JP4187002B2 - Envelope for small fluorescent lamp and small fluorescent lamp - Google Patents

Envelope for small fluorescent lamp and small fluorescent lamp Download PDF

Info

Publication number
JP4187002B2
JP4187002B2 JP2006112378A JP2006112378A JP4187002B2 JP 4187002 B2 JP4187002 B2 JP 4187002B2 JP 2006112378 A JP2006112378 A JP 2006112378A JP 2006112378 A JP2006112378 A JP 2006112378A JP 4187002 B2 JP4187002 B2 JP 4187002B2
Authority
JP
Japan
Prior art keywords
fluorescent lamp
envelope
glass
small
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006112378A
Other languages
Japanese (ja)
Other versions
JP2007207740A (en
Inventor
裕幸 香曽我部
幸市 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2006112378A priority Critical patent/JP4187002B2/en
Publication of JP2007207740A publication Critical patent/JP2007207740A/en
Application granted granted Critical
Publication of JP4187002B2 publication Critical patent/JP4187002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/102Glass compositions containing silica with 40% to 90% silica, by weight containing lead
    • C03C3/108Glass compositions containing silica with 40% to 90% silica, by weight containing lead containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

本発明は、コバール(=Westinghouse Ele.Corp.社の商標名でFe−Ni−Co系合金。本願においては、住友特殊金属社製KV−2、東芝社製KOVなど、他社の同等製品も含む。)を導入金属とする細径蛍光ランプの外囲器とこれを用いた細径蛍光ランプに関するものである。   The present invention includes Kovar (= Fe-Ni-Co alloy under the trade name of Westinghouse Ele. Corp. In this application, KV-2 manufactured by Sumitomo Special Metals, KOV manufactured by Toshiba, etc.) The present invention relates to an envelope of a small-diameter fluorescent lamp using the introduced metal and a small-diameter fluorescent lamp using this.

液晶表示素子は、光源の利用法によって自然光や室内照明の光を利用する反射型液晶表示素子と、専用の照明装置、例えばバックライトの光を用いる透過型液晶表示素子とに大別される。腕時計や、小型の電子卓上計算機等の特に低消費電力タイプのものには反射型液晶表示素子が用いられるが、TFT液晶表示素子等によるカラー表示や、車載用計器等の高品位な表示が要求される用途には、蛍光ランプを光源とするバックライトを用いた透過型液晶表示素子が主として使用されている。   Liquid crystal display elements are broadly classified into reflective liquid crystal display elements that use natural light and room illumination light, and transmissive liquid crystal display elements that use backlight light, for example, depending on how the light source is used. Reflective liquid crystal display elements are used for wristwatches and small electronic desk calculators, especially those with low power consumption, but color displays using TFT liquid crystal display elements and high-quality displays such as in-vehicle instruments are required. For such applications, a transmissive liquid crystal display element using a backlight having a fluorescent lamp as a light source is mainly used.

バックライト用蛍光ランプの発光原理は、一般の照明用蛍光ランプと同様で、電極間の放電によって封入された水銀ガス等が励起し、励起したガスから放射される紫外線によって管状ガラスからなる外囲器の内壁面に塗布された蛍光体が可視光線を発光するというものである。しかし、一般用の蛍光ランプとの大きな違いは、外囲器の外径が小さく、肉厚が薄いところにある。従来、この蛍光ランプの外囲器には、加工の容易さや照明用ガラスとしてのこれまでの実績から鉛ソーダ系の軟質ガラスが使用され、導入金属としては安価なジュメットが使われていた。   The light emission principle of the fluorescent lamp for the backlight is the same as that of a general lighting fluorescent lamp. The envelope made of tubular glass is excited by the mercury gas enclosed by the discharge between the electrodes and the ultraviolet rays emitted from the excited gas. The phosphor applied to the inner wall surface of the vessel emits visible light. However, the major difference from a general fluorescent lamp is that the outer diameter of the envelope is small and the wall thickness is thin. Conventionally, lead fluorescent soda-based soft glass has been used for the envelope of this fluorescent lamp because of its ease of processing and past achievements as lighting glass, and inexpensive jumet has been used as the introduced metal.

ところで液晶表示素子の薄型化、軽量化、低消費電力化に伴い、バックライト用の蛍光ランプにもより一層の細径化、薄肉化が要求されているが、蛍光ランプの細径化は構造的に機械的強度の低下やランプの発熱の増加を伴うため、外囲器である管状ガラスにはより高強度、且つ低膨張であることが必要となってきている。また発光効率向上のために点灯回路の高周波化が進められており、これに伴って絶縁体である管状ガラスには低誘電損失化が求められている。ところが、従来の鉛ソーダ系の軟質ガラス材質では、これらの要求を満足させることができなくなってきている。   By the way, as the liquid crystal display element becomes thinner, lighter, and consumes less power, fluorescent lamps for backlights are required to have smaller diameters and thinner walls. In particular, since the mechanical strength is reduced and the heat generation of the lamp is increased, the tubular glass as the envelope is required to have higher strength and lower expansion. Further, in order to improve the light emission efficiency, the frequency of the lighting circuit has been increased, and accordingly, the dielectric glass is required to have a low dielectric loss. However, the conventional lead soda-based soft glass material cannot satisfy these requirements.

そこで、鉛ソーダ系の軟質ガラスよりも熱的、機械的に強度が高く、低誘電損失の点でも有利なホウケイ酸系の硬質ガラスを用いて蛍光ランプの外囲器を作製することが検討された。その結果、気密封止可能な硬質ガラスと金属の組合せとして、外囲器に従来より知られているコバール封着用ガラス、導入金属にコバールを用いた蛍光ランプが開発され、商品化されている。   Therefore, it has been studied to produce a fluorescent lamp envelope using borosilicate hard glass, which has higher thermal and mechanical strength than lead soda-based soft glass and is advantageous in terms of low dielectric loss. It was. As a result, as a combination of hard glass and metal that can be hermetically sealed, a Kovar sealing glass conventionally known for an envelope and a fluorescent lamp using Kovar as an introduction metal have been developed and commercialized.

しかしながら、上記した蛍光ランプの外囲器は、従来からある電子管やフォトキャップ等の電子部品の気密封止やレンズとして一般に使われているホウケイ酸系のコバール封着用ガラス材質をそのまま使用し、これを単に細管状に成形、加工したものであるため、長時間点灯すると、励起された水銀ガスから放出される紫外線によってガラスが変色(いわゆる、紫外線ソラリゼーション)するという問題が生じてしまう。ガラスが変色すると、輝度の低下や発光色のずれが起こり、液晶表示素子に表示の暗さや演色性の劣化といった品質の劣化を与えることになる。   However, the envelope of the fluorescent lamp described above uses a conventional borosilicate Kovar sealing glass material that is generally used as a hermetic seal or lens for electronic parts such as conventional electron tubes and photocaps. Is simply formed into a thin tube and processed, so that when it is lit for a long time, there arises a problem that the glass is discolored (so-called ultraviolet solarization) by ultraviolet rays emitted from the excited mercury gas. When the color of the glass is changed, the luminance is lowered and the emission color is shifted, and the liquid crystal display element is deteriorated in quality such as display darkness and color rendering property.

この対策として、ガラス管内面に紫外線を反射又は吸収する成分であるAl23 やTiO2 のコーティングを行い、その上に蛍光体を塗布して多層膜を形成し、ガラスに達する紫外線の強度を弱めるといった方法が一部では実施されているが、この方法においては、生産コストの上昇を伴うばかりか、例えば外径5.2mm以下、肉厚が0.6mm以下といった細径で薄肉の管状ガラスについては均質な多層膜を形成することが困難になる。このような事情から、耐紫外線ソラリゼーション性を持った細径蛍光ランプ用外囲器の開発が強く求められている。 As a countermeasure, the inner surface of the glass tube is coated with Al 2 O 3 or TiO 2 , which is a component that reflects or absorbs ultraviolet rays, and a phosphor is applied on top of it to form a multilayer film. However, in this method, not only is the production cost increased, but also a thin tube with a small diameter such as an outer diameter of 5.2 mm or less and a wall thickness of 0.6 mm or less is used. For glass, it becomes difficult to form a homogeneous multilayer film. Under such circumstances, there is a strong demand for the development of envelopes for small-diameter fluorescent lamps that have UV-resistant solarization properties.

本発明は上記事情に鑑みなされたものであり、コバールを導入金属とし、耐ソラリゼーション性に優れた細径蛍光ランプを作製することが可能な細径蛍光ランプ用外囲器と、これを用いて作製した細径蛍光ランプを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an envelope for a small-diameter fluorescent lamp capable of producing a small-diameter fluorescent lamp excellent in solarization resistance using Kovar as an introduction metal, and using this It aims at providing the produced small diameter fluorescent lamp.

本発明の細径蛍光ランプ用外囲器は、重量百分率で、SiO 2 55〜73%、B 2 3 10〜25%、Al 2 3 1〜10%、Li 2 O+Na 2 O+K 2 O 4〜16%、ZrO 2 0〜5%、Sb 2 3 0.1〜4%含有し、30〜380℃における線膨張係数が43〜55×10-7/℃(43×10-7/℃を除く)であるホウケイ酸ガラスで構成された外径5.2mm以下、肉厚0.6mm以下の管状ガラスからなることを特徴とする。 Thin fluorescent lamp envelope of the present invention, in% by weight, SiO 2 55~73%, B 2 O 3 10~25%, Al 2 O 3 1~10%, Li 2 O + Na 2 O + K 2 O 4 ~16%, ZrO 2 0~5%, Sb 2 O 3 containing 0.1 to 4%, the linear expansion coefficient at 30 to 380 ° C. is 43~55 × 10 -7 / ℃ (43 × 10 -7 / ℃ It is characterized by being made of tubular glass having an outer diameter of 5.2 mm or less and a wall thickness of 0.6 mm or less, which is made of borosilicate glass.

また本発明の細径蛍光ランプ用外囲器の製造方法は、コバールを導入金属とする細径蛍光ランプにおいて、外囲器として、重量百分率で、SiO 2 55〜73%、B 2 3 10〜25%、Al 2 3 1〜10%、Li 2 O+Na 2 O+K 2 O 4〜16%、ZrO 2 0〜5%、Sb 2 3 0.1〜4%含有し、30〜380℃における線膨張係数が43〜55×10-7/℃(43×10-7/℃を除く)であるホウケイ酸ガラスとなるようにガラス原料を調合し、溶融窯に投入してガラス化した後、管状に成形することを特徴とする。
In addition, according to the method of manufacturing the envelope for a small fluorescent lamp of the present invention, in a small fluorescent lamp using Kovar as an introduction metal , SiO 2 55 to 73%, B 2 O 3 10 by weight as the envelope. ˜25%, Al 2 O 3 1-10%, Li 2 O + Na 2 O + K 2 O 4-16%, ZrO 2 0-5%, Sb 2 O 3 0.1-4% , at 30-380 ° C. After preparing a glass raw material so as to be a borosilicate glass having a linear expansion coefficient of 43 to 55 × 10 −7 / ° C. (excluding 43 × 10 −7 / ° C.), it is put into a melting furnace and vitrified. It is formed into a tubular shape.

本発明において、外囲器をガラス組成中にSb23 を含有するホウケイ酸ガラスで構成したのは次の理由による。つまりホウケイ酸ガラスは、鉛ソーダ系の軟質ガラスに比べ、機械的強度が高く、低膨張であるために耐熱性に優れ、誘電損失も低く、蛍光ランプを細径化、薄肉化し易い。またSb23 をガラス中に含有していると、耐紫外線ソラリゼーション性が高く、蛍光ランプ内部で発生する紫外線に長時間曝されても着色が起こり難い。 In the present invention, the envelope is made of borosilicate glass containing Sb 2 O 3 in the glass composition for the following reason. In other words, borosilicate glass has higher mechanical strength and lower expansion than lead soda-based soft glass, so it has excellent heat resistance and low dielectric loss, and it is easy to make fluorescent lamps thinner and thinner. Further, when Sb 2 O 3 is contained in the glass, the resistance to ultraviolet solarization is high, and coloring does not easily occur even when exposed to ultraviolet rays generated inside the fluorescent lamp for a long time.

また上記ホウケイ酸ガラスの線膨張係数を43〜55×10-7/℃(30〜380℃)に限定した理由は、線膨張係数がこの範囲から外れると、導入金属であるコバールと膨張係数が整合せず、スローリークやクラックが発生し、蛍光ランプとしての機能が損なわれるためである。 The reason why the linear expansion coefficient of the borosilicate glass is limited to 43 to 55 × 10 −7 / ° C. (30 to 380 ° C.) is that when the linear expansion coefficient is out of this range, the introduced metal is Kovar and the expansion coefficient. This is because they do not match, and slow leaks and cracks occur, impairing the function as a fluorescent lamp.

上記したホウケイ酸ガラスで構成される管状の外囲器は、外径5.2mm以下、好ましくは3.5mm以下、肉厚0.6mm以下、好ましくは0.5mm以下の大きさを有するものであり、これより外径及び肉厚が大きいと液晶表示素子の薄型化、軽量化に起因するバックライト等照明装置用細径蛍光ランプの細径化の要求に応えられない。   The tubular envelope made of the borosilicate glass described above has a size of an outer diameter of 5.2 mm or less, preferably 3.5 mm or less, and a wall thickness of 0.6 mm or less, preferably 0.5 mm or less. If the outer diameter and the wall thickness are larger than this, it is not possible to meet the demands for reducing the diameter of a thin fluorescent lamp for an illuminating device such as a backlight due to the reduction in thickness and weight of the liquid crystal display element.

外囲器を構成する管状のホウケイ酸ガラスとしては、重量百分率で、SiO2 55〜73%、B23 10〜25%、Al23 1〜10%、Li2 O+Na2 O+K2 O 4〜16%、ZrO2 0〜5%、Sb23 0.1〜4%の組成を有するものが好適である。 The tubular borosilicate glass constituting the envelope is SiO 2 55 to 73%, B 2 O 3 10 to 25%, Al 2 O 3 1 to 10%, Li 2 O + Na 2 O + K 2 O by weight percentage. 4~16%, ZrO 2 0~5%, those having a composition of Sb 2 O 3 0.1~4% is preferred.

各成分の含有量を上記のように限定した理由は以下の通りである。   The reason why the content of each component is limited as described above is as follows.

SiO2 はガラスの骨格を構成するために必要な主成分であり、その含有量は55〜73%、好ましくは61〜72%である。SiO2が73%より多いと、線膨張係数が低くなりすぎると共に溶解性が悪化し易く、55%より少ないと化学的耐久性が悪化し易くなるが、これによってアルカリ吹きが起こると蛍光体を均一に塗布できなくなり、ヤケ等が生じた場合には蛍光ランプの輝度低下の原因になる。 SiO 2 is a main component necessary for constituting a glass skeleton, and its content is 55 to 73%, preferably 61 to 72%. If SiO 2 is more than 73%, the coefficient of linear expansion becomes too low and the solubility tends to deteriorate. If it is less than 55%, the chemical durability tends to deteriorate. When it becomes impossible to apply uniformly and burns or the like occur, it causes a decrease in the luminance of the fluorescent lamp.

23 は溶解性の向上や粘度の調整のために必要な成分であり、その含有量は10〜25%、好ましくは15.2〜24%である。B23 が10%より少ないと溶解が困難になり、且つ、コバール封着用としては粘度が高くなり過ぎる。また25%より多いと逆に粘度が下がり過ぎたり、蒸発によって均質なガラスが得られなくなったり、化学的耐久性が悪化するといった問題が発生する。 B 2 O 3 is a component necessary for improving solubility and adjusting viscosity, and its content is 10 to 25%, preferably 15.2 to 24%. When B 2 O 3 is less than 10%, dissolution becomes difficult and the viscosity becomes too high for Kovar sealing. On the other hand, when it exceeds 25%, there are problems that the viscosity is excessively lowered, a homogeneous glass cannot be obtained by evaporation, and the chemical durability is deteriorated.

Al23 はガラスの安定性を向上するのに著しい効果があり、その含有量は1〜10%、好ましくは1〜4.9%である。Al23 が10%より多いとガラスの溶解が困難になり、1%より少ないとガラスが失透し易くなり、均質なガラスの製造や安定した成形が困難になる。 Al 2 O 3 has a significant effect on improving the stability of the glass, and its content is 1 to 10%, preferably 1 to 4.9%. If Al 2 O 3 is more than 10%, it is difficult to melt the glass, and if it is less than 1%, the glass tends to be devitrified, and it becomes difficult to produce homogeneous glass and to stably form it.

アルカリ金属酸化物であるLi2 O、Na2 O、及びK2 Oはガラスの溶解を容易にし、膨張係数や粘度を調節するために添加する成分であり、その含有量は合量で4〜16%、好ましくは5.1〜13%である。これら成分の合量が16%以上では膨張係数が高くなりすぎ、また粘度が下がりすぎてコバール封着には適さず、且つ化学的耐久性の大幅な低下を招き、4%未満では逆に膨張係数が小さくなり過ぎる。なお各成分の含有量は、Li2O 0〜4%(好ましくは0〜3%)、Na2 O 0〜4.3%(好ましくは0〜3.9%)、K2 O 0〜15%(好ましくは0〜13%)の範囲が好適である。Li2Oが4%より多いと失透性が悪化し易くなるとともに熱膨張係数が高くなりすぎ、Na2 Oが4.3%より多いと蛍光ランプ製造時の熱工程においてNaイオンが蛍光体を汚染して輝度の低下を引き起こしたり、熱膨張係数が高くなりすぎる可能性がある。またK2Oが15%を越えると熱膨張係数が高くなり過ぎることがある。 Li 2 O is an alkali metal oxide, Na 2 O, and K 2 O facilitate dissolution of the glass, a component added to adjust the coefficient of expansion and viscosity, the content is 4 in total 16%, preferably 5.1-13%. If the total amount of these components is 16% or more, the expansion coefficient becomes too high, the viscosity is too low to be suitable for Kovar sealing, and the chemical durability is greatly reduced. The coefficient is too small. The content ratio of each component, Li 2 O 0~4% (preferably 0~3%), Na 2 O 0~4.3 % ( preferably 0~3.9%), K 2 O 0~15 % (Preferably 0 to 13%) is suitable. If Li 2 O is more than 4%, devitrification tends to deteriorate and the coefficient of thermal expansion becomes too high. If Na 2 O is more than 4.3%, Na ions are phosphor in the thermal process during the production of the fluorescent lamp. May cause a decrease in luminance, or the thermal expansion coefficient may become too high. If K 2 O exceeds 15%, the thermal expansion coefficient may become too high.

ZrO2 は化学的耐久性を向上させ、アルカリ吹きやヤケを防止する成分であり、その含有量は0〜5%、好ましくは0.01〜3%である。ZrO2が5%より多いと失透性が悪化してガラスが不均一になり、寸法精度が悪くなったり、外観上の欠陥が生じ、高品質のガラスが得難くなる。 ZrO 2 is a component that improves chemical durability and prevents alkali blowing and burns, and its content is 0 to 5%, preferably 0.01 to 3%. If ZrO 2 is more than 5%, devitrification is deteriorated and the glass becomes non-uniform, resulting in poor dimensional accuracy and appearance defects, making it difficult to obtain high-quality glass.

TiO2 、PbO及びSb23 は何れもガラスに高い耐紫外線ソラリゼーション性を付与する成分であり、その合量は0.05〜11%、好ましくは0.1〜5.5%である。これら成分の合量が11%を越えるとガラスの失透や蒸発等の影響が強くなり、均質で寸法精度の良い管状ガラスが得難くなる。一方、0.05%未満の場合はその効果が殆どない。なおTiO2を必須成分として含む場合、各成分の含有量は、TiO2 0.05〜5%(好ましくは0.1〜3%)、PbO 0〜10%(好ましくは0〜5.5%)、Sb23 0〜4%(好ましくは0〜1%)である。PbOを必須成分として含む場合、各成分の含有量は、TiO2 0〜5%(好ましくは0〜2%)、PbO 0.05〜10%(好ましくは0.1〜5.5%)、Sb23 0〜4%(好ましくは0〜1%)の範囲が好適である。またSb23 を必須成分として含む場合、各成分の含有量は、TiO2 0〜5%(好ましくは0〜2%)、PbO 0〜10%(好ましくは0〜5.5%)、Sb23 0.1〜4%(好ましくは0.2〜1%)である。なお何れの場合もTiO2が所定量を越えるとガラス自身が着色し易くなり、また失透性も急激に悪化するため透明で均質なガラスが得難くなる。PbOが所定量を越えるとTiO2と同様にガラス自身が着色し易くなり、また溶融時に蒸発して均質なガラスが得難くなるとともに環境上好ましくない。Sb23が所定量を越えると均質なガラスを得ることが難しくなる。またPbOやSb23 がガラス中に過剰に含有されていると、蛍光ランプの製造工程における熱加工によってガラスが茶色や黒色に着色してしまい、外観品位が劣化する。しかも有効発光部分に着色が生じると輝度の低下に直接つながるため好ましくない。 TiO 2 , PbO, and Sb 2 O 3 are all components that impart high ultraviolet solarization resistance to glass, and the total amount thereof is 0.05 to 11%, preferably 0.1 to 5.5%. When the total amount of these components exceeds 11%, the influence of devitrification, evaporation, etc. of the glass becomes strong, and it becomes difficult to obtain a tubular glass having a uniform and good dimensional accuracy. On the other hand, when it is less than 0.05%, there is almost no effect. When TiO 2 is contained as an essential component, the content of each component is TiO 2 0.05 to 5% (preferably 0.1 to 3%), PbO 0 to 10% (preferably 0 to 5.5%). ), Sb 2 O 3 0-4% (preferably 0-1%). When PbO is contained as an essential component, the content of each component is TiO 2 0 to 5% (preferably 0 to 2%), PbO 0.05 to 10% (preferably 0.1 to 5.5%), A range of 0 to 4% (preferably 0 to 1%) of Sb 2 O 3 is suitable. When Sb 2 O 3 is contained as an essential component, the content of each component is TiO 2 0 to 5% (preferably 0 to 2%), PbO 0 to 10% (preferably 0 to 5.5%), Sb 2 O 3 is 0.1 to 4% (preferably 0.2 to 1%). In any case, if the amount of TiO 2 exceeds a predetermined amount, the glass itself tends to be colored, and the devitrification property deteriorates rapidly, making it difficult to obtain a transparent and homogeneous glass. If PbO exceeds a predetermined amount, the glass itself tends to be colored like TiO 2, and it becomes difficult to obtain a homogeneous glass by evaporating at the time of melting. Sb 2 O 3 is difficult to obtain a homogeneous glass exceeds a predetermined amount. Further, if PbO or Sb 2 O 3 is excessively contained in the glass, the glass is colored brown or black by heat processing in the manufacturing process of the fluorescent lamp, and the appearance quality is deteriorated. Moreover, coloring in the effective light emitting portion is not preferable because it directly leads to a decrease in luminance.

さらに上記ホウケイ酸ガラスは、ガラスの粘度の調整や耐候性、溶解性、清澄性を改善する目的で、SrO、BaO、CaO、MgO、ZnO、P25 、As23、SO3 、F2 、Cl2 等の成分を適量添加することが可能である。 Furthermore, the borosilicate glass is SrO, BaO, CaO, MgO, ZnO, P 2 O 5 , As 2 O 3 , SO 3 , for the purpose of adjusting the viscosity of the glass and improving weather resistance, solubility, and clarity. Appropriate amounts of components such as F 2 and Cl 2 can be added.

以上説明したように本発明の細径蛍光ランプ用外囲器は、機械的強度や耐熱性が高く、誘電損失が小さいホウケイ酸ガラスで構成されるため、蛍光ランプの細径化、薄肉化に対応することができる。また43〜55×10-7/℃の線熱膨張係数を有しており、コバールを導入金属として使用する蛍光ランプに用いることが可能である。しかも耐ソラリゼーション性に優れているため、紫外線着色が生じ難い。従って、長時間点灯される細径の蛍光ランプ、特に液晶表示素子用照明装置の光源となる細径蛍光ランプの外囲器として好適である。 As described above, the envelope for a thin fluorescent lamp of the present invention is composed of borosilicate glass having high mechanical strength and heat resistance and low dielectric loss, so that the fluorescent lamp can be made thinner and thinner. Can respond. Moreover, it has a linear thermal expansion coefficient of 43 to 55 × 10 −7 / ° C., and can be used for a fluorescent lamp using Kovar as an introduction metal. Moreover, since it is excellent in solarization resistance, it is difficult to cause ultraviolet coloring. Therefore, it is suitable as an envelope of a small-diameter fluorescent lamp that is lit for a long time, in particular, a small-diameter fluorescent lamp that serves as a light source of an illumination device for a liquid crystal display element.

また本発明の細径蛍光ランプは、機械的強度や耐熱性が高く、誘電損失が小さいホウケイ酸ガラスで構成された外囲器を有するため、より一層の細径化が可能である。また外囲器が43〜55×10-7/℃の線熱膨張係数を有し、導入金属であるコバールと整合しているため、スローリークやクラックが生じるおそれがない。しかも外囲器の耐ソラリゼーション性が優れているため、長時間点灯しても紫外線着色が生じ難い。このため特に液晶表示素子用照明装置の光源となる細径蛍光ランプとして好適である。 In addition, since the thin fluorescent lamp of the present invention has an envelope made of borosilicate glass having high mechanical strength and heat resistance and low dielectric loss, the diameter can be further reduced. Moreover, since the envelope has a linear thermal expansion coefficient of 43 to 55 × 10 −7 / ° C. and is consistent with Kovar, which is an introduced metal, there is no possibility of causing slow leaks or cracks. Moreover, since the envelope has excellent solarization resistance, ultraviolet coloring is unlikely to occur even when it is lit for a long time. Therefore, it is particularly suitable as a small-diameter fluorescent lamp serving as a light source for a liquid crystal display element illumination device.

以下、本発明の実施の形態を説明する。なお以下の記載は本発明の一例を示したものであり、これに限定されるものではない。   Embodiments of the present invention will be described below. In addition, the following description shows an example of this invention and is not limited to this.

本発明の細径蛍光灯用外囲器は、次のようにして製造される。   The envelope for a small fluorescent lamp of the present invention is manufactured as follows.

まず、所望の組成となるようにガラス原料を調合する。例えば重量百分率でSiO2 55〜73%、B23 10〜25%、Al23 1〜10%、Li2 O+Na2 O+K2 O 4〜16%、ZrO2 0〜5%、Sb23 0.1〜4%の組成となるように調合する。次いで調合したガラス原料をガラス溶解窯に投入し、1500〜1650℃で溶融してガラス化した後、ダンナー法、ダウンドロー法等の管引き法を用いて管状に成形し、所定の長さに切断する。このとき直接所望の外径、肉厚を有するように成形してもよいし、外径、肉厚の大きい親管を作製した後、これをリドロー法によって細管化してもよい。このようにして線膨張係数が43〜55×10-7/℃であり、外径5.2mm以下、肉厚0.6mm以下のホウケイ酸ガラスからなる管状ガラスで構成された本発明の細径蛍光灯用外囲器が得られる。なお必要に応じて、管状ガラスの両端に縮径部を形成する等の加工を施してもよい。 First, a glass raw material is prepared so as to have a desired composition. For example SiO 2 55 to 73% by weight percent, B 2 O 3 10~25%, Al 2 O 3 1~10%, Li 2 O + Na 2 O + K 2 O 4~16%, ZrO 2 0~5%, Sb 2 Prepare a composition of 0.1 to 4% O 3 . Next, the prepared glass raw material is put into a glass melting kiln, melted at 1500 to 1650 ° C. to be vitrified, and then formed into a tubular shape using a tube drawing method such as a dunner method or a down draw method, to a predetermined length Disconnect. At this time, it may be directly molded so as to have a desired outer diameter and thickness, or after a parent pipe having a large outer diameter and thickness is produced, it may be thinned by a redraw method. Thus, the small diameter of this invention comprised with the tubular glass which consists of a borosilicate glass whose linear expansion coefficient is 43-55 * 10 < -7 > / (degreeC), outer diameter 5.2mm or less, and wall thickness 0.6mm or less. A fluorescent lamp envelope is obtained. In addition, you may give the process of forming a reduced diameter part in the both ends of a tubular glass as needed.

次に本発明の細径蛍光ランプについて説明する。   Next, the thin fluorescent lamp of the present invention will be described.

本発明の細径蛍光ランプは、上記のようにして作製された外囲器を使用したものであり、コバールからなる導入金属が外囲器の両端に挿入された状態で溶封されるとともに、内部には水銀やキセノン等のガスが封入されており、また外囲器内壁面には蛍光体が塗布された構成を有している。そして、電圧が印加されると各導入金属先端の電極間に放電が起こり、この放電により封入された水銀やキセノン等のガスが励起し、励起したガスから放射される紫外線によって外囲器内壁面の蛍光体が可視光線を発光する。   The small fluorescent lamp of the present invention uses the envelope produced as described above, and is sealed in a state where the introduction metal made of Kovar is inserted at both ends of the envelope, A gas such as mercury or xenon is sealed inside, and the inner wall surface of the envelope has a configuration in which a phosphor is applied. When a voltage is applied, a discharge occurs between the electrodes at the tip of each introduced metal, and a gas such as mercury or xenon enclosed by the discharge is excited, and the inner wall surface of the envelope is irradiated with ultraviolet rays emitted from the excited gas. The phosphor emits visible light.

このような細径蛍光ランプは、液晶表示素子の照明装置等に組み込まれて使用される。   Such a small-diameter fluorescent lamp is used by being incorporated in an illumination device for a liquid crystal display element.

以下、本発明の細径蛍光ランプ用外囲器の線膨張係数及び耐紫外線ソラリゼーション性について評価する。   Hereinafter, the linear expansion coefficient and the ultraviolet solarization resistance of the envelope for the small fluorescent lamp of the present invention will be evaluated.

表1は本発明の外囲器を構成するホウケイ酸ガラスの実施例(試料No.1〜3)及び比較例(試料No.4及び5)を示している。   Table 1 shows examples (sample Nos. 1 to 3) and comparative examples (samples No. 4 and 5) of the borosilicate glass constituting the envelope of the present invention.

Figure 0004187002
Figure 0004187002

表に示したNo.1〜5の各試料は、次のようにして調製した。   No. shown in the table. Each sample of 1-5 was prepared as follows.

まず表に示す組成となるようにガラス原料を調合した後、白金坩堝を用いて1550℃で5時間溶解した。溶解後、融液を所定の形状に成形、加工して各ガラス試料を作製し、それらの30〜380℃の温度範囲における線膨張係数、及び紫外線照射前後の分光透過率を測定し、各特性を表に示した。   First, glass raw materials were prepared so as to have the composition shown in the table, and then melted at 1550 ° C. for 5 hours using a platinum crucible. After melting, the melt is formed into a predetermined shape and processed to produce each glass sample, and the linear expansion coefficient in the temperature range of 30 to 380 ° C. and the spectral transmittance before and after UV irradiation are measured, and each characteristic is measured. Is shown in the table.

表から明らかなように、本発明の実施例であるNo.1〜3の各試料は、線膨張係数が45.3〜49.2×10-7/℃であり、コバールのそれと近似しており、また紫外線照射による透過率の低下が1.0%以下と殆どないため、高い耐紫外線ソラリゼーション性を有していることが理解できる。 As is apparent from the table, No. 1 as an example of the present invention. Each of the samples 1 to 3 has a linear expansion coefficient of 45.3 to 49.2 × 10 −7 / ° C., which is close to that of Kovar, and the transmittance decrease due to ultraviolet irradiation is 1.0% or less. Therefore, it can be understood that it has high ultraviolet solarization resistance.

それに対し比較例であるNo.4及び5の試料は、線膨張係数がコバールと封着可能である43〜55×10-7/℃の範囲内にあるが、Sb23 を含有していないため、紫外線照射による透過率の低下が7%以上と大きく、耐紫外線ソラリゼーション性が非常に低かった。 On the other hand, a comparative example No. Samples 4 and 5 have a linear expansion coefficient in the range of 43 to 55 × 10 −7 / ° C. that can be sealed with Kovar, but do not contain Sb 2 O 3, and therefore, transmittance by ultraviolet irradiation. The decrease in UV was as large as 7% or more, and the ultraviolet solarization resistance was very low.

なお表中の線膨張係数は、ガラスを直径約3mm、長さ約50mmの円柱に加工した後に、自記示差熱膨張計で、30〜380℃の温度範囲における平均線膨張係数を測定したものである。   The linear expansion coefficient in the table is obtained by measuring an average linear expansion coefficient in a temperature range of 30 to 380 ° C. with a self-recording differential thermal dilatometer after processing the glass into a cylinder having a diameter of about 3 mm and a length of about 50 mm. is there.

耐紫外線ソラリゼーション性は次のようにして評価した。まず厚さ1mmの板状ガラスの両面を鏡面研磨して試料を得た。次いで紫外線照射前の試料の透過率が80%を示す光の波長を測定した。さらにその試料に40Wの低圧水銀ランプによって主波長253.7nmの紫外線を60分間照射した後、照射前に透過率80%を示した波長における透過率を改めて測定することによって、紫外線照射による透過率の低下を求めた。この時、耐紫外線ソラリゼーション性の劣るガラスほどこの透過率低下が大きくなるが、液晶バックライト等の蛍光ランプ用ガラス管としては、この低下が殆どないことが重要である。   The ultraviolet solarization resistance was evaluated as follows. First, a sample was obtained by mirror-polishing both surfaces of a 1 mm thick plate glass. Next, the wavelength of light at which the transmittance of the sample before ultraviolet irradiation showed 80% was measured. Further, after irradiating the sample with ultraviolet light having a main wavelength of 253.7 nm for 60 minutes with a 40 W low-pressure mercury lamp, the transmittance at a wavelength showing a transmittance of 80% is measured again before irradiation, whereby the transmittance by ultraviolet irradiation is measured. Sought to decrease. At this time, the lowering of the transmittance becomes larger as the glass having inferior ultraviolet solarization resistance is reduced. However, it is important that the glass tube for a fluorescent lamp such as a liquid crystal backlight hardly has this reduction.

Claims (12)

重量百分率で、SiO 2 55〜73%、B 2 3 10〜25%、Al 2 3 1〜10%、Li 2 O+Na 2 O+K 2 O 4〜16%、ZrO 2 0〜5%、Sb 2 3 0.1〜4%含有し、30〜380℃における線膨張係数が43〜55×10-7/℃(43×10-7/℃を除く)であるホウケイ酸ガラスで構成された外径5.2mm以下、肉厚0.6mm以下の管状ガラスからなることを特徴とする細径蛍光ランプ用外囲器。 In weight percent, SiO 2 55~73%, B 2 O 3 10~25%, Al 2 O 3 1~10%, Li 2 O + Na 2 O + K 2 O 4~16%, ZrO 2 0~5%, Sb 2 Outside composed of 0.1 to 4% O 3 and a borosilicate glass having a linear expansion coefficient of 43 to 55 × 10 −7 / ° C. (excluding 43 × 10 −7 / ° C.) at 30 to 380 ° C. An envelope for a small fluorescent lamp, characterized by being made of tubular glass having a diameter of 5.2 mm or less and a wall thickness of 0.6 mm or less. Li2Oが0〜4%、Na2Oが0〜4.3%、K2Oが0〜15%であることを特徴と
する請求項の細径蛍光ランプ用外囲器。
Li 2 O is 0~4%, Na 2 O is 0~4.3%, K 2 O is thin fluorescent lamp envelope of claim 1, characterized in that 0 to 15%.
ホウケイ酸ガラスが、さらにSrO、BaO、CaO、MgO、ZnO、P25 、As23、SO3 、F2 、Cl2 から選ばれる1種以上を含むことを特徴とする請求項1又は2の細径蛍光ランプ用外囲器。 Claim borosilicate glass, further SrO, BaO, CaO, MgO, ZnO, characterized in that it comprises one or more selected from P 2 O 5, As 2 O 3, SO 3, F 2, Cl 2 1 Or 2 small diameter fluorescent lamp envelopes. 液晶表示素子の照明装置の光源となる細径蛍光ランプに使用されることを特徴とする請求項1〜の何れかの細径蛍光ランプ用外囲器。 The envelope for a thin fluorescent lamp according to any one of claims 1 to 3 , wherein the envelope is used for a thin fluorescent lamp serving as a light source of an illumination device for a liquid crystal display element. 重量百分率で、SiO 2 55〜73%、B 2 3 10〜25%、Al 2 3 1〜10%、Li 2 O+Na 2 O+K 2 O 4〜16%、ZrO 2 0〜5%、Sb 2 3 0.1〜4%含有し、30〜380℃における線膨張係数が43〜55×10-7/℃(43×10-7/℃を除く)であるホウケイ酸ガラスとなるようにガラス原料を調合し、溶融窯に投入してガラス化した後、管状に成形することを特徴とする細径蛍光ランプ用外囲器の製造方法。 In weight percent, SiO 2 55~73%, B 2 O 3 10~25%, Al 2 O 3 1~10%, Li 2 O + Na 2 O + K 2 O 4~16%, ZrO 2 0~5%, Sb 2 Glass so as to be a borosilicate glass containing 0.1 to 4% of O 3 and having a linear expansion coefficient of 43 to 55 × 10 −7 / ° C. (excluding 43 × 10 −7 / ° C.) at 30 to 380 ° C. A method for manufacturing an envelope for a small-diameter fluorescent lamp, wherein raw materials are prepared, put into a melting furnace, vitrified, and then formed into a tubular shape. 外径5.2mm以下、肉厚0.6mm以下の管状ガラスとなるように成形することを特徴とする請求項の細径蛍光ランプ用外囲器の製造方法。 6. The method for manufacturing an envelope for a small-diameter fluorescent lamp according to claim 5 , wherein the envelope is formed into a tubular glass having an outer diameter of 5.2 mm or less and a wall thickness of 0.6 mm or less. 管引き成形することを特徴とする請求項又はの細径蛍光ランプ用外囲器の製造方法。 7. The method for producing an envelope for a small fluorescent lamp according to claim 5 or 6 , wherein the envelope is formed by tube drawing. Li2Oが0〜4%、Na2Oが0〜4.3%、K2Oが0〜15%であることを特徴と
する請求項5〜7の何れかの細径蛍光ランプ用外囲器の製造方法。
Li 2 O is 0 to 4% Na 2 O is 0 to 4.3%, either outside for small diameter fluorescent lamp of claim 5 to 7 K 2 O is characterized by a 0-15% A method for manufacturing an envelope.
ホウケイ酸ガラスが、さらにSrO、BaO、CaO、MgO、ZnO、P25 、As23、SO3 、F2 、Cl2 から選ばれる1種以上を含むことを特徴とする請求項5〜8の何れかの細径蛍光ランプ用外囲器の製造方法。 Claim borosilicate glass, further SrO, BaO, CaO, MgO, ZnO, characterized in that it comprises one or more selected from P 2 O 5, As 2 O 3, SO 3, F 2, Cl 2 5 The manufacturing method of the envelope for thin fluorescent lamps in any one of -8. コバールを導入金属とする細径蛍光ランプにおいて、外囲器として、請求項1〜の何れかの細径蛍光ランプ用外囲器を使用してなることを特徴とする細径蛍光ランプ。 A thin fluorescent lamp using Koval as an introduction metal, wherein the envelope for a thin fluorescent lamp according to any one of claims 1 to 4 is used as an envelope. コバールを導入金属とする細径蛍光ランプにおいて、外囲器として、請求項の何れかの方法で製造された細径蛍光ランプ用外囲器を使用してなることを特徴とする細径蛍光ランプ。 A thin fluorescent lamp using Kovar as an introduction metal, wherein the envelope is a thin fluorescent lamp envelope manufactured by the method according to any one of claims 5 to 9. Diameter fluorescent lamp. 液晶表示素子の照明装置の光源として使用されることを特徴とする請求項1又は1の細径蛍光ランプ。 Claim 1 0 or 1 1 of the small diameter fluorescent lamp, characterized in that it is used as a light source of a lighting device of a liquid crystal display device.
JP2006112378A 2006-04-14 2006-04-14 Envelope for small fluorescent lamp and small fluorescent lamp Expired - Fee Related JP4187002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006112378A JP4187002B2 (en) 2006-04-14 2006-04-14 Envelope for small fluorescent lamp and small fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006112378A JP4187002B2 (en) 2006-04-14 2006-04-14 Envelope for small fluorescent lamp and small fluorescent lamp

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP28794095A Division JP3899538B2 (en) 1995-10-09 1995-10-09 Envelope for small fluorescent lamp and small fluorescent lamp

Publications (2)

Publication Number Publication Date
JP2007207740A JP2007207740A (en) 2007-08-16
JP4187002B2 true JP4187002B2 (en) 2008-11-26

Family

ID=38486992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006112378A Expired - Fee Related JP4187002B2 (en) 2006-04-14 2006-04-14 Envelope for small fluorescent lamp and small fluorescent lamp

Country Status (1)

Country Link
JP (1) JP4187002B2 (en)

Also Published As

Publication number Publication date
JP2007207740A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
KR0176007B1 (en) Tungsten sealing glass
KR100538086B1 (en) Tungsten seal glass for fluorescent lamp
JP2002293571A (en) Glass for illumination
JP2004091308A (en) Glass for lighting
JP4743650B2 (en) Kovar seal glass for fluorescent lamps
JP3903490B2 (en) Kovar sealing glass
JP2004315279A (en) Glass for fluorescent lamp
JP3575114B2 (en) Kovar sealing glass
JP2002060245A (en) Ultraviolet ray absorbing glass and glass tube for fluorescent lamp using the same
JP3818571B2 (en) Glass suitable for sealing Fe-Ni-Co alloys
JP2005041729A (en) Illuminating glass
JP3903489B2 (en) Tungsten sealing glass
JP4686849B2 (en) Tungsten seal glass for fluorescent lamps
JP3899538B2 (en) Envelope for small fluorescent lamp and small fluorescent lamp
JP4187002B2 (en) Envelope for small fluorescent lamp and small fluorescent lamp
JP4453305B2 (en) Fluorescent lamp outer tube and fluorescent lamp
JP2002068775A (en) Glass envelope for illumination
JP3520626B2 (en) Enclosure for small diameter fluorescent lamp and small diameter fluorescent lamp
JP2010116306A (en) Glass composition for illumination and fluorescent lamp envelope
JP2004099439A (en) Method for using kovar sealing glass
KR100562841B1 (en) Glass tube for fluorescent lamp
JP3786397B2 (en) Glass suitable for sealing Fe-Ni-Co alloys
JP2004315280A (en) Glass for fluorescent lamp
JP2007039334A (en) Glass for sealing tungsten
JPH08333132A (en) Glass for sealing kovar

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees