp in which Kovar is used as an introduction metal, and contains at least one of TiO 2 , PbO and Sb 2 O 3 in a glass composition as an envelope. A tubular glass having an outer diameter of 5.2 mm or less and a wall thickness of 0.6 mm or less made of borosilicate glass having a linear expansion coefficient at 30 to 380 ° C. of 43 to 55 × 10 −7 / ° C. Characterize.

【0011】本発明において、外囲器をガラス組成中に
TiO2 、PbO、Sb23 の少なくとも1種を含有
するホウケイ酸ガラスで構成したのは次の理由による。
つまりホウケイ酸ガラスは、鉛ソーダ系の軟質ガラスに
比べ、機械的強度が高く、低膨張であるために耐熱性に
優れ、誘電損失も低く、蛍光ランプを細径化、薄肉化し
易い。またTiO2 、PbO及びSb23 の少なくと
も1種をガラス中に含有していると、耐紫外線ソラリゼ
ーション性が高く、蛍光ランプ内部で発生する紫外線に
長時間曝されても着色が起こり難い。
In the present invention, the envelope is made of borosilicate glass containing at least one of TiO 2 , PbO and Sb 2 O 3 in the glass composition for the following reason.
In other words, borosilicate glass has high mechanical strength and low expansion as compared with lead-soda-based soft glass, and thus has excellent heat resistance, low dielectric loss, and is easy to reduce the diameter and thickness of a fluorescent lamp. Further, when at least one of TiO 2 , PbO and Sb 2 O 3 is contained in the glass, the UV solarization resistance is high, and coloring is less likely to occur even if the glass is exposed to the UV rays generated inside the fluorescent lamp for a long time.

【0012】また上記ホウケイ酸ガラスの線膨張係数を
43〜55×10-7/℃(30〜380℃)に限定した
理由は、線膨張係数がこの範囲から外れると、導入金属
であるコバールと膨張係数が整合せず、スローリークや
クラックが発生し、蛍光ランプとしての機能が損なわれ
るためである。
Further, the reason why the linear expansion coefficient of the borosilicate glass is limited to 43 to 55 × 10 -7 / ° C. (30 to 380 ° C.) is that if the linear expansion coefficient is out of this range, it will be This is because the expansion coefficients do not match, slow leaks and cracks occur, and the function as a fluorescent lamp is impaired.

【0013】上記したホウケイ酸ガラスで構成される管
状の外囲器は、外径5.2mm以下、好ましくは3.5
mm以下、肉厚0.6mm以下、好ましくは0.5mm
以下の大きさを有するものであり、これより外径及び肉
厚が大きいと液晶表示素子の薄型化、軽量化に起因する
バックライト等照明装置用細径蛍光ランプの細径化の要
求に応えられない。
The tubular envelope made of the above borosilicate glass has an outer diameter of 5.2 mm or less, preferably 3.5.
mm or less, wall thickness 0.6 mm or less, preferably 0.5 mm
It has the following sizes, and when the outside diameter and wall thickness are larger than this, it responds to the demand for thinner diameter fluorescent lamps for lighting devices such as backlights due to thinner and lighter liquid crystal display elements. I can't.

【0014】外囲器を構成する管状のホウケイ酸ガラス
としては、重量百分率で、SiO255〜73%、B2
3 10〜25%、Al23 1〜10%、Li2
O+Na2 O+K2 O 4〜16%、ZrO2 0〜5
%、TiO2 +PbO+Sb23 0.05〜11%
の組成を有するものが好適である。
The tubular borosilicate glass constituting the envelope has a weight percentage of SiO 2 55 to 73% and B 2
O 3 10~25%, Al 2 O 3 1~10%, Li 2
O + Na 2 O + K 2 O 4-16%, ZrO 2 0-5
%, TiO 2 + PbO + Sb 2 O 3 0.05-11%
Those having the composition of are preferred.

【0015】各成分の含有量を上記のように限定した理
由は以下の通りである。
The reason why the content of each component is limited as described above is as follows.

【0016】SiO2 はガラスの骨格を構成するために
必要な主成分であり、その含有量は55〜73%、好ま
しくは61〜72%である。SiO2 が73%より多い
と、線膨張係数が低くなりすぎると共に溶解性が悪化し
易く、55%より少ないと化学的耐久性が悪化し易くな
るが、これによってアルカリ吹きが起こると蛍光体を均
一に塗布できなくなり、ヤケ等が生じた場合には蛍光ラ
ンプの輝度低下の原因になる。
SiO 2 is a main component necessary for constituting the glass skeleton, and its content is 55 to 73%, preferably 61 to 72%. If the SiO 2 content is more than 73%, the linear expansion coefficient will be too low and the solubility will be apt to deteriorate, and if it is less than 55%, the chemical durability will be apt to be deteriorated. If it becomes impossible to apply the coating evenly and a burn or the like occurs, the brightness of the fluorescent lamp is lowered.

【0017】B23 は溶解性の向上や粘度の調整のた
めに必要な成分であり、その含有量は10〜25%、好
ましくは15.2〜24%である。B23 が10%よ
り少ないと溶解が困難になり、且つ、コバール封着用と
しては粘度が高くなり過ぎる。また25%より多いと逆
に粘度が下がり過ぎたり、蒸発によって均質なガラスが
得られなくなったり、化学的耐久性が悪化するといった
問題が発生する。
B 2 O 3 is a component necessary for improving the solubility and adjusting the viscosity, and its content is 10 to 25%, preferably 15.2 to 24%. If the content of B 2 O 3 is less than 10%, the dissolution becomes difficult and the viscosity becomes too high for sealing Kovar. On the other hand, if it is more than 25%, there arises a problem that the viscosity becomes too low, a homogeneous glass cannot be obtained due to evaporation, and the chemical durability is deteriorated.

【0018】Al23 はガラスの安定性を向上するの
に著しい効果があり、その含有量は1〜10%、好まし
くは1〜4.9%である。Al23 が10%より多い
とガラスの溶解が困難になり、1%より少ないとガラス
が失透し易くなり、均質なガラスの製造や安定した成形
が困難になる。
Al 2 O 3 has a remarkable effect in improving the stability of glass, and its content is 1 to 10%, preferably 1 to 4.9%. When Al 2 O 3 is more than 10%, it becomes difficult to melt the glass, and when it is less than 1%, the glass is liable to devitrify, and it becomes difficult to produce a homogeneous glass and stably form it.

【0019】アルカリ金属酸化物であるLi2 O、Na
2 O、及びK2 Oはガラスの溶解を容易にし、膨張係数
や粘度を調節するために添加する成分であり、その含有
量は合量で4〜16%、好ましくは5.1〜13%であ
る。これら成分の合量が16%以上では膨張係数が高く
なりすぎ、また粘度が下がりすぎてコバール封着には適
さず、且つ化学的耐久性の大幅な低下を招き、4%未満
では逆に膨張係数が小さくなり過ぎる。なお各成分の含
有量は、Li2 O 0〜4%(好ましくは0〜3%)、
Na2 O 0〜4.3%(好ましくは0〜3.9%)、
2 O 0〜15%(好ましくは0〜13%)の範囲が
好適である。Li2 Oが4%より多いと失透性が悪化し
易くなるとともに熱膨張係数が高くなりすぎ、Na2
が4.3%より多いと蛍光ランプ製造時の熱工程におい
てNaイオンが蛍光体を汚染して輝度の低下を引き起こ
したり、熱膨張係数が高くなりすぎる可能性がある。ま
たK2 Oが15%を越えると熱膨張係数が高くなり過ぎ
ることがある。
Li 2 O and Na which are alkali metal oxides
2 O and K 2 O are components added to facilitate the melting of glass and adjust the expansion coefficient and viscosity, and the total content is 4 to 16%, preferably 5.1 to 13%. Is. If the total amount of these components is 16% or more, the expansion coefficient becomes too high, and the viscosity becomes too low, which is not suitable for Kovar sealing, and causes a drastic decrease in chemical durability. The coefficient becomes too small. The content of each component is 0 to 4% (preferably 0 to 3%) of Li 2 O,
Na 2 O 0-4.3% (preferably 0-3.9%),
A range of 0 to 15% (preferably 0 to 13%) of K 2 O is suitable. Li 2 O thermal expansion coefficient becomes too high with the tends to deteriorate the devitrification more than 4%, Na 2 O
If it is more than 4.3%, Na ions may contaminate the phosphor in the heat step during the production of the fluorescent lamp to cause a decrease in brightness, or the coefficient of thermal expansion may become too high. If K 2 O exceeds 15%, the coefficient of thermal expansion may become too high.

【0020】ZrO2 は化学的耐久性を向上させ、アル
カリ吹きやヤケを防止する成分であり、その含有量は0
〜5%、好ましくは0.01〜3%である。ZrO2
5%より多いと失透性が悪化してガラスが不均一にな
り、寸法精度が悪くなったり、外観上の欠陥が生じ、高
品質のガラスが得難くなる。
ZrO 2 is a component that improves chemical durability and prevents alkali blow and burn, and its content is 0.
55%, preferably 0.01 to 3%. When ZrO 2 is more than 5%, devitrification deteriorates and the glass becomes nonuniform, resulting in poor dimensional accuracy and appearance defects, making it difficult to obtain high-quality glass.

【0021】TiO2 、PbO及びSb23 は何れも
ガラスに高い耐紫外線ソラリゼーション性を付与する成
分であり、その合量は0.05〜11%、好ましくは
0.1〜5.5%である。これら成分の合量が11%を
越えるとガラスの失透や蒸発等の影響が強くなり、均質
で寸法精度の良い管状ガラスが得難くなる。一方、0.
05%未満の場合はその効果が殆どない。なおTiO2
を必須成分として含む場合、各成分の含有量は、TiO
2 0.05〜5%(好ましくは0.1〜3%)、Pb
O 0〜10%(好ましくは0〜5.5%)、Sb2
3 0〜4%(好ましくは0〜1%)である。PbOを
必須成分として含む場合、各成分の含有量は、TiO2
0〜5%(好ましくは0〜2%)、PbO 0.05
〜10%(好ましくは0.1〜5.5%)、Sb23
0〜4%(好ましくは0〜1%)の範囲が好適であ
る。またSb23 を必須成分として含む場合、各成分
の含有量は、TiO2 0〜5%(好ましくは0〜2
%)、PbO 0〜10%(好ましくは0〜5.5
%)、Sb23 0.1〜4%(好ましくは0.2〜
1%)である。なお何れの場合もTiO2 が所定量を越
えるとガラス自身が着色し易くなり、また失透性も急激
に悪化するため透明で均質なガラスが得難くなる。Pb
Oが所定量を越えるとTiO2 と同様にガラス自身が着
色し易くなり、また溶融時に蒸発して均質なガラスが得
難くなるとともに環境上好ましくない。Sb23 が所
定量を越えると均質なガラスを得ることが難しくなる。
またPbOやSb23 がガラス中に過剰に含有されて
いると、蛍光ランプの製造工程における熱加工によって
ガラスが茶色や黒色に着色してしまい、外観品位が劣化
する。しかも有効発光部分に着色が生じると輝度の低下
に直接つながるため好ましくない。
TiO 2 , PbO and Sb 2 O 3 are all components which impart a high resistance to UV solarization to the glass, and the total amount is 0.05 to 11%, preferably 0.1 to 5.5%. Is. If the total amount of these components exceeds 11%, the effects of devitrification and evaporation of the glass become strong, and it becomes difficult to obtain a tubular glass that is homogeneous and has good dimensional accuracy. On the other hand, 0.
If it is less than 05%, there is almost no effect. TiO 2
When containing as an essential component, the content of each component is TiO
2 0.05-5% (preferably 0.1-3%), Pb
O 0-10% (preferably 0-5.5%), Sb 2 O
It is 30 to 4% (preferably 0 to 1%). When PbO is contained as an essential component, the content of each component is TiO 2
0-5% (preferably 0-2%), PbO 0.05
-10% (preferably 0.1-5.5%), Sb 2 O 3
A range of 0 to 4% (preferably 0 to 1%) is suitable. When Sb 2 O 3 is contained as an essential component, the content of each component is TiO 2 0 to 5% (preferably 0 to 2).
%), PbO 0-10% (preferably 0-5.5)
%), Sb 2 O 3 0.1-4% (preferably 0.2-)
1%). In any case, if the amount of TiO 2 exceeds a predetermined amount, the glass itself tends to be colored, and the devitrification property deteriorates sharply, making it difficult to obtain a transparent and homogeneous glass. Pb
When the amount of O exceeds a predetermined amount, the glass itself is likely to be colored as in the case of TiO 2, and it is difficult to obtain a homogeneous glass by evaporating at the time of melting, which is unfavorable for the environment. When Sb 2 O 3 exceeds a predetermined amount, it becomes difficult to obtain a homogeneous glass.
Further, when PbO or Sb 2 O 3 is excessively contained in the glass, the glass is colored brown or black due to thermal processing in the manufacturing process of the fluorescent lamp, and the appearance quality is deteriorated. Moreover, coloring of the effective light emitting portion directly leads to a decrease in luminance, which is not preferable.

【0022】さらに上記ホウケイ酸ガラスは、ガラスの
粘度の調整や耐候性、溶解性、清澄性を改善する目的
で、SrO、BaO、CaO、MgO、ZnO、P2
5 、As23 、SO3 、F2 、Cl2 等の成分を適量
添加することが可能である。
Further, the above borosilicate glass is SrO, BaO, CaO, MgO, ZnO, P 2 O for the purpose of adjusting the viscosity of the glass and improving the weather resistance, the solubility and the clarity.
It is possible to add an appropriate amount of components such as 5 , As 2 O 3 , SO 3 , F 2 , Cl 2 and the like.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。なお以下の記載は本発明の一例を示したものであ
り、これに限定されるものではない。
Embodiments of the present invention will be described below. The following description shows an example of the present invention, and the present invention is not limited to this.

【0024】本発明の細径蛍光灯用外囲器は、次のよう
にして製造される。
The envelope for a thin fluorescent lamp of the present invention is manufactured as follows.

【0025】まず、所望の組成となるようにガラス原料
を調合する。例えば重量百分率でSiO2 55〜73
%、B23 10〜25%、Al23 1〜10
%、Li2 O+Na2 O+K2 O 4〜16%、ZrO
2 0〜5%、TiO2 +PbO+Sb23 0.0
5〜11%の組成となるように調合する。次いで調合し
たガラス原料をガラス溶解窯に投入し、1500〜16
50℃で溶融してガラス化した後、ダンナー法、ダウン
ドロー法等の管引き法を用いて管状に成形し、所定の長
さに切断する。このとき直接所望の外径、肉厚を有する
ように成形してもよいし、外径、肉厚の大きい親管を作
製した後、これをリドロー法によって細管化してもよ
い。このようにして線膨張係数が43〜55×10-7
℃であり、外径5.2mm以下、肉厚0.6mm以下の
ホウケイ酸ガラスからなる管状ガラスで構成された本発
明の細径蛍光灯用外囲器が得られる。なお必要に応じ
て、管状ガラスの両端に縮径部を形成する等の加工を施
してもよい。
First, glass raw materials are prepared so as to have a desired composition. For example, by weight percentage SiO 2 55-73
%, B 2 O 3 10-25%, Al 2 O 3 1-10
%, Li 2 O + Na 2 O + K 2 O 4-16%, ZrO
2 0~5%, TiO 2 + PbO + Sb 2 O 3 0.0
It is prepared so as to have a composition of 5 to 11%. Next, the prepared glass raw material is put into a glass melting furnace, and 1500 to 16
After being melted at 50 ° C. and vitrified, it is formed into a tubular shape by a tube drawing method such as a Dunner method or a down draw method, and cut into a predetermined length. At this time, it may be directly molded so as to have a desired outer diameter and wall thickness, or a parent tube having a large outer diameter and wall thickness may be produced and then thinned by a redraw method. In this way, the linear expansion coefficient is 43 to 55 × 10 -7 /
Thus, the envelope for a thin fluorescent lamp of the present invention, which is made of tubular glass made of borosilicate glass having an outer diameter of 5.2 mm or less and a wall thickness of 0.6 mm or less, can be obtained. It should be noted that, if necessary, processing such as forming a reduced diameter portion at both ends of the tubular glass may be performed.

【0026】次に本発明の細径蛍光ランプについて説明
する。
Next, the thin fluorescent lamp of the present invention will be described.

【0027】本発明の細径蛍光ランプは、上記のように
して作製された外囲器を使用したものであり、コバール
からなる導入金属が外囲器の両端に挿入された状態で溶
封されるとともに、内部には水銀やキセノン等のガスが
封入されており、また外囲器内壁面には蛍光体が塗布さ
れた構成を有している。そして、電圧が印加されると各
導入金属先端の電極間に放電が起こり、この放電により
封入された水銀やキセノン等のガスが励起し、励起した
ガスから放射される紫外線によって外囲器内壁面の蛍光
体が可視光線を発光する。
The small-diameter fluorescent lamp of the present invention uses the envelope manufactured as described above, and the introduction metal made of Kovar is hermetically sealed in a state of being inserted into both ends of the envelope. In addition, a gas such as mercury or xenon is enclosed inside, and the inner wall surface of the envelope is coated with a phosphor. Then, when a voltage is applied, a discharge occurs between the electrodes at the tips of the respective introduced metals, and the gas such as mercury and xenon that is enclosed is excited by this discharge, and the ultraviolet rays emitted from the excited gas cause the inner wall surface of the envelope to be excited. The phosphor emits visible light.

【0028】このような細径蛍光ランプは、液晶表示素
子の照明装置等に組み込まれて使用される。
Such a small-diameter fluorescent lamp is used by being incorporated in a lighting device for a liquid crystal display device or the like.

【0029】[0029]

【実施例】以下、本発明の細径蛍光ランプ用外囲器の線
膨張係数及び耐紫外線ソラリゼーション性について評価
する。
EXAMPLES The linear expansion coefficient and ultraviolet solarization resistance of the envelope for a thin fluorescent lamp of the present invention will be evaluated below.

【0030】表1乃至表4は本発明の外囲器を構成する
ホウケイ酸ガラスの実施例(試料No.1〜18)及び
比較例(試料No.19及び20)を示している。
Tables 1 to 4 show examples (Sample Nos. 1 to 18) and comparative examples (Samples No. 19 and 20) of borosilicate glass constituting the envelope of the present invention.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】表に示したNo.1〜20の各試料は、次
のようにして調製した。
No. shown in the table. Each sample of 1 to 20 was prepared as follows.

【0036】まず表に示す組成となるようにガラス原料
を調合した後、白金坩堝を用いて1550℃で5時間溶
解した。溶解後、融液を所定の形状に成形、加工して各
ガラス試料を作製し、それらの30〜380℃の温度範
囲における線膨張係数、及び紫外線照射前後の分光透過
率を測定し、各特性を表に示した。
First, glass raw materials were prepared so as to have the composition shown in the table and then melted at 1550 ° C. for 5 hours using a platinum crucible. After melting, the melt was molded into a predetermined shape and processed to prepare each glass sample, and the linear expansion coefficient in the temperature range of 30 to 380 ° C. and the spectral transmittance before and after irradiation with ultraviolet rays were measured, and each characteristic was measured. Is shown in the table.

【0037】表から明らかなように、本発明の実施例で
あるNo.1〜18の各試料は、線膨張係数が45.3
〜54.4×10-7/℃であり、コバールのそれと近似
しており、また紫外線照射による透過率の低下が1.0
%以下と殆どないため、高い耐紫外線ソラリゼーション
性を有していることが理解できる。
As is apparent from the table, No. 1 which is an embodiment of the present invention. Each of the samples 1 to 18 has a linear expansion coefficient of 45.3.
˜54.4 × 10 −7 / ° C., which is similar to that of Kovar and the decrease in transmittance due to ultraviolet irradiation is 1.0
It can be understood that it has a high resistance to UV solarization because it is almost not more than%.

【0038】それに対し比較例であるNo.19及び2
0の試料は、線膨張係数がコバールと封着可能である4
3〜55×10-7/℃の範囲内にあるが、TiO2 、P
bO、Sb23 の何れも全く含有していないため、紫
外線照射による透過率の低下が7%以上と大きく、耐紫
外線ソラリゼーション性が非常に低かった。
On the other hand, No. 19 and 2
The sample of 0 has a coefficient of linear expansion that can be sealed with Kovar. 4
Within the range of 3 to 55 × 10 −7 / ° C., but TiO 2 , P
Since neither bO nor Sb 2 O 3 was contained at all, the decrease in transmittance due to ultraviolet irradiation was as large as 7% or more, and the ultraviolet solarization resistance was very low.

【0039】なお表中の線膨張係数は、ガラスを直径約
3mm、長さ約50mmの円柱に加工した後に、自記示
差熱膨張計で、30〜380℃の温度範囲における平均
線膨張係数を測定したものである。
The linear expansion coefficient in the table is obtained by processing glass into a cylinder having a diameter of about 3 mm and a length of about 50 mm, and then measuring the average coefficient of linear expansion in the temperature range of 30 to 380 ° C. with a self-recording differential thermal dilatometer. It was done.

【0040】耐紫外線ソラリゼーション性は次のように
して評価した。まず厚さ1mmの板状ガラスの両面を鏡
面研磨して試料を得た。次いで紫外線照射前の試料の透
過率が80%を示す光の波長を測定した。さらにその試
料に40Wの低圧水銀ランプによって主波長253.7
nmの紫外線を60分間照射した後、照射前に透過率8
0%を示した波長における透過率を改めて測定すること
によって、紫外線照射による透過率の低下を求めた。こ
の時、耐紫外線ソラリゼーション性の劣るガラスほどこ
の透過率低下が大きくなるが、液晶バックライト等の蛍
光ランプ用ガラス管としては、この低下が殆どないこと
が重要である。
The UV solarization resistance was evaluated as follows. First, both sides of 1 mm-thick plate glass were mirror-polished to obtain a sample. Then, the wavelength of light showing a transmittance of the sample of 80% before ultraviolet irradiation was measured. Furthermore, the main wavelength of the sample was 253.7 using a 40 W low-pressure mercury lamp.
After irradiating 60 nm UV for 60 minutes, the transmittance is 8 before irradiation.
By measuring the transmittance again at the wavelength showing 0%, the decrease of the transmittance due to the irradiation of ultraviolet rays was obtained. At this time, the lower the transmittance of the glass is, the greater the deterioration of the UV solarization resistance is. However, it is important for a glass tube for a fluorescent lamp such as a liquid crystal backlight to have almost no such decrease.

【0041】[0041]

【発明の効果】以上説明したように本発明の細径蛍光ラ
ンプ用外囲器は、機械的強度や耐熱性が高く、誘電損失
が小さいホウケイ酸ガラスで構成されるため、蛍光ラン
プの細径化、薄肉化に対応することができる。また43
〜55×10-7/℃の線熱膨張係数を有しており、コバ
ールを導入金属として使用する蛍光ランプに用いること
が可能である。しかも耐ソラリゼーション性に優れてい
るため、紫外線着色が生じ難い。従って、長時間点灯さ
れる細径の蛍光ランプ、特に液晶表示素子用照明装置の
光源となる細径蛍光ランプの外囲器として好適である。
As described above, since the envelope for a small-diameter fluorescent lamp of the present invention is made of borosilicate glass having high mechanical strength and heat resistance and a small dielectric loss, the small-diameter fluorescent lamp has a small diameter. It is possible to cope with thinning and thinning. 43
It has a coefficient of linear thermal expansion of ˜55 × 10 −7 / ° C. and can be used for a fluorescent lamp using Kovar as an introduced metal. In addition, since it has excellent solarization resistance, it is less likely to cause ultraviolet coloring. Therefore, it is suitable as an envelope of a small-diameter fluorescent lamp that is turned on for a long time, particularly a small-diameter fluorescent lamp that serves as a light source of a liquid crystal display element lighting device.

【0042】また本発明の細径蛍光ランプは、機械的強
度や耐熱性が高く、誘電損失が小さいホウケイ酸ガラス
で構成された外囲器を有するため、より一層の細径化が
可能である。また外囲器が43〜55×10-7/℃の線
熱膨張係数を有し、導入金属であるコバールと整合して
いるため、スローリークやクラックが生じるおそれがな
い。しかも外囲器の耐ソラリゼーション性が優れている
ため、長時間点灯しても紫外線着色が生じ難い。このた
め特に液晶表示素子用照明装置の光源となる細径蛍光ラ
ンプとして好適である。
Further, since the small-diameter fluorescent lamp of the present invention has the envelope made of borosilicate glass having high mechanical strength and heat resistance and small dielectric loss, the diameter can be further reduced. . Moreover, since the envelope has a linear thermal expansion coefficient of 43 to 55 × 10 −7 / ° C. and is matched with Kovar as the introduced metal, there is no possibility of causing slow leak or crack. Moreover, since the enclosure has excellent solarization resistance, it is less likely to be colored with ultraviolet rays even when it is turned on for a long time. Therefore, it is particularly suitable as a small-diameter fluorescent lamp that serves as a light source of a lighting device for a liquid crystal display element.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 TiO2 、PbO、Sb23 の少なく
とも1種をガラス組成中に含有し、30〜380℃にお
ける線膨張係数が43〜55×10-7/℃であるホウケ
イ酸ガラスで構成された外径5.2mm以下、肉厚0.
6mm以下の管状ガラスからなることを特徴とする細径
蛍光ランプ用外囲器。
1. A borosilicate glass containing at least one of TiO 2 , PbO and Sb 2 O 3 in a glass composition and having a linear expansion coefficient at 30 to 380 ° C. of 43 to 55 × 10 −7 / ° C. The configured outer diameter is 5.2 mm or less and the wall thickness is 0.
An envelope for a small-diameter fluorescent lamp, which is made of tubular glass of 6 mm or less.
【請求項2】 ホウケイ酸ガラスが、重量百分率で、S
iO2 55〜73%、B23 10〜25%、Al
23 1〜10%、Li2 O+Na2 O+K2 O 4
〜16%、ZrO2 0〜5%、TiO2 +PbO+S
23 0.05〜11%の組成を有することを特徴
とする請求項1の細径蛍光ランプ用外囲器。
2. The borosilicate glass comprises, in weight percentage, S
iO 2 55-73%, B 2 O 3 10-25%, Al
2 O 3 1-10%, Li 2 O + Na 2 O + K 2 O 4
~ 16%, ZrO 2 0-5%, TiO 2 + PbO + S
b 2 O 3 0.05~11% of the small-diameter fluorescent lamp envelope of claim 1, characterized in that it comprises a composition.
【請求項3】 TiO2 が0.05〜5%、PbOが0
〜10%、Sb23 が0〜4%であることを特徴とす
る請求項1又は2の細径蛍光ランプ用外囲器。
3. TiO 2 is 0.05 to 5% and PbO is 0.
The envelope for a small-diameter fluorescent lamp according to claim 1 or 2, wherein Sb 2 O 3 is 10% and Sb 2 O 3 is 0-4%.
【請求項4】 TiO2 が0〜5%、PbOが0.05
〜10%、Sb23 が0〜4%であることを特徴とす
る請求項1又は2の細径蛍光ランプ用外囲器。
4. TiO 2 is 0 to 5% and PbO is 0.05.
The envelope for a small-diameter fluorescent lamp according to claim 1 or 2, wherein Sb 2 O 3 is 10% and Sb 2 O 3 is 0-4%.
【請求項5】 TiO2 が0〜5%、PbOが0〜10
%、Sb23 が0.1〜4%であることを特徴とする
請求項1又は2の細径蛍光ランプ用外囲器。
5. TiO 2 is 0 to 5% and PbO is 0 to 10.
%, Sb 2 O 3 is 0.1 to 4%, and the envelope for a small-diameter fluorescent lamp according to claim 1 or 2.
【請求項6】 液晶表示素子の照明装置の光源となる細
径蛍光ランプに使用されることを特徴とする請求項1乃
至5の細径蛍光ランプ用外囲器。
6. The envelope for a small-diameter fluorescent lamp according to claim 1, which is used for a small-diameter fluorescent lamp which is a light source of an illuminating device for a liquid crystal display element.
【請求項7】 コバールを導入金属とする細径蛍光ラン
プにおいて、外囲器として、TiO2 、PbO、Sb2
3 の少なくとも1種をガラス組成中に含有し30〜3
80℃における線膨張係数が43〜55×10-7/℃で
あるホウケイ酸ガラスで構成された外径5.2mm以
下、肉厚0.6mm以下の管状ガラスを使用してなるこ
とを特徴とする細径蛍光ランプ。
7. A small-diameter fluorescent lamp using Kovar as an introduction metal, wherein TiO 2 , PbO, Sb 2 is used as an envelope.
30 to 3 containing at least one of O 3 in the glass composition
A tubular glass having an outer diameter of 5.2 mm or less and a wall thickness of 0.6 mm or less, which is made of borosilicate glass having a linear expansion coefficient at 80 ° C. of 43 to 55 × 10 −7 / ° C. A small diameter fluorescent lamp.
【請求項8】 ホウケイ酸ガラスが、重量百分率で、S
iO2 55〜73%、B23 10〜25%、Al
23 1〜10%、Li2 O+Na2 O+K2 O 4
〜16%、ZrO2 0〜5%、TiO2 +PbO+S
23 0.05〜11%の組成を有することを特徴
とする請求項7の細径蛍光ランプ。
8. The borosilicate glass comprises, in weight percentage, S
iO 2 55-73%, B 2 O 3 10-25%, Al
2 O 3 1-10%, Li 2 O + Na 2 O + K 2 O 4
~ 16%, ZrO 2 0-5%, TiO 2 + PbO + S
thin fluorescent lamp of claim 7, characterized in that it has a b 2 O 3 0.05~11% of the composition.
【請求項9】 TiO2 が0.05〜5%、PbOが0
〜10%、Sb23 が0〜4%であることを特徴とす
る請求項7又は8の細径蛍光ランプ。
9. TiO 2 is 0.05 to 5% and PbO is 0.
The small-diameter fluorescent lamp according to claim 7, wherein Sb 2 O 3 is 0 to 4% and Sb 2 O 3 is 0 to 4%.
【請求項10】 TiO2 が0〜5%、PbOが0.0
5〜10%、Sb23 が0〜4%であることを特徴と
する請求項7又は8の細径蛍光ランプ。
10. TiO 2 is 0 to 5% and PbO is 0.0.
5-10%, small diameter fluorescent lamp of claim 7 or 8 Sb 2 O 3 is equal to or is 0-4%.
【請求項11】 TiO2 が0〜5%、PbOが0〜1
0%、Sb23 が0.1〜4%であることを特徴とす
る請求項7又は8の細径蛍光ランプ。
11. TiO 2 is 0 to 5% and PbO is 0 to 1.
The small-diameter fluorescent lamp according to claim 7 or 8, wherein 0% and Sb 2 O 3 are 0.1 to 4%.
【請求項12】 液晶表示素子の照明装置の光源として
使用されることを特徴とする請求項7乃至11の細径蛍
光ランプ。
12. The small-diameter fluorescent lamp according to claim 7, which is used as a light source of a lighting device for a liquid crystal display device.
JP28794095A 1995-10-09 1995-10-09 Envelope for small fluorescent lamp and small fluorescent lamp Expired - Fee Related JP3899538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28794095A JP3899538B2 (en) 1995-10-09 1995-10-09 Envelope for small fluorescent lamp and small fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28794095A JP3899538B2 (en) 1995-10-09 1995-10-09 Envelope for small fluorescent lamp and small fluorescent lamp

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006112378A Division JP4187002B2 (en) 2006-04-14 2006-04-14 Envelope for small fluorescent lamp and small fluorescent lamp

Publications (2)

Publication Number Publication Date
JPH09106784A true JPH09106784A (en) 1997-04-22
JP3899538B2 JP3899538B2 (en) 2007-03-28

Family

ID=17723714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28794095A Expired - Fee Related JP3899538B2 (en) 1995-10-09 1995-10-09 Envelope for small fluorescent lamp and small fluorescent lamp

Country Status (1)

Country Link
JP (1) JP3899538B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001290120A (en) * 2000-04-07 2001-10-19 Sony Corp Projection type liquid crystal display device
KR20030086055A (en) * 2002-05-03 2003-11-07 주식회사 네오비트로 Glass tube for cold cathode fluorescent lamp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001290120A (en) * 2000-04-07 2001-10-19 Sony Corp Projection type liquid crystal display device
KR20030086055A (en) * 2002-05-03 2003-11-07 주식회사 네오비트로 Glass tube for cold cathode fluorescent lamp

Also Published As

Publication number Publication date
JP3899538B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
KR0176007B1 (en) Tungsten sealing glass
KR100538086B1 (en) Tungsten seal glass for fluorescent lamp
JP2002293571A (en) Glass for illumination
JP2004091308A (en) Glass for lighting
JP4743650B2 (en) Kovar seal glass for fluorescent lamps
JP3903490B2 (en) Kovar sealing glass
JP2004315279A (en) Glass for fluorescent lamp
JP3575114B2 (en) Kovar sealing glass
JP2002060245A (en) Ultraviolet ray absorbing glass and glass tube for fluorescent lamp using the same
JP3818571B2 (en) Glass suitable for sealing Fe-Ni-Co alloys
JP3903489B2 (en) Tungsten sealing glass
JP2005041729A (en) Illuminating glass
JP4686849B2 (en) Tungsten seal glass for fluorescent lamps
JP3899538B2 (en) Envelope for small fluorescent lamp and small fluorescent lamp
JP2002068775A (en) Glass envelope for illumination
JP3520626B2 (en) Enclosure for small diameter fluorescent lamp and small diameter fluorescent lamp
JP4453305B2 (en) Fluorescent lamp outer tube and fluorescent lamp
JP4187002B2 (en) Envelope for small fluorescent lamp and small fluorescent lamp
JP2004099439A (en) Method for using kovar sealing glass
JP2010116306A (en) Glass composition for illumination and fluorescent lamp envelope
JPH08333132A (en) Glass for sealing kovar
JP2004315280A (en) Glass for fluorescent lamp
KR100562841B1 (en) Glass tube for fluorescent lamp
JP2002060241A (en) Glass for sealing tungsten
JP2007039334A (en) Glass for sealing tungsten

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20040927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050615

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees