JPH09105765A - Method for searching earth fault point and method for detecting earth fault phase of distribution line - Google Patents

Method for searching earth fault point and method for detecting earth fault phase of distribution line

Info

Publication number
JPH09105765A
JPH09105765A JP7262760A JP26276095A JPH09105765A JP H09105765 A JPH09105765 A JP H09105765A JP 7262760 A JP7262760 A JP 7262760A JP 26276095 A JP26276095 A JP 26276095A JP H09105765 A JPH09105765 A JP H09105765A
Authority
JP
Japan
Prior art keywords
ground
distribution line
voltage
earth fault
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7262760A
Other languages
Japanese (ja)
Inventor
Toshiaki Furukawa
利明 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Togami Electric Mfg Co Ltd
Original Assignee
Togami Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Togami Electric Mfg Co Ltd filed Critical Togami Electric Mfg Co Ltd
Priority to JP7262760A priority Critical patent/JPH09105765A/en
Publication of JPH09105765A publication Critical patent/JPH09105765A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Locating Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for searching an earth fault point and a method for detecting an earth fault phase which can be easily performed by anyone with a simple method and device. SOLUTION: In a distribution line 41, a signal voltage of a specified frequency is applied from a transmitter 10 between the distribution line 41 and the ground, the voltage applied to the earth line 44 of each pole of the distribution line, and the pole to which the maximum voltage is applied is detected, thereby, an earth fault point is searched.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、配電線路に発生し
た地絡事故点を検出する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a ground fault point on a distribution line.

【0002】[0002]

【従来の技術】従来、配電線路に地絡事故が発生したと
きには、事故区間の切離し及び健全区間へ早期に送電す
るためにまず変電所の遮断器を遮断し、一定時間後、遮
断器を再閉路する。そうすると、配電線路に設置された
区分開閉器が順次投入されていく。健全区間に再送電
し、地絡事故区間に再送電されると変電所の遮断器が再
び遮断する。このとき、地絡事故区間を投入した区分開
閉器はロックして、次回電源を印加しても投入動作を行
わない。
2. Description of the Related Art Conventionally, when a ground fault occurs on a distribution line, the circuit breaker of a substation is first interrupted in order to disconnect the accident section and to transmit power to a sound section early, and after a certain period of time, the circuit breaker is restarted. Make a circuit. Then, the division switches installed on the distribution line are sequentially turned on. When power is re-transmitted to a healthy section and then re-transmitted to the ground fault section, the circuit breaker at the substation shuts off again. At this time, the classification switch that has closed the ground fault accident section is locked and the closing operation is not performed even if the power is applied next time.

【0003】一定時間後、変電所の遮断器を再々閉路す
ると健全区間は区分開閉器が順次投入していき、送電さ
れる。一方、事故区間は区分開閉器がロックされている
ので送電されず、事故区間のみが分離される。このよう
にして事故区間を検出及び切離しを行っている。事故区
間の検出及び切離しが終了すると、事故区間に設置され
ている手動開閉器を切にしてさらに小さな区間に分け、
絶縁抵抗を測定したり各電柱に設置されているトランス
等の機器の絶縁抵抗を測定することにより地絡事故点の
探査を行っていた。
After a certain period of time, when the circuit breaker of the substation is closed again, the section switches are sequentially turned on in a healthy section to transmit power. On the other hand, since the classification switch is locked in the accident section, power is not transmitted and only the accident section is separated. In this way, the accident section is detected and separated. When the detection and disconnection of the accident section is completed, turn off the manual switch installed in the accident section to divide it into smaller sections,
The ground fault accident point was investigated by measuring the insulation resistance or measuring the insulation resistance of equipment such as transformers installed on each utility pole.

【0004】[0004]

【発明が解決しようとする課題】以上のように従来は地
絡事故区間を検出、切り離した後に地絡事故区間をさら
に小さく分けて絶縁抵抗を測定したり、各電柱に設置さ
れている種々の機器の絶縁抵抗を測定していたため、こ
れらに時間が掛かり、事故点の探査に多くの時間と労力
を要するという問題があった。本発明が解決すべき課題
は、これらの問題点を除去するために、簡単な装置と方
法により、だれでも簡単に地絡事故点を探査できる方法
及び地絡事故相を検出できる方法を提供することにあ
る。
As described above, conventionally, after detecting and disconnecting the ground fault accident section, the ground fault accident section is further divided into smaller parts to measure the insulation resistance, and various types of electric poles installed on each utility pole are used. Since the insulation resistance of the equipment was measured, there was a problem that it took time and exploration of the accident point took a lot of time and labor. The problem to be solved by the present invention is to provide a method for anyone to easily search for a ground fault accident point and a method for detecting a ground fault accident phase by a simple device and method in order to eliminate these problems. Especially.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するた
め、本発明の配電線の地絡事故点探査方法は、配電線路
において、配電線と大地間に特定周波数の信号電圧を印
加し、配電線路の各電柱の接地線に印加される電圧を検
出し、最大の電圧が印加されている電柱を検出すること
により、地絡事故点を探査することを特徴とする。この
方法において、電柱の接地ターミナルに受信器の信号入
力用電極を当てることにより、接地ターミナルに印加さ
れている電圧を検出することができる。また、本発明の
配電線の地絡事故相検出方法は、配電線路において、配
電線と大地間に特定周波数の信号電圧を印加し、配電線
もしくは大地へ流れる電流を検出することにより、地絡
事故が発生している相を検出することを特徴とする。
In order to solve the above-mentioned problems, a method for detecting a ground fault in a distribution line according to the present invention is applied to a distribution line by applying a signal voltage of a specific frequency between the distribution line and the ground. It is characterized in that the ground fault point is searched by detecting the voltage applied to the ground wire of each utility pole of the line and detecting the utility pole to which the maximum voltage is applied. In this method, by applying the signal input electrode of the receiver to the ground terminal of the utility pole, the voltage applied to the ground terminal can be detected. Further, the distribution line ground fault accident phase detection method of the present invention, in the distribution line, by applying a signal voltage of a specific frequency between the distribution line and the ground, by detecting the current flowing to the distribution line or the ground, ground fault. It is characterized by detecting the phase in which an accident has occurred.

【0006】[0006]

【発明の実施の形態】配電線路に設置された区分開閉器
により地絡事故が発生している区間を切り離した後、図
2に示すように配電線41と大地間に接続した送信器1
0により探査信号を送出する。探査信号は送信器10よ
り配電線41を通り、地絡事故点より電柱内のアース線
を通り大地へ流れる。
BEST MODE FOR CARRYING OUT THE INVENTION A transmitter 1 connected between a distribution line 41 and ground as shown in FIG. 2 after a section in which a ground fault has occurred is separated by a section switch installed on a distribution line.
When 0, the search signal is transmitted. The exploration signal flows from the transmitter 10 through the distribution line 41 and from the ground fault accident point to the ground through the ground wire in the utility pole.

【0007】アース線と大地間には接地抵抗があるので
探査信号電流をIS、接地抵抗をr4とすると、V4=IS
×r4の電圧降下を生じる。図3は図2を電気的に分か
りやすく書き直したものである。探査信号電流は地絡事
故が発生している電柱のアース線44にのみ流れるの
で、その電柱のみアース線44に電圧を受ける。従って
各電柱のアース線44にかかる電圧を検出していけば容
易に地絡事故点を探査することができる。
Since there is a ground resistance between the ground wire and the ground, assuming that the search signal current is I S and the ground resistance is r 4 , V 4 = I S
A voltage drop of × r 4 occurs. FIG. 3 is a rewrite of FIG. 2 in an electrically understandable manner. Since the exploration signal current flows only in the ground wire 44 of the electric pole in which the ground fault accident occurs, only the electric pole receives the voltage in the ground wire 44. Therefore, if the voltage applied to the ground wire 44 of each utility pole is detected, the ground fault accident point can be easily searched.

【0008】次に架空地線42が設置された配電線路に
ついて説明する。図4のように架空地線42により各電
柱のアース線44が接続されている配電線路の場合は、
送信器10より送出された探査信号電流は配電線41を
通り地絡事故点より電柱内アース線44を通り大地へ流
れると同時に電柱内アース線44から架空地線42を通
って隣の電柱のアース線にも流れてしまう。このため地
絡事故が発生した電柱以外のアース線においても電圧降
下を生じることになる。
Next, a power distribution line in which the overhead ground wire 42 is installed will be described. As shown in FIG. 4, in the case of the distribution line in which the ground wire 44 of each utility pole is connected by the overhead ground wire 42,
The exploration signal current sent from the transmitter 10 flows through the distribution line 41 and the earth line 44 inside the pole from the ground fault point to the ground, and at the same time from the ground line 44 inside the pole through the overhead ground line 42 to the adjacent pole. It also flows to the ground wire. As a result, a voltage drop will occur in the ground wire other than the power pole where the ground fault occurred.

【0009】図5は図4を電気的に分かりやすく書き直
した図である。図5のように各電柱のアース線が架空地
線42で接続されていると、架空地線42の抵抗は非常
に小さいので、各電柱におけるアース線の電圧降下はほ
ぼ同じになってしまう。これでは地絡事故点の探査が困
難になってしまうが、架空地線42にはインダクタンス
成分があるため、探査信号に高周波信号を使用すれば、
探査は容易となる。
FIG. 5 is a diagram obtained by rewriting FIG. 4 so as to be electrically understandable. If the ground wire of each utility pole is connected by the overhead ground wire 42 as shown in FIG. 5, the resistance of the overhead ground wire 42 is very small, and the voltage drop of the ground wire in each utility pole will be substantially the same. This makes it difficult to search the ground fault accident point, but since the overhead ground wire 42 has an inductance component, if a high frequency signal is used as the search signal,
Exploration becomes easy.

【0010】図1は図5の架空地線の部分をインダクタ
ンスに書き直したものである。図1において、探査信号
電流ISは地絡抵抗rgを通り各電柱のアース線に流れ込
むが、その一部は地絡事故が発生している電柱のアース
線へ電流I4として流れ込む。これによりNo.4の電
柱のアース線にはV4=I4×r4の電圧降下を生じる。
FIG. 1 is a drawing in which the portion of the overhead ground wire in FIG. 5 is rewritten as an inductance. In FIG. 1, the exploration signal current I S flows into the ground wire of each utility pole through the ground fault resistance r g , but part of it flows into the ground wire of the utility pole in which the ground fault has occurred as a current I 4 . Thereby, No. A voltage drop of V 4 = I 4 × r 4 occurs on the ground wire of the telephone pole of No. 4 .

【0011】探査信号の周波数をfとし、L3に流れる
電流をI3とすると、L3では2πfL3×I3の電圧降下
を生じる。従ってV3の電圧はV3=V4−2πfL3×I
3となる。同じように、V2,V1の電圧は V2=V3−2πfL22=V4−2πfL33−2πfL221=V2−2πfL11=V4−2πfL33−2πfL22−2πfL11 となる。同じように、V5,V6の電圧は V5=V4−2πfL556=V5−2πfL66=V4−2πfL55−2πfL66 となる。
[0011] The frequency of the probing signal is f, and the current flowing in L 3 and I 3, causes a voltage drop of the L 3 2πfL 3 × I 3. Voltage V 3 is therefore V 3 = V 4 -2πfL 3 × I
It becomes 3 . Similarly, the voltages of V 2 and V 1 are V 2 = V 3 -2πfL 2 I 2 = V 4 -2πfL 3 I 3 -2πfL 2 I 2 V 1 = V 2 -2πfL 1 I 1 = V 4 -2πfL 3 I 3 −2πfL 2 I 2 −2πfL 1 I 1 . Similarly, the voltages of V 5 and V 6 are V 5 = V 4 -2πfL 5 I 5 V 6 = V 5 -2πfL 6 I 6 = V 4 -2πfL 5 I 5 -2πfL 6 I 6 .

【0012】つまり、地絡事故が発生した電柱のアース
線にかかる電圧が最も高く、その隣、またその隣と順次
インダクタによる電圧降下によって電圧が低くなる。例
えば、高周波探査信号を周波数10kHzで地絡事故点
におけるアース線に印加される電圧のレベルを10とす
ると、その隣は3〜4、その他の電柱は0〜2のレベル
で表される(図6参照)。このように、本探査方法によ
れば、地絡事故点の電柱とその他の電柱では歴然とした
差が出るので、容易にしかも短時間で探査が可能とな
る。
That is, the voltage applied to the ground wire of the utility pole in which the ground fault has occurred is the highest, and the voltage decreases due to the voltage drop due to the inductor next to the ground wire and next to the ground wire. For example, if the frequency of the high-frequency exploration signal is 10 kHz and the level of the voltage applied to the ground line at the ground fault accident point is 10, the level is 3 to 4 next to it and the levels of 0 to 2 for other utility poles (Fig. 6). As described above, according to the present exploration method, since there is a clear difference between the electric pole at the ground fault accident point and the other electric pole, the exploration can be performed easily and in a short time.

【0013】次にアース線にかかる電圧の測定方法であ
るが、一般にアース線に電流を流すと、接地抵抗により
電位が上昇する。電流は大地へ向かって放射状に流出し
ていくのでアース線の周囲の大地も電位上昇する。この
電位は図7のように接地点が最も高く接地点から離れる
に従って低くなる。従来のアース線にかかる電圧の測定
は、アース線と大地間の電圧測定になるので、大地間の
電極として図8のように通常のアース棒51の他にもう
1本のアース棒つまり補助電極52が必要となる。
Next, regarding the method of measuring the voltage applied to the ground wire, generally, when a current is passed through the ground wire, the potential rises due to the ground resistance. Since the electric current flows radially toward the earth, the potential of the earth around the earth wire also rises. As shown in FIG. 7, this potential is highest at the ground point and becomes lower as the distance from the ground point increases. Since the conventional measurement of the voltage applied to the ground wire is the voltage measurement between the ground wire and the ground, as the electrode between the ground, as shown in FIG. 8, in addition to the normal ground rod 51, another ground rod, that is, an auxiliary electrode. 52 is required.

【0014】地絡事故点の探査に 使用する場合はアー
ス線の電圧の絶対値が必要ではなく、最も高いところを
探すだけでよい。例えば、図7のA地点のようにΔVの
電位上昇がある距離でも、問題なく探査が可能である。
実際に、電柱から2〜3mの距離に補助電極を打ち込ん
でアース線の電圧を測定していくという方法で探査すれ
ばよく、比較的簡単な方法といえる。しかし、補助電極
52を打ち込まずに探査ができれば更に簡単になる。以
下にその方法について説明する。
When used to search for a ground fault point, the absolute value of the voltage of the ground wire is not required, and it is only necessary to search for the highest point. For example, even at a distance where the potential rises by ΔV, such as the point A in FIG. 7, it is possible to search without problems.
In fact, it may be said that it is a comparatively simple method as long as the auxiliary electrode is driven at a distance of 2 to 3 m from the electric pole and the voltage of the ground wire is measured. However, it becomes easier if the search can be performed without driving the auxiliary electrode 52. The method will be described below.

【0015】電力会社の電柱には図9に示すような接地
ターミナル50が設置されている。同図において、電柱
内アース線44は接地抵抗を定期的に測定できるように
アース線を途中で切断し、接地ターミナル部50で2本
が接続されている。接地ターミナルは絶縁物の基台46
にネジを切った導電性の棒を固着してある(ネジ部4
8)。このネジ部48へ2本のアース線44を差し込
み、締め付け用ナット49で締め付け、接続している。
基台46は取付用のビス47にて電柱43に締め付け固
定されている。接地抵抗を測定する時は取付用ビス47
を緩めて接地ターミナル部50を電柱43の外へ引き出
し、締め付け用ナット49を緩めて大地へ接続されてい
る方の線を外し、接地抵抗を測定する。
A ground terminal 50 as shown in FIG. 9 is installed on the electric pole of the electric power company. In the figure, the grounding wire 44 in the utility pole is cut off midway so that the grounding resistance can be regularly measured, and two grounding terminals 50 are connected. The ground terminal is an insulator base 46
A conductive rod that is threaded is fixed to the screw (thread 4
8). Two ground wires 44 are inserted into the screw portion 48, and tightened with a tightening nut 49 for connection.
The base 46 is fastened and fixed to the electric pole 43 with a mounting screw 47. Mounting screw 47 when measuring earth resistance
To loosen the ground terminal portion 50 to the outside of the utility pole 43, loosen the tightening nut 49 to remove the wire connected to the ground, and measure the ground resistance.

【0016】本発明の地絡事故点の探査方法は、図9の
ように電柱の接地ターミナル50へ外部から受信器20
の先端を当てるだけで可能である。受信器20の先端に
は電極11を備えており、この電極11によりアース線
44の電圧を検出する。この様子を電気的に分かりやす
く書き直したのが図10であり、接地ターミナル50に
はアース電圧が印加されているネジ部がある。測定者は
接地ターミナル50の絶縁物を介して受信器の電極11
を当てているので、アース線44と受信器20の電極1
1はその間の静電容量C1で接続されたことになる。ま
た、受信器20を手で持っているため、受信器20のマ
イナス側と手の間はその間の静電容量C2で接続された
ことになる。同じく、測定者は大地の上に立っているの
で、足と大地はその間の静電容量C3で接続されたこと
になる。
As shown in FIG. 9, the ground fault accident point search method according to the present invention includes a receiver 20 from the outside to a ground terminal 50 of a utility pole.
It is possible just by hitting the tip of. An electrode 11 is provided at the tip of the receiver 20, and the voltage of the ground wire 44 is detected by this electrode 11. FIG. 10 is a rewrite of this situation in an electrically understandable manner, and the ground terminal 50 has a screw portion to which a ground voltage is applied. The measurer uses the insulator of the grounding terminal 50 to receive the electrode 11 of the receiver.
The ground wire 44 and the electrode 1 of the receiver 20
1 is connected by the capacitance C 1 between them. Further, since the receiver 20 is held by hand, the minus side of the receiver 20 and the hand are connected by the electrostatic capacitance C 2 therebetween. Similarly, since the measurer is standing on the ground, the foot and the ground are connected by the capacitance C 3 therebetween.

【0017】受信器20の入力インピーダンスをZin
人体の内部抵抗をRmとすると、アース線44の電圧は
1,Zin,C2,Rm,C3により分圧されてZinにある
電圧が印加される。この電圧は増幅回路12で増幅さ
れ、表示部14で電圧値や電圧レベルとして表示され
る。前述のとおり、地絡事故点の探査では、地絡事故点
とその他では図6のように電圧に約3倍の差があるの
で、問題なく探査が可能である。
The input impedance of the receiver 20 is Z in ,
Assuming that the internal resistance of the human body is R m , the voltage of the ground wire 44 is divided by C 1 , Z in , C 2 , R m and C 3 and the voltage at Z in is applied. This voltage is amplified by the amplifier circuit 12 and displayed on the display unit 14 as a voltage value or a voltage level. As described above, in the exploration of the ground fault accident point, the voltage at the ground fault accident point and the other points are about three times as different as shown in FIG. 6, and therefore the exploration can be performed without any problem.

【0018】次に送信器10の実施例を図11に示す。
図11において、1は発振器で、ある特定の周波数を発
振する。この出力は電力増幅器2へ与えられ、電力増幅
される。電力増幅器2の出力はトランス3に与えられ、
昇圧される。トランス3の出力は大地及び配電線41へ
接続され、配電線41と大地間に信号電圧が印加され
る。
Next, an embodiment of the transmitter 10 is shown in FIG.
In FIG. 11, reference numeral 1 denotes an oscillator, which oscillates at a specific frequency. This output is given to the power amplifier 2 for power amplification. The output of the power amplifier 2 is given to the transformer 3,
Boosted. The output of the transformer 3 is connected to the ground and the distribution line 41, and a signal voltage is applied between the distribution line 41 and the ground.

【0019】次に受信器の実施例を図12に示す。同図
において、11は入力用電極、12は増幅器、13はバ
ンドパスフィルタ、14は表示用ICである。入力用電
極11に入力された信号は増幅器12で増幅される。増
幅器12の出力はバンドパスフィルタ13によってある
特定の周波数のみの信号に選択される。バンドパスフィ
ルタ13の出力は表示用IC14に印加され、入力電圧
に応じてLEDを点灯又は値として表示する。入力用電
極11、増幅器12、バンドパスフィルタ13はすべて
入力電圧に比例して出力を出すので、LEDの点灯数又
は表示値は入力用電極11に印加される電圧、つまり接
地ターミナル50に印加される電圧に比例することにな
る。
Next, an embodiment of the receiver is shown in FIG. In the figure, 11 is an input electrode, 12 is an amplifier, 13 is a bandpass filter, and 14 is a display IC. The signal input to the input electrode 11 is amplified by the amplifier 12. The output of the amplifier 12 is selected by the bandpass filter 13 as a signal having only a specific frequency. The output of the bandpass filter 13 is applied to the display IC 14, and the LED is turned on or displayed as a value according to the input voltage. Since the input electrode 11, the amplifier 12, and the bandpass filter 13 all output in proportion to the input voltage, the number of LEDs lit or the display value is applied to the voltage applied to the input electrode 11, that is, the ground terminal 50. It will be proportional to the voltage.

【0020】次に事故相を検出する方法について述べ
る。地絡点を探査する場合、まず事故相の判別が必要で
ある。図13のように配電線41のT相に地絡事故が発
生したとする。この場合、事故相を検出するには各相の
対地間抵抗を測定すれば良いようであるが、実際の配電
線41には図のようにトランス45等が接続されてお
り、対地間の抵抗はR,S,Tどの相でもほぼ同じにな
ってしまう。そこでトランス45等の影響が無いように
交流信号にて測定する。図13において、事故相検出器
30に交流信号を使用する。これにより、トランスに4
5流れる電流が小さくなり、トランス45の影響はほぼ
無視できる。図13において、事故相検出器30の出力
をR,S,Tと順次接続していくと、T相へ接続した場
合が電流が最も多く流れるので、この電流を検出すれば
T相が事故相であることが分かる。
Next, a method of detecting the accident phase will be described. When exploring a ground fault, it is first necessary to identify the accident phase. It is assumed that a ground fault has occurred in the T phase of the distribution line 41 as shown in FIG. In this case, it seems that in order to detect the accident phase, the resistance to ground of each phase may be measured, but the transformer 45 or the like is connected to the actual distribution line 41 as shown in the figure, and the resistance to ground is measured. Is almost the same in any of R, S, and T phases. Therefore, measurement is performed with an AC signal so that there is no influence of the transformer 45 or the like. In FIG. 13, an AC signal is used for the accident phase detector 30. This makes the transformer 4
5. The flowing current becomes small, and the influence of the transformer 45 can be almost ignored. In FIG. 13, when the output of the accident phase detector 30 is sequentially connected to R, S, and T, the largest amount of current flows when connected to the T phase. It turns out that

【0021】図13に事故相検出器の実施例を示す。図
において、21は発振器、22は電力増幅器、23はト
ランス、24は出力電流値を検出するための抵抗、25
は増幅器、26はバンドパスフィルタ、27は表示用I
Cである。発振器21で発振されたある特定の周波数の
交流信号は電力増幅器22で増幅される。電力増幅器2
2の出力はトランス23へ印加され、昇圧される。トラ
ンス23の出力は大地及び配電線41に接続され、配電
線41と大地間に信号電圧が印加される。これにより、
配電線41に信号電流が流れるが、回路中に電流検出用
抵抗24が接続されているので、信号電流に比例した電
圧を抵抗24の両端に生じる。この電圧は増幅器25で
増幅され、バンドパスフィルタ26に印加され、ある特
定の周波数のみの信号に選択される。
FIG. 13 shows an embodiment of the accident phase detector. In the figure, 21 is an oscillator, 22 is a power amplifier, 23 is a transformer, 24 is a resistor for detecting an output current value, 25
Is an amplifier, 26 is a bandpass filter, and 27 is a display I.
C. The AC signal of a certain frequency oscillated by the oscillator 21 is amplified by the power amplifier 22. Power amplifier 2
The output of 2 is applied to the transformer 23 and boosted. The output of the transformer 23 is connected to the ground and the distribution line 41, and a signal voltage is applied between the distribution line 41 and the ground. This allows
Although a signal current flows through the distribution line 41, since the current detecting resistor 24 is connected in the circuit, a voltage proportional to the signal current is generated across the resistor 24. This voltage is amplified by the amplifier 25, applied to the bandpass filter 26, and selected as a signal having only a specific frequency.

【0022】バンドパスフィルタ26に出力は表示用I
C27に印加され、入力電圧に応じてLEDを点灯する
か、値として表示する。増幅器25及びバンドパスフィ
ルタ26は入力信号に比例した出力を出すので、LED
の点灯数は抵抗24の端子電圧つまり配電線41に流れ
る電流に比例して表示されるため、最大を示す相を探せ
ば、その相が事故相であることが分かる。
The output to the bandpass filter 26 is a display I.
It is applied to C27 and turns on or displays the LED according to the input voltage. Since the amplifier 25 and the bandpass filter 26 output the output in proportion to the input signal, the LED
The number of lights of is displayed in proportion to the terminal voltage of the resistor 24, that is, the current flowing through the distribution line 41. Therefore, if the phase showing the maximum is searched, it is found that the phase is the accident phase.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば比
較的簡単な装置で、容易に地絡事故点を探査することが
できる。
As described above, according to the present invention, the ground fault accident point can be easily searched with a relatively simple device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 架空地線の部分をインダクタンスに書き直し
た配電線と送信器の接続関係を示す回路図である。
FIG. 1 is a circuit diagram showing a connection relationship between a distribution line in which an overhead ground wire is rewritten as an inductance and a transmitter.

【図2】 本発明による配電線と大地間に接続した送信
器より探査信号を送出している状態を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a state in which a search signal is transmitted from a transmitter connected between a distribution line and the ground according to the present invention.

【図3】 図2の状態を電気的に説明するための回路図
である。
FIG. 3 is a circuit diagram for electrically explaining the state of FIG.

【図4】 架空地線を有する配電線に対して送信器より
探査信号を送出している状態を示す説明図である。
FIG. 4 is an explanatory diagram showing a state in which a transmitter is transmitting a search signal to a distribution line having an overhead ground wire.

【図5】 図4の状態を電気的に説明するための回路図
である。
FIG. 5 is a circuit diagram for electrically explaining the state of FIG.

【図6】 事故柱及び隣の電柱のアース線に印加される
電圧のレベルを示すグラフである。
FIG. 6 is a graph showing the level of the voltage applied to the ground wire of the accident pole and the adjacent utility pole.

【図7】 接地点からの距離に対するアース線による大
地電位上昇の大きさを示すグラフである。
FIG. 7 is a graph showing the magnitude of increase in ground potential by the ground wire with respect to the distance from the ground point.

【図8】 従来のアース線の電圧測定のための補助電極
を設置する例を示す説明図である。
FIG. 8 is an explanatory diagram showing an example of installing an auxiliary electrode for measuring the voltage of a conventional ground wire.

【図9】 電柱に接地ターミナルを取り付けた状態の断
面図である。
FIG. 9 is a sectional view showing a state in which a ground terminal is attached to a utility pole.

【図10】 本発明の受信器を用いたアース線に印加さ
れる電圧を測定する状態の回路図である。
FIG. 10 is a circuit diagram showing a state in which the voltage applied to the ground line is measured using the receiver of the present invention.

【図11】 本発明の送信器の実施例を示す回路図であ
る。
FIG. 11 is a circuit diagram showing an embodiment of a transmitter of the present invention.

【図12】 本発明の受信器の実施例を示す回路図であ
る。
FIG. 12 is a circuit diagram showing an embodiment of a receiver of the present invention.

【図13】 本発明の事故相検出器の実施例を示す回路
図である。
FIG. 13 is a circuit diagram showing an embodiment of an accident phase detector of the present invention.

【符号の説明】[Explanation of symbols]

1 発振器、2 電力増幅器、3 トランス、10 送
信器、11 電極、12増幅器、13 バンドパスフィ
ルタ、14 表示器、20 受信器、21 発振器、2
2 電力増幅器、23 トランス、24 検出抵抗、2
5 増幅器、26 バンドパスフィルタ、27 表示用
IC、30 事故相検出器、41 配電線、42 架空
地線、43電柱、44 アース線、45 トランス、4
6 基台、47 ビス、48 ネジ部、49 締め付け
用ナット、50 接地ターミナル、51 アース棒、5
2 補助電極
1 oscillator, 2 power amplifier, 3 transformer, 10 transmitter, 11 electrode, 12 amplifier, 13 bandpass filter, 14 indicator, 20 receiver, 21 oscillator, 2
2 power amplifier, 23 transformer, 24 detection resistor, 2
5 amplifier, 26 band pass filter, 27 display IC, 30 accident phase detector, 41 distribution line, 42 overhead ground wire, 43 utility pole, 44 earth line, 45 transformer, 4
6 base, 47 screw, 48 screw part, 49 tightening nut, 50 ground terminal, 51 ground rod, 5
2 auxiliary electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 配電線路において、配電線と大地間に特
定周波数の信号電圧を印加し、配電線路の各電柱の接地
線に印加される電圧を検出し、最大の電圧が印加されて
いる電柱を検出することにより、地絡事故点を探査する
ことを特徴とする、配電線の地絡事故点探査方法。
1. In a distribution line, a signal voltage of a specific frequency is applied between the distribution line and the ground, the voltage applied to the ground wire of each utility pole of the distribution line is detected, and the maximum voltage is applied to the utility pole. A ground fault accident point detection method for a distribution line, which is characterized by detecting a ground fault accident point.
【請求項2】 電柱の接地ターミナルに受信器の信号入
力用電極を当てることにより、接地ターミナルに印加さ
れている電圧を検出することを特徴とする請求項1記載
の配電線の地絡事故点探査方法。
2. The ground fault point of the distribution line according to claim 1, wherein the voltage applied to the ground terminal is detected by applying the signal input electrode of the receiver to the ground terminal of the utility pole. Exploration method.
【請求項3】 配電線路において、配電線と大地間に特
定周波数の信号電圧を印加し、配電線もしくは大地へ流
れる電流を検出することにより、地絡事故が発生してい
る相を検出することを特徴とする、配電線の地絡事故相
検出方法。
3. A phase in which a ground fault has occurred by applying a signal voltage of a specific frequency between a distribution line and ground in a distribution line and detecting a current flowing to the distribution line or ground. A method of detecting a ground fault accident phase of a distribution line, characterized by:
JP7262760A 1995-10-11 1995-10-11 Method for searching earth fault point and method for detecting earth fault phase of distribution line Pending JPH09105765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7262760A JPH09105765A (en) 1995-10-11 1995-10-11 Method for searching earth fault point and method for detecting earth fault phase of distribution line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7262760A JPH09105765A (en) 1995-10-11 1995-10-11 Method for searching earth fault point and method for detecting earth fault phase of distribution line

Publications (1)

Publication Number Publication Date
JPH09105765A true JPH09105765A (en) 1997-04-22

Family

ID=17380213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7262760A Pending JPH09105765A (en) 1995-10-11 1995-10-11 Method for searching earth fault point and method for detecting earth fault phase of distribution line

Country Status (1)

Country Link
JP (1) JPH09105765A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155579A (en) * 2014-08-19 2014-11-19 国家电网公司 M-type pole-mounted-switch-based 10 KV distribution line and fault detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346646A (en) * 1976-10-12 1978-04-26 Sanyu Kogyosho:Kk Leak location method and device
JPS631980A (en) * 1986-06-20 1988-01-06 Tokyo Electric Power Co Inc:The Apparatus for locating trouble point of power distributing system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346646A (en) * 1976-10-12 1978-04-26 Sanyu Kogyosho:Kk Leak location method and device
JPS631980A (en) * 1986-06-20 1988-01-06 Tokyo Electric Power Co Inc:The Apparatus for locating trouble point of power distributing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155579A (en) * 2014-08-19 2014-11-19 国家电网公司 M-type pole-mounted-switch-based 10 KV distribution line and fault detection method

Similar Documents

Publication Publication Date Title
KR100584020B1 (en) A variable frequency inverter-type high power ground resistance measuring device and measuring method based on PC
US7019531B2 (en) Procedure and device for the evaluation of the quality of a cable
JPH09105765A (en) Method for searching earth fault point and method for detecting earth fault phase of distribution line
US6130540A (en) Measurement system for electric disturbances in a high-voltage switchboard plant
EP1018028A1 (en) A device for monitoring partial discharges in an electric high-voltage apparatus or high-voltage equipment
JPH01165973A (en) Measuring device of insulation resistance of direct-current circuit
JPH0727812A (en) Insulation diagnosing device
CN211263720U (en) Double-clamp-meter type direct current grounding searching instrument
JP2001159650A (en) Method and device for identifying cable
JP3161757B2 (en) Power system insulation deterioration detection method, insulation deterioration detection device, insulation deterioration detection system, and insulation deterioration determination device
JP2002131349A (en) Method and device for measuring grounding resistance
RU2025740C1 (en) Method of locating damage of power transmission lines and apparatus for performing the same
KR900000984B1 (en) Earth resistance measure method and system
JPH09119959A (en) Method for monitoring detection sensitivity of partial discharge measuring device
JPH09101340A (en) Intermittent ground fault position locating method and insulation deterioration monitoring method in power distribution system
JP2003222651A (en) Judging method for insulation degradation of electric appliance
JP2002529888A (en) Low cost electrical circuit breaker locator using passive transmitter and receiver
JP2750713B2 (en) Simple insulation resistance measurement method for low voltage wiring etc.
JP2002071726A (en) Voltage sensor
RU25604U1 (en) DEVICE FOR QUALITY CONTROL EARTHING CIRCUIT
JPH11237429A (en) Ground insulation power supply device with function for detecting magnetism and magnetism detection current generation device
WO2009017275A1 (en) Self-examination type cast resin transformer
JPH11248767A (en) Apparatus for measuring grounding resistance and method for measuring grounding resistance using the apparatus
JPH0473755B2 (en)
JP2002122628A (en) Specifying method for fault point